Artificial Adult Diet as a New Tool for Improving a Biocontrol Program with Predatory Hoverflies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plants
2.2. Insect Rearing
2.3. Experimental Design
2.4. Data Analysis
3. Results
3.1. Effect of Diets on Female Fecundity, Fertility, and Oviposition Period
3.2. Effect of Diets on Adults’ Longevity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilbert, F.S. Hoverflies, 2nd ed.; Richmond Publishing Company: Slough, UK, 1993; ISBN 978-0-85546-255-0. [Google Scholar]
- Rotheray, G.E. Colour Guide to Hoverfly Larvae, Diptera, Syrphidae in Britain and Europe; Whiteley: Derek, UK, 1993. [Google Scholar]
- Rojo, S. A World Review of Predatory Hoverflies (Diptera, Syrphidae: Syrphinae) and Their Prey = Revisión Mundial de Los Sírfidos Depredadores (Diptera, Syrphidae:Syrphinae) y Sus Presas; Centro Iberoamericano de la Biodiversidad (CIBIO): Alicante, Spain, 2003; ISBN 978-84-600-9854-6. [Google Scholar]
- Rodríguez-Gasol, N.; Alins, G.; Veronesi, E.R.; Wratten, S. The Ecology of Predatory Hoverflies as Ecosystem-Service Providers in Agricultural Systems. Biol. Control 2020, 151, 104405. [Google Scholar] [CrossRef]
- Amorós-Jiménez, R.; Pineda, A.; Fereres, A.; Marcos-García, M.Á. Prey Availability and Abiotic Requirements of Immature Stages of the Aphid Predator Sphaerophoria rueppellii. Biol. Control 2012, 63, 17–24. [Google Scholar] [CrossRef]
- Amorós-Jiménez, R.; Pineda, A.; Fereres, A.; Marcos-García, M.Á. Feeding Preferences of the Aphidophagous Hoverfly Sphaerophoria rueppellii Affect the Performance of Its Offspring. BioControl 2014, 59, 427–435. [Google Scholar] [CrossRef]
- Pineda, A.; Marcos-García, M.A. Evaluation of Several Strategies to Increase the Residence Time of Episyrphus balteatus (Diptera, Syrphidae) Releases in Sweet Pepper Greenhouses. Ann. Appl. Biol. 2008, 152, 271–276. [Google Scholar] [CrossRef]
- Pekas, A.; De Craecker, I.; Boonen, S.; Wäckers, F.L.; Moerkens, R. One Stone; Two Birds: Concurrent Pest Control and Pollination Services Provided by Aphidophagous Hoverflies. Biol. Control 2020, 149, 104328. [Google Scholar] [CrossRef]
- Moerkens, R.; Boonen, S.; Wäckers, F.L.; Pekas, A. Aphidophagous Hoverflies Reduce Foxglove Aphid Infestations and Improve Seed Set and Fruit Yield in Sweet Pepper. Pest Manag. Sci. 2021, 77, 2690–2696. [Google Scholar] [CrossRef]
- Bellefeuille, Y.; Fournier, M.; Lucas, E. Biological Control of the Foxglove Aphid Using a Banker Plant with Eupeodes americanus (Diptera: Syrphidae) in Experimental and Commercial Greenhouses. Biol. Control 2021, 155, 104541. [Google Scholar] [CrossRef]
- Schneider, F. Beitrag Zur Kenntnis Der Generationsverhältnisse Und Diapause Räuberischer Schwebfliegen (Syrphidae, Dipt.). Mitt. Schweiz. Entomol. Ges. 1948, 21, 249–285. [Google Scholar]
- Haslett, J.R. A Photographic Account of Pollen Digestion by Adult Hoverflies. Physiol. Entomol. 1983, 8, 167–171. [Google Scholar] [CrossRef]
- van Rijn, P.C.J.; Kooijman, J.; Wäckers, F. The Impact of Floral Resources on Syrphid Performance and Cabbage Aphid Biological Control. IOBCwprs Bull. 2006, 29, 149–152. [Google Scholar]
- Pinheiro, L.A.; Torres, L.M.; Raimundo, J.; Santos, S.A.P. Effects of Pollen, Sugars and Honeydew on Lifespan and Nutrient Levels of Episyrphus balteatus. BioControl 2015, 60, 47–57. [Google Scholar] [CrossRef]
- Haslett, J.R. Interpreting Patterns of Resource Utilization: Randomness and Selectivity in Pollen Feeding by Adult Hoverflies. Oecologia 1989, 78, 433–442. [Google Scholar] [CrossRef]
- Lenaerts, M.; Pozo, M.I.; Wäckers, F.; Van den Ende, W.; Jacquemyn, H.; Lievens, B. Impact of Microbial Communities on Floral Nectar Chemistry: Potential Implications for Biological Control of Pest Insects. Basic Appl. Ecol. 2016, 17, 189–198. [Google Scholar] [CrossRef]
- Hogg, B.N.; Nelson, E.H.; Mills, N.J.; Daane, K.M. Floral Resources Enhance Aphid Suppression by a Hoverfly. Entomol. Exp. Appl. 2011, 141, 138–144. [Google Scholar] [CrossRef]
- Hodgkiss, D.; Brown, M.J.F.; Fountain, M.T. The Effect of Within-Crop Floral Resources on Pollination, Aphid Control and Fruit Quality in Commercial Strawberry. Agric. Ecosyst. Environ. 2019, 275, 112–122. [Google Scholar] [CrossRef]
- Pineda, A.; Marcos-García, M.Á. Use of Selected Flowering Plants in Greenhouses to Enhance Aphidophagous Hoverfly Populations (Diptera: Syrphidae). Ann. Société Entomol. Fr. NS 2008, 44, 487–492. [Google Scholar] [CrossRef]
- Branquart, E.; Hemptinne, J.-L. Selectivity in the Exploitation of Floral Resources by Hoverflies (Diptera: Syrphinae). Ecography 2000, 23, 732–742. [Google Scholar] [CrossRef]
- van Rijn, P.C.J.; Wäckers, F.L. Nectar Accessibility Determines Fitness, Flower Choice and Abundance of Hoverflies That Provide Natural Pest Control. J. Appl. Ecol. 2016, 53, 925–933. [Google Scholar] [CrossRef]
- Irvin, N.A.; Pierce, C.; Hoddle, M.S. Evaluating the Potential of Flowering Plants for Enhancing Predatory Hoverflies (Syrphidae) for Biological Control of Diaphorina citri (Liviidae) in California. Biol. Control 2021, 157, 104574. [Google Scholar] [CrossRef]
- Kakimoto, K.; Matsuhira, K.; Inoue, H.; Nakasima, A.; Ito, Y.; Abe, J.; Ohta, I.; Mizutani, N.; Ohno, K. Effectiveness of conservation biological control against the cotton aphid Aphis gossypii Glover in okra fields I. Attractiveness of beneficial hoverflies by some varieties or species of basil Ocimum basilicum L. Annu. Rep. Kansai Plant Prot. Soc. 2016, 58, 41–44. [Google Scholar] [CrossRef]
- Leman, A.; Mouratidis, A.; Pijnakker, J.; Vervoorn, K.; Wäckers, F.; Messelink, G.J. Sugar and Pollen Supply Enhances Aphid Control by Hoverflies in Strawberry. Biol. Control 2023, 186, 105347. [Google Scholar] [CrossRef]
- Laubertie, E.A.; Wratten, S.D.; Hemptinne, J.-L. The Contribution of Potential Beneficial Insectary Plant Species to Adult Hoverfly (Diptera: Syrphidae) Fitness. Biol. Control 2012, 61, 1–6. [Google Scholar] [CrossRef]
- Colley, M.R.; Luna, J.M. Relative Attractiveness of Potential Beneficial Insectary Plants to Aphidophagous Hoverflies (Diptera: Syrphidae). Environ. Entomol. 2000, 29, 1054–1059. [Google Scholar] [CrossRef]
- Bellefeuille, Y.; Fournier, M.; Lucas, E. Evaluation of Two Potential Biological Control Agents Against the Foxglove Aphid at Low Temperatures. J. Insect Sci. 2019, 19, 1–8. [Google Scholar] [CrossRef]
- Gonzalez, N.; Buitenhuis, R.; Lucas, E. Spotlight on Eupeodes americanus: Oviposition and Fertility under HPS- and Full Spectrum LED-Extended Photoperiod in Northern Greenhouses. Biol. Control 2023, 187, 105382. [Google Scholar] [CrossRef]
- Gonzalez, N.; Fauteux, A.; Louis, J.-C.; Buitenhuis, R.; Lucas, E. Oviposition Preference of the American Hoverfly, Eupeodes americanus, between Banker Plants and Target Crops. Insects 2023, 14, 295. [Google Scholar] [CrossRef]
- Billiet, A.; Meeus, I.; Van Nieuwerburgh, F.; Deforce, D.; Wäckers, F.; Smagghe, G. Impact of Sugar Syrup and Pollen Diet on the Bacterial Diversity in the Gut of Indoor-Reared Bumblebees (Bombus terrestris). Apidologie 2016, 47, 548–560. [Google Scholar] [CrossRef]
- Soleyman-Nezhadiyan, E.; Laughlin, R. Voracity of Larvae, Rate of Development in Eggs, Larvae and Pupae, and Flight Seasons of Adults of the Hoverflies Melangyna viridiceps Macquart and Symosyrphus grandicornis Macquart (Diptera: Syrphidae). Aust. J. Entomol. 1998, 37, 243–248. [Google Scholar] [CrossRef]
- Stiling, P.; Cornelissen, T. What Makes a Successful Biocontrol Agent? A Meta-Analysis of Biological Control Agent Performance. Biol. Control 2005, 34, 236–246. [Google Scholar] [CrossRef]
- Arcaya, E.; Pérez-Bañón, C.; Mengual, X.; Zubcoff-Vallejo, J.J.; Rojo, S. Life Table and Predation Rates of the Syrphid Fly Allograpta exotica, a Control Agent of the Cowpea Aphid Aphis craccivora. Biol. Control 2017, 115, 74–84. [Google Scholar] [CrossRef]
- Sadeghi, H.; Gilbert, F. The Effect of Egg Load and Host Deprivation on Oviposition Behaviour in Aphidophagous Hoverflies. Ecol. Entomol. 2000, 25, 101–108. [Google Scholar] [CrossRef]
- Radics, L.; Mikóházi, D. Principles of Common Buckwheat Production. Eur. J. Plant Sci. Biotechnol. 2010, 4, 57–63. [Google Scholar]
- Doner, L.W. The Sugars of Honey—A Review. J. Sci. Food Agric. 1977, 28, 443–456. [Google Scholar] [CrossRef]
- Ouattara, T.Y.; Fournier, M.; Rojo, S.; Lucas, E. Development Cycle of a Potential Biocontrol Agent: The American Hoverfly, Eupeodes americanus, and Comparison with the Commercial Biocontrol Agent Aphidoletes aphidimyza. Entomol. Exp. Appl. 2022, 170, 394–401. [Google Scholar] [CrossRef]
- R Foundation for Statistical Computing. R Core Team R: A Language and Environment for Statistical Computing. Vienna, Austria, 2017. Available online: https://www.Rproject.org/ (accessed on 30 August 2023).
- Therneau, T.A. A Package for Survival Analysis in r. r Package Version 3.4-0. 2024. Available online: https://CRAN.R-project.org/package=survival (accessed on 30 August 2023).
- Kassambara, A.; Kosinski, M.; Biecek, P. Survminer: Drawing Survival Curves Using ‘Ggplot2’. 2021. Available online: https://CRAN.R-project.org/package=survminer (accessed on 30 August 2023).
- Köneke, A.; Uesugi, R.; Herz, A.; Tabuchi, K.; Yoshimura, H.; Shimoda, T.; Nagasaka, K.; Böckmann, E. Effects of Wheat Undersowing and Sweet Alyssum Intercropping on Aphid and Flea Beetle Infestation in White Cabbage in Germany and Japan. J. Plant Dis. Prot. 2023, 130, 619–631. [Google Scholar] [CrossRef]
- Buckland, K.R.; Alston, D.G.; Reeve, J.R.; Nischwitz, C.; Drost, D. Trap Crops in Onion to Reduce Onion Thrips1 and Iris Yellow Spot Virus. Southwest. Entomol. 2017, 42, 73–90. [Google Scholar] [CrossRef]
- Tahir, I.; Farooq, S.; Bhat, M.R. Insect Pollinators and Pests Associated with Cultivated Buckwheat in Kashmir (India). Fagopyrum 1985, 5, 3–5. [Google Scholar]
- Wäckers, F.L.; Alberola, J.S.; Garcia-Marí, F.; Pekas, A. Attract and Distract: Manipulation of a Food-Mediated Protective Mutualism Enhances Natural Pest Control. Agric. Ecosyst. Environ. 2017, 246, 168–174. [Google Scholar] [CrossRef]
- Dunn, L.; Lequerica, M.; Reid, C.R.; Latty, T. Dual Ecosystem Services of Syrphid Flies (Diptera: Syrphidae): Pollinators and Biological Control Agents. Pest Manag. Sci. 2020, 76, 1973–1979. [Google Scholar] [CrossRef]
Buckwheat Diet | Artificial Diet | p-Value | |
---|---|---|---|
Percentage of hatched eggs | 75.31% a | 75.47% a | 0.84 |
Percentage of unhatched eggs | 14.86% a | 16.74% b | 0.0039 |
Percentage of cannibalized eggs | 9.83% b | 7.8% a | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez, N.; Fournier, M.; Buitenhuis, R.; Lucas, E. Artificial Adult Diet as a New Tool for Improving a Biocontrol Program with Predatory Hoverflies. Agriculture 2024, 14, 527. https://doi.org/10.3390/agriculture14040527
Gonzalez N, Fournier M, Buitenhuis R, Lucas E. Artificial Adult Diet as a New Tool for Improving a Biocontrol Program with Predatory Hoverflies. Agriculture. 2024; 14(4):527. https://doi.org/10.3390/agriculture14040527
Chicago/Turabian StyleGonzalez, Noémie, Marc Fournier, Rosemarije Buitenhuis, and Eric Lucas. 2024. "Artificial Adult Diet as a New Tool for Improving a Biocontrol Program with Predatory Hoverflies" Agriculture 14, no. 4: 527. https://doi.org/10.3390/agriculture14040527
APA StyleGonzalez, N., Fournier, M., Buitenhuis, R., & Lucas, E. (2024). Artificial Adult Diet as a New Tool for Improving a Biocontrol Program with Predatory Hoverflies. Agriculture, 14(4), 527. https://doi.org/10.3390/agriculture14040527