Crop Classification Combining Object-Oriented Method and Random Forest Model Using Unmanned Aerial Vehicle (UAV) Multispectral Image
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. UAV Image Acquisition and Preprocessing
2.3. Methodology
2.3.1. Image Segmentation
2.3.2. Feature Extraction for Each Object
2.3.3. Schemes Construction Based on Various Feature Subsets
2.3.4. Random Forest Algorithm
2.3.5. Accuracy Evaluation
3. Results
3.1. Determination of the Best Image Segmentation Scale
3.2. Parameter Debugging of Random Forest Model
3.3. Accuracy Assessment
3.4. Accuracy Assessment
3.5. Prediction Map
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dhenge, R.; Rinaldi, M.; Rodolfi, M.; Barbanti, D.; Ganino, T. Modification of Structural Characteristics of Vegetables by High-pressure Processing: A Review. Food Biosci. 2023, 56, 103407. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, M.; Chen, H.; Aujumdar, A.S.; Guo, Z. Progress in Smart Labels for Rapid Quality Detection of Fruit and Vegetables: A Review. Postharvest Biol. Technol. 2023, 198, 112261. [Google Scholar] [CrossRef]
- Choudhury, B.; Narzari, M.; Zafar, H.; Singh, N.; Mishra, V.K.; Prabhakar, M. Spectral Library of Crops and Discrimination of Major Vegetables Grown in the Eastern Himalayan Ecosystem: A Proximal Hyperspectral Remote Sensing Approach. Ecol. Inform. 2023, 77, 102263. [Google Scholar] [CrossRef]
- Ye, Z.; Yang, K.; Lin, Y.; Guo, S.; Sun, Y.; Chen, X.; Lai, R.; Zhang, H. A Comparison between Pixel-Based Deep Learning and Object-based Image Analysis (OBIA) for Individual Detection of Cabbage Plants Based on UAV Visible-light Images. Comput. Electron. Agric. 2023, 209, 107822. [Google Scholar] [CrossRef]
- Sharma, R.C. Countrywide Mapping of Plant Ecological Communities with 101 Legends including Land Cover Types for the First Time at 10 m Resolution through Convolutional Learning of Satellite Images. Appl. Sci. 2022, 12, 7125. [Google Scholar] [CrossRef]
- Poblete, T.; Navas-Cortes, J.A.; Hornero, A.; Camino, C.; Calderon, R.; Hernandez-Clemente, R.; Landa, B.B.; Zarco-Tejada, P.J. Detection of Symptoms Induced by Vascular Plant Pathogens in Tree Crops Using High-resolution Satellite Data: Modelling and Assessment with Airborne Hyperspectral Imagery. Remote Sens. Environ. 2023, 295, 113698. [Google Scholar] [CrossRef]
- Ye, Z.; Wei, J.; Lin, Y.; Guo, Q.; Zhang, J.; Zhang, H.; Deng, H.; Yang, K. Extraction of Olive Crown Based on UAV Visible Images and the U2-Net Deep Learning Model. Remote Sens. 2022, 14, 1523. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, J.; Guo, S.; Ye, Z.; Deng, H.; Hou, X.; Zhang, H. Urban Tree Classification Based on Object-oriented Approach and Random Forest Algorithm Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery. Remote Sens. 2022, 14, 3885. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, W.; Deng, H.; Dong, L.; Zhang, H.; Tang, L.; Zheng, Y.; Zhao, Z. A Combination of OBIA and Random Forest Based on Visible UAV Remote Sensing for Accurately Extracted Information about Weeds in Areas with Different Weed Densities in Farmland. Remote Sens. 2023, 15, 4696. [Google Scholar] [CrossRef]
- Veramendi, W.N.C.; Cruvinel, P.E. Method For Maize Plants Counting and Crop Evaluation Based on Multispectral Images Analysis. Comput. Electron. Agric. 2024, 216, 108470. [Google Scholar] [CrossRef]
- Bai, Y.; Shi, L.; Zha, Y.; Liu, S.; Nie, C.; Xu, H.; Yang, H.; Shao, M.; Yu, X.; Cheng, M.; et al. Estimating Leaf Age of Maize Seedlings Using UAV-based RGB and Multispectral Images. Comput. Electron. Agric. 2023, 215, 108349. [Google Scholar] [CrossRef]
- Liu, D.; Yang, F.; Liu, S. Estimating Wheat Fractional Vegetation Cover Using a Density Peak k-Means Algorithm Based on Hyperspectral Image Data. J. Integr. Agric. 2021, 20, 2880–2891. [Google Scholar] [CrossRef]
- Ventura, D.; Napoleone, F.; Cannucci, S.; Alleaume, S.; Valentini, E.; Casoli, E.; Burrascano, S. Integrating Low-altitude Drone Based-imagery and OBIA for Mapping and Manage Semi Natural Grassland Habitats. J. Environ. Manag. 2022, 321, 115723. [Google Scholar] [CrossRef] [PubMed]
- Prince, A.; Franssen, J.; Lapierre, J.; Maranger, R. High-resolution Broad-scale Mapping of Soil Parent Material Using Object-based Image Analysis (OBIA) of Lidar Elevation Data. Catena 2020, 188, 104422. [Google Scholar] [CrossRef]
- Padua, L.; Matese, A.; Gennaro, S.F.D.; Morais, R.; Peres, E.; Sousa, J.J. Vineyard Classification Using OBIA on UAV-based RGB and Multispectral Data: A Case Study in Different Wine Regions. Comput. Electron. Agric. 2022, 196, 106905. [Google Scholar] [CrossRef]
- Gonzalez, C.R.; Guzman, C.; Andreo, V. Using VHR Satellite Imagery, OBIA and Landscape Metrics to Improve Mosquito Surveillance In Urban Areas. Ecol. Inform. 2023, 77, 102221. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cao, M.; Yin, D.; Zhong, Y.; Lv, Y.; Lu, L. Detection of Geochemical Anomalies Related to Mineralization Using the Random Forest Model Optimized by the Competitive Mechanism and Beetle Antennae Search. J. Geochem. Explor. 2023, 249, 107195. [Google Scholar] [CrossRef]
- Liu, X.; Bo, Y.C. Object-Based Crop Species Classification Based on the Combination of Airborne Hyperspectral Images and LiDAR Data. Remote Sens. 2015, 14, 922–950. [Google Scholar] [CrossRef]
- Su, T.F.; Zhang, S.W. Object-based Crop Classification in Hetao Plain Using Random Forest. Earth Sci. Inform. 2021, 14, 119–131. [Google Scholar] [CrossRef]
- Feng, X.; Li, P. A Tree Species Mapping Method From Uav Images over Urban Area Using Similarity in Tree-Crown Object Histograms. Remote Sens. 2019, 11, 1982. [Google Scholar] [CrossRef]
- Drăguţ, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated Parameterisation for Multi-scale Image Segmentation on Multiple Layers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 119–127. [Google Scholar]
- Holland, K.H.; Lamb, D.W.; Schepers, J.S. Radiometry of Proximal Active Optical Sensors (AOS) for Agricultural Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1793–1802. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Thompson, T. Coincident Detection of Crop Water Stress, Nitrogen Status, and Canopy Density Using Ground Based Multispectral Data. In Proceedings of the 5th International Conference on Precision Agriculture and Other Resource Management, Bloomington, MN USA, 16–19 July 2000. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel In Remote Sensing of Global Vegetation from EOS-modis. Remote Sens Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf-area Index From Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Vinciková, H.; Hais, M.; Brom, J.; Procházka, J.; Pecharová, E. Use of Remote Sensing Methods in Studying Agricultural Landscapes—A Review. J. Landsc. Stud. 2010, 3, 53–63. [Google Scholar]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive Optical Detection of Pigment Changes during Leaf Senescence and Fruit Ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Chen, P.; Feng, H.; Li, C.; Yang, G.; Yang, Y.; Yang, W.; Liu, S. Estimation of Chlorophyll Content in Potato Using Fusion of Texture and Spectral Features Derived from UAV Multispectral Image. Trans. Chin. Soc. Agric. Eng. 2019, 35, 63–74. [Google Scholar]
- Guo, Q.; Wei, J.; Zhang, J.; Ye, Z.; Zhang, H.; Lai, Z.; Deng, H. Vegetable Recognition Based on Unmanned Aerial Vehicle (UAV) Multispectral Imagery and Random Forest Algorithm. J. Agr. Sci. Tech. 2023, 25, 99–110. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-adjusted Vegetation Indices. Remote Sens Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Kandare, K.; Ørka, H.O.; Dalponte, M.; Næsset, E.; Gobakken, T. Individual Tree Crown Approach for Predicting Site Index in Boreal Forests Using Airborne Laser Scanning and Hyperspectral Data. Int. J. Appl. Earth Obs. Geoinf. 2017, 60, 72–82. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Khan, N.M.; Rastoskuev, V.V.; Sato, Y.; Shiozawa, S. Assessment of Hydrosaline Land Degradation by Using a Simple Approach of Remote Sensing Indicators. Agr. Water Manag. 2005, 77, 96–109. [Google Scholar] [CrossRef]
- Garg, R.; Kumar, A.; Prateek, M.; Pandey, K.; Kumar, S. Land Cover Classification of Spaceborne Multifrequency SAR and Optical Multispectral Data Using Machine Learning. Adv. Space Res. 2022, 69, 1726–1742. [Google Scholar] [CrossRef]
- Abdollahnejad, A.; Panagiotidis, D. Tree Species Classification and Health Status Assessment For a Mixed Broadleaf-conifer Forest with UAS Multispectral Imaging. Remote Sens. 2020, 12, 3722. [Google Scholar] [CrossRef]
- Zeng, Y.; Hao, D.; Park, T.; Zhu, P.; Huete, A.; Myneni, R.; Knyazikhin, Y.; Qi, J.; Nemani, R.R.; Li, F.; et al. Structural Complexity Biases Vegetation Greenness Measures. Nat. Ecol. Evol. 2023, 7, 1790–1798. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Pu, T.; Zhang, Y.; Liu, Y.; Zhang, Z. More Appropriate Densenetbl Classifier for Small Sample Tree Species Classification Using UAV-based RGB Imagery. Heliyon 2023, 9, e20467. [Google Scholar] [CrossRef]
- Komárek, J.; Klouček, T.; Prošek, J. the Potential of Unmanned Aerial Systems: A Tool Towards Precision Classification of Hard-to-distinguish Vegetation Types? Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 9–19. [Google Scholar] [CrossRef]
- Wang, R.; Shi, W.; Kronzucker, H.; Li, Y. Oxygenation Promotes Vegetable Growth by Enhancing P Nutrient Availability and Facilitating a Stable Soil Bacterial Community in Compacted Soil. Soil Tillage Res. 2023, 230, 105686. [Google Scholar] [CrossRef]
- Sharma, R.C. Dominant Species-Physiognomy-Ecological (DSPE) System for the Classification of Plant Ecological Communities from Remote Sensing Images. Ecologies 2022, 3, 25. [Google Scholar] [CrossRef]
Index Features | Formula | Reference |
---|---|---|
NDVI | (NIR − R)/(NIR + R) | [23] |
NDRE | (NIR − RE)/(NIR + RE) | [24] |
GNDVI | (NIR − G)/(NIR + G) | [25] |
NIRRR | NIR/R | [26] |
NIRGR | NIR/G | [27] |
DVI | NIR − R | [28] |
DVIGRE | NIR − G | [29] |
MSWI | (B − NIR)/NIR | [30] |
OSAVI | (NIR − R)/(NIR + R + 0.16) | [31] |
IPVI | NIR/(NIR + R) | [32] |
EVI | 2.5 × (NIR − R)/(NIR + 6 × R − 7.5 × B + 1) | [33] |
BI | (R2 + NIR2) × 0.5 | [34] |
Classification Schemes | Feature Subsets | SPEC Feature | GLCM Feature | GEOM Feature | INDE Feature | Total Features |
---|---|---|---|---|---|---|
S1 | SPEC | 12 | - | - | - | 12 |
S2 | SPEC + GLCM | 12 | 40 | - | - | 52 |
S3 | SPEC + INDE | 12 | - | - | 12 | 24 |
S4 | SPEC + GEOM | 12 | - | 16 | - | 28 |
S5 | SPEC + GLCM + INDE | 12 | 40 | - | 12 | 64 |
S6 | SPEC + GLCM + GEOM | 12 | 40 | 16 | - | 68 |
S7 | SPEC + INDE + GEOM | 12 | - | 16 | 12 | 40 |
S8 | SPEC + GLCM + INDE + GEOM | 12 | 40 | 16 | 12 | 80 |
Crop Types | Total Samples | Training Samples | Test Samples |
---|---|---|---|
Corn (Zea mays L.) | 100 | 60 | 40 |
Ginger (Zingiber officinale Roscoe) | 60 | 36 | 24 |
Luffa (Luffa cylindrica (L.) Roem.) | 70 | 42 | 28 |
Pak choi (Brassica pekinensis (Lour.) Rupr.) | 120 | 72 | 48 |
Plastic film | 80 | 48 | 32 |
Scallion (Allium fistulosum Linn.) | 90 | 54 | 36 |
Sesame (Sesamum indicum Linn.) | 160 | 96 | 64 |
Soil | 260 | 156 | 104 |
Soybean (Glycine max (Linn.) Merr.) | 60 | 36 | 24 |
Sweet potato (Lycopersicon esculentum Miller) | 90 | 54 | 36 |
Water spinach (Ipomoea aquatica Forsskal) | 250 | 150 | 100 |
Scheme | Optical Number of Features | Optical Number of Decision Trees |
---|---|---|
S1 | 7 | 763 |
S2 | 33 | 565 |
S3 | 16 | 716 |
S4 | 23 | 84 |
S5 | 38 | 313 |
S6 | 40 | 939 |
S7 | 12 | 219 |
S8 | 36 | 669 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, H.; Zhang, W.; Zheng, X.; Zhang, H. Crop Classification Combining Object-Oriented Method and Random Forest Model Using Unmanned Aerial Vehicle (UAV) Multispectral Image. Agriculture 2024, 14, 548. https://doi.org/10.3390/agriculture14040548
Deng H, Zhang W, Zheng X, Zhang H. Crop Classification Combining Object-Oriented Method and Random Forest Model Using Unmanned Aerial Vehicle (UAV) Multispectral Image. Agriculture. 2024; 14(4):548. https://doi.org/10.3390/agriculture14040548
Chicago/Turabian StyleDeng, Hui, Wenjiang Zhang, Xiaoqian Zheng, and Houxi Zhang. 2024. "Crop Classification Combining Object-Oriented Method and Random Forest Model Using Unmanned Aerial Vehicle (UAV) Multispectral Image" Agriculture 14, no. 4: 548. https://doi.org/10.3390/agriculture14040548
APA StyleDeng, H., Zhang, W., Zheng, X., & Zhang, H. (2024). Crop Classification Combining Object-Oriented Method and Random Forest Model Using Unmanned Aerial Vehicle (UAV) Multispectral Image. Agriculture, 14(4), 548. https://doi.org/10.3390/agriculture14040548