White Mustard, Sweet Alyssum, and Coriander as Insectary Plants in Agricultural Systems: Impacts on Ecosystem Services and Yield of Crops
Abstract
:1. Introduction
2. Materials and Methods
3. White Mustard
3.1. Influence on Beneficial Entomofauna
Crop | Exp. Type | Duration | Benefited Organisms | Effect | Notes | Ref. |
---|---|---|---|---|---|---|
Hoverflies | ||||||
Broad bean | Field | 3 years | Syrphidae generally | Positive | Number of larval end eggs increased. | [18] |
-- | Field | 1 year | Syrphidae generally | Higher number of adult feeding visits in comparison to alyssum, buckwheat, and calendula. | [16] | |
Broad bean | Greenhouse | 1 year | Episyrphus balteatus Deg. | Greater oviposition rate on mustard pollen and nectar compared to buckwheat, phacelia, coriander, and alyssum. | [31] | |
Negative | Lower longevity, number of female eggs laid, and duration of oviposition compared to buckwheat, alyssum, and coriander. | |||||
Zucchini | Field | 2 years | Syrphidae generally | No effect | Densities of adult syrphids are similar in monoculture and white mustard–zucchini intercrop. | [29] |
Broccoli | Field | 1 year | Syrphidae generally | Number of larvae increased by 14.2%. | [30] | |
Lady beetles | ||||||
Broad bean | Field | 3 years | Lady beetles generally | Positive | Higher number of adults, but only in one year of study. Lower number of aphids per one predator. | [18] |
Zucchini | Field | 2 years | Lady beetles generally | No effect | Density of adult coccinellids is similar in monoculture and in treatment with mustard mulch at one site. | [29] |
Negative | Lower number of adult coccinellids in treatment with mustard at a different site. | |||||
Anthocorids | ||||||
Pear orchard | Field | 1 year | Anthocoris nemoralis Fabr. | Positive | More nymphs and adults in beating samples. | [32] |
No effect | Density of nymphs is similar in trees adjacent to flowering strips and grass strips in twig samples. | |||||
Parasitoids | ||||||
-- | Laboratory | 1 year | Aphidius colemani Viereck | Positive | Longer lifespan, a higher number of eggs per female, and a higher parasitism rate. | [33] (1) |
-- | Laboratory | 1 year | Diadegma semiclausum Hellen. (Hymenoptera: Ichneumonidae) | Increased lifespan of adults. | [34] | |
Oak/hornbeam and elm | Field and laboratory | 1 year | Ecphylus silesiacus Ratz. Coeloides scolyticida Wesmael | Higher number of parasitoids. Higher parasitism rate of the elm bark beetle. | [35] | |
Cereals, wheat, and barley | Field | 1 year | Aphidius spp. | Higher aphid parasitism than close grassy margins. | [36] | |
-- | Field | 1 year | Cotesia glomerata L. | Increased longevity. | [37] | |
-- | Laboratory | 1 year | Microctonus hyperodae Loan & Lloyd | No effect | No effect on longevity. | [28] |
-- | Laboratory | 1 year | D. semiclausum | No effect on longevity. | [37] | |
Epigeal and soil fauna | ||||||
Multiple cover crops | Field | 2 years | Amara aenea De Geer | Positive | Higher number of beetles in mustard/buckwheat/canola systems of management than in other systems. | [39] |
Sugar beet | Field | 2 years | Carabid beetles | Higher number of beetles compared to phacelia. | [40] | |
Corn | Field | 2 years | Carabid beetles | Higher abundance of beetles in mustard–corn rotation in comparison with green fallow–corn and bare fallow–corn (however, lower compared to the pennycress–corn double cropping). | [41] |
3.2. Influence on Pests
Crop | Exp. Type | Duration | Notes | Ref. |
---|---|---|---|---|
Positive effect | ||||
Broad bean | Field | 3 years | Reduced abundance of Aphis fabae Scop. Reduced aphid–hoverfly larvae/lady beetle larvae/lady beetle adult ratio. | [18] |
2 years | Reduced abundance of Aphis fabae Scop. | [43] | ||
Zucchini | Field | 2 years | Reduced number of Aphis gossypii Glover. | [29] |
Cabbage | Field | 1 year | Reduced number of Brevicoryne brassicae L. | [30] |
1 year | Higher number of adult Plutella xylostella L. compared to cabbage. | [44] | ||
2 years | Higher index of feeding damage by adult Phyllotreta spp. than on the cabbage. | [45] | ||
Tomato | Greenhouse | 3 years | Reduced infestation by Meloidogyne spp. | [47] |
1 year | Reduced population of Meloidogyne javanica Treub. | [47] | ||
No effect | ||||
Pear orchard | Field | 1 year | Density of Cacopsylla pyri L. larvae on trees near flowering strips, including white mustard, is similar to trees near grass strips. | [32] |
Zucchini | Filed | 2 years | No differences in the mean ratings of silverleaf, Bemisia argentifolii Bellows and Perring, symptoms on zucchini among monoculture and white mustard treatments. | [29] |
Negative effect | ||||
Cabbage | Field | 1 year | Higher number of larvae and pupa of Plutella xylostella L. on the cabbage compared to white mustard used as a trap crop. | [44] |
3.3. Influence on Plant Pathogens
3.4. Impacts on Growth Parameters and Yield of Crops
Crop | Exp. Type | Duration | Notes | Ref. |
---|---|---|---|---|
Positive | ||||
Broad bean | Field | 3 years | Higher seed yield at a row spacing of 65 cm. Increased mass of leaves and mass of pods with seeds at a row spacing of 80 cm | [18] |
Laboratory | 1 month | Increase in length of primary root and above-ground part of seedlings and higher number of lateral roots. | [62] | |
Corn | Field | 2 years | Increase in above-ground biomass. Higher grain yield. | [63] |
Negative | ||||
Sugar beet | Field | 3 years | Reduced yield | [67] |
Tomato | Greenhouse | 3 years | Reduced early yield, total yield, and average fruit weight. | [47] |
4. Sweet Alyssum
4.1. Influence on Beneficial Entomofauna
4.2. Influence on Pests
Crop | Exp. | Duration | Notes | Ref. |
---|---|---|---|---|
Positive effect | ||||
Lettuce | Field | 1 year | Reduced aphid numbers. | [70] |
1 year | Lower number of Nasonovia ribisnigri Mosley. | [80] | ||
Apples trees | Field | 1 year | Lower number of aphids on trees near sweet alyssum than on trees adjacent to mown grass without flowers. | [71] |
-- | Laboratory | 1 year | Higher green peach aphid parasitism. | [33] |
Radish | Field | 1 year | Lower number of Myzus persicae Sulzer. | [74] |
Collard greens | Field | 2 years | Reduced number of adult Bemisia tabaci Gennadius and Brevicoryne brassicae L. | [69] |
-- | Greenhouse | 1 year | Higher number of Nysius huttoni L. on sweet alyssum than on kale plants. | [81] |
Tomato | Field | 1 year | Higher parasitism rate of sentinel egg masses of Euschistus conspersus Uhler in the alyssum border than in the bare ground border. | [77] |
-- | Laboratory | 1 year | Higher number of aphids parasitized by Diaeretiella rapae M’Intosh. | [72] |
Cucumber | Field | 3 years | Higher Diabrotica undecimpunctata Mannerheim and Anasa tristis De Geer eggs predation than in grass control. | [78] |
No effect | ||||
Vineyards | Field | 3 years | No significant effect on any of the vineyard pests. | [79] |
Negative effect | ||||
Cabbage | Field | 1 year | Higher number of Phyllotreta spp. Chevrolat. | [83] |
4.3. Impacts on Growth Parameters and Yield of Crops
5. Coriander
5.1. Influence on Beneficial Entomofauna
Crop | Exp. Type | Duration | Benefited Natural Enemies | Effect | Notes | Ref. |
---|---|---|---|---|---|---|
Hoverflies | ||||||
-- | Field | 1 year | Syrphids in general | Positive | More adults visit than on sweet alyssum. | [16] |
-- | Laboratory | 1.8 year | Episyrphus balteatus De Geer | Higher duration of oviposition when fed on nectar from coriander than in the case of marigold and white mustard. | [31] | |
Carrot | Field | 2 years | Syrphids in general | Higher number of larvae plus pupae. | [89] | |
Cabbage | Field | 2 years | Syrphids in general | No effect | Insignificant difference in hoverfly counts. | [88] |
-- | Field | 2 years | Syrphids in general | The same number of visits compared to perennial wall-rocket and buchanweed in one year of study. | [90] | |
Positive | Significantly larger number of visits than on perennial wall-rocket and buchanweed, with the exception of marigold, in the other study year. | |||||
Lady beetles | ||||||
Carrot | Field | 2 years | Coccinellids in general | Positive | Higher number of adults plus larvae. | [89] |
Lacewings | ||||||
Strawberry | Under polythene-clad Spanish tunnels | 1 year | Lacewings in general | Positive | More eggs laid compared to monoculture. | [91] |
Parasitoids | ||||||
-- | Laboratory | 1 year | Aphidius ervi Haliday and Dendrocerus aphidum Rondani | Positive | Longer survival in comparison to water control. | [92] |
Epigeal and soil fauna | ||||||
Kale | Field | 1 year | Staphylinidae and Araneae | Positive | Higher number and species richness. | [94] |
Mixed orchards | Field | 1 year | -- | No effect | No increase in ecosystem services from epigeic fauna. | [95] |
5.2. Influence on Pests
Crop | Exp. Type | Duration | Notes | Ref. |
---|---|---|---|---|
Positive effect | ||||
Broad bean | Field | 2 years | Reduced feeding of adult Sitona spp. | [96] |
Chickpea | Field | 2 years | Reduced infestation with Helicoverpa armigera Hubner. | [97] |
Pepper | Field | 3 years | Higher percent of Ostrinia nubilalis Hübner eggs predation by Orius insidiosus Say and Coleomegilla maculata DeGeer. | [98] |
Carrot | Field | 2 years | Reduced number of Cavariella aegopodii Scop., Semiaphis dauci Fabr., Aphis fabae L., and Trioza viridula Zett. | [89] |
Reduced carrot root damage by root-knot nematodes. | ||||
Tomato | Field | 2 years | Reduced abundance and decreased fruit damage by Nezara viridula L. and Lygus spp. | [100] |
1 year | Reduced number of eggs of Tuta absoluta Meyrick. | [93] | ||
2 years | Reduced number of incoming whitefly adults. | [99] | ||
No effect | ||||
Broad bean | Field | 2 years | No effect on damage caused to root nodules by Sitona spp. larvae | [96] |
Strawberry | Polythene-clad tunnels | 1 year | Aphid population did not differ between control and intercropping. | [91] |
5.3. Influence on Plant Pathogens
5.4. Impacts on Growth Parameters and Yield of Crops
6. Conclusions and Research Gaps
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wilson, C.; Tisdell, C. Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecol. Econ. 2001, 39, 449–462. [Google Scholar] [CrossRef]
- Altieri, M.A. The ecological role of biodiversity in agroecosystems. Agric. Ecosyst. Environ. 1999, 74, 19–31. [Google Scholar] [CrossRef]
- Ferron, P.; Deguine, J.P. Crop protection, biological control, habitat management and integrated farming. Agronomy Sust. Develop 2005, 25, 17–24. [Google Scholar] [CrossRef]
- Cai, Z.; Ouyang, F.; Chen, J.; Yang, Q.; Desneux, N.; Xiao, Y.; Zhang, J.; Ge, F. Biological control of Aphis spiraecola in apples using an insectary plant that attracts and sustains predators. Biol. Control 2021, 155, 104532. [Google Scholar] [CrossRef]
- Sadeghi, H. Abundance of adult hoverflies (Diptera: Syrphidae) on different flowering plants. Casp. J. Environ. Sci. 2008, 6, 47–51. [Google Scholar]
- Chaney, W.E. Biological control of aphids in lettuce using in-field insectaries. In Enhancing Biological Control: Habitat Management to Promote Natural Enemies of Arthropod Pests, 1st ed.; Pickett, C.H., Bugg, R.L., Eds.; University of California Press: Berkeley, CA, USA, 1998; Volume 126, pp. 73–83. [Google Scholar]
- Hogg, B.N.; Bugg, R.L.; Daane, K.M. Attractiveness of common insectary and harvestable floral resources to beneficial insects. Bio. Control 2011, 56, 76–84. [Google Scholar] [CrossRef]
- Jabłoński, B.; Kołtowski, Z.; Szklanowska, K. Beekeeping value and pollination requirements of white mustard, spring rape and turnip like rape. Pszczeln. Zesz. Nauk. 1999, 43, 255–262. [Google Scholar]
- Duke, J.A. Handbook of Energy Crops, 1st ed.; Purdue University, Center for New Crops and Plants Products: West Lafayette, IN, USA, 1983. [Google Scholar]
- Wisconsin Horticulture. Available online: https://hort.extension.wisc.edu/articles/sweet-alyssum-lobularia-maritima/ (accessed on 5 January 2023).
- Brennan, E.B. Agronomy of strip intercropping broccoli with alyssum for biological control of aphids. Biol. Control 2016, 97, 109–119. [Google Scholar] [CrossRef]
- McGregor, S.E. Insect Pollination of Cultivated Crop Plants; USDA: Washington, DC, USA, 1976; p. 411.
- Diederichsen, A. Coriander (Coriandrum sativum L.): Promoting the Conservation and Use of Underutilized and Neglected Crops; International Plant Genetic Resources Institute: Rome, Italy, 1996; p. 83. [Google Scholar]
- Free, J.B. Insect Pollination of Crops, 1st ed.; Harcourt Brace Jovanich Publisher: London, UK, 1993; p. 684. [Google Scholar]
- Patt, J.M.; Hamilton, G.C.; Lashomb, J.H. Foraging success of parasitoid wasps on flowers: Interplay of insect morphology, floral architecture and searching behavior. Entomol. Exp. Appl. 1997, 83, 21–30. [Google Scholar] [CrossRef]
- Colley, M.R.; Luna, J.M. Relative attractiveness of potential beneficial insectary plants to aphidophagous hoverflies (Diptera: Syrphidae). Environ. Entomol. 2000, 29, 1054–1059. [Google Scholar] [CrossRef]
- Johanowicz, D.L.; Mitchell, E.R. Effects of sweet alyssum flowers on the longevity of the parasitoid wasps Cotesia marginiventris (Hymenoptera: Braconidae) and Diadegma insulare (Hymenoptera: Ichneumonidae). Florida Entomol. 2000, 83, 41–47. [Google Scholar] [CrossRef]
- Gospodarek, J. Effect of Sinapis alba L. as an insectary plant on the occurrence of Aphis fabae Scop., Coccinellidae and Syrphidae in Broad Bean. Agronomy 2021, 11, 2202. [Google Scholar] [CrossRef]
- Lavandero, B.; Wratten, S.; Shishehbor, P.; Worner, S. Enhancing the effectiveness of the parasitoid Diadegma semiclausum (Helen): Movement after use of nectar in the field. Biol. Control 2005, 34, 152–158. [Google Scholar] [CrossRef]
- Taylor, R.M.; Pfannenstiel, R.S. Nectar feeding by wandering spiders on cotton plants. Environ. Entomol. 2008, 37, 996–1002. [Google Scholar] [CrossRef] [PubMed]
- Habashy, N.H.; Ghallab, M.M.; Rizk, M.A. Spider populations associated with different types of cultivation and different crops in Fayoum Governorate, Egypt. Serket 2005, 9, 101–107. [Google Scholar]
- Rizk, M.A.; Ghallab, M.M.; Habashi Nadia, H. Abundance and activity- density of soil fauna in different vegetables, monoculture and intercropping systems. Egypt. J. Agric. Res. 2009, 87, 211–226. [Google Scholar]
- Jogar, K.; Metspalu, L.; Hilesaar, K. Abundance and dynamics of wolf spiders (Lycosidae) in different plant communities. Agron. Res. 2004, 2, 135–143. [Google Scholar]
- Rizk, M.A.; El-Gayar, E.A. Intercropping efficiency and its effects on soil fauna populations in Egypt. Egypt. J. Zool. 2014, 61, 125–136. [Google Scholar] [CrossRef]
- Guillén, C.; Soto-Adames, F.; Springer, M. Diversity and abundance of soil springtails in a primary forest, a secondary forest and a coffee plantation in Costa Rica. Agron. Costarric. 2006, 2, 7–17. [Google Scholar]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Ann. Rev. Entomol. 2000, 45, 175–201. [Google Scholar] [CrossRef]
- Berndt, L.A.; Wratten, S.D.; Hassan, P.G. Effects of buckwheat flowers on leafroller (Lepidoptera: Tortricidae) parasitoids in a New Zealand vineyard. Agric. For. Entomol. 2002, 4, 39–45. [Google Scholar] [CrossRef]
- Vattala, H.D.; Wratten, S.D.; Phillips, C.B.; Wäckers, F.L. The influence of flower morphology and nectar quality on the longevity of a parasitoid biological control agent. Biol. Control 2006, 39, 179–185. [Google Scholar] [CrossRef]
- Hooks, C.R.; Valenzuela, H.R.; Defrank, J. Incidence of pests and arthropod natural enemies in zucchini grown with living mulches. Agr. Ecosyst. Environ. 1998, 69, 217–231. [Google Scholar] [CrossRef]
- Kloen, H.; Altieri, M.A. Effect of mustard (Brassica hirta) as a noncrop plant on competition and insect pests in broccoli (Brassica oleracea). Crop. Protect. 1990, 9, 90–96. [Google Scholar] [CrossRef]
- Laubertie, E.A.; Wratten, S.D.; Hemptinne, J.L. The contribution of potential beneficial insectary plant species to adult hoverfly (Diptera: Syrphidae) fitness. Biol. Control 2012, 61, 1–6. [Google Scholar] [CrossRef]
- Winkler, K.; Helsen, H.; Devkota, B.H. Predatory Bugs Show Higher Abundance Close to Flower Strips in Pear Orchards. In Proceedings of the Netherlands Entomological Society Meeting 18, Amsterdam, The Netherlands, 15 December 2007. [Google Scholar]
- Jado, R.H.; Araj, S.A.; Abu-Irmaileh, B.; Shields, M.W.; Wratten, S.D. Floral resources to enhance the potential of the parasitoid Aphidius colemani for biological control of the aphid Myzus persicae. J. Appl. Entomol. 2018, 143, 34–42. [Google Scholar] [CrossRef]
- Tompkins, J.M.L.; Wratten, S.D.; Wäckers, F.L. Nectar to improve parasitoid fitness in biological control: Does the sucrose: Hexose ratio matter. Basic. Appl. Ecol. 2010, 11, 264–271. [Google Scholar] [CrossRef]
- Manojlovic, B.; Zabel, A.; Kostic, M.; Stankovic, S. Effect of nutrition of parasites with nectar of melliferous plants on parasitism of the elm bark beetles (Col., Scolytidae). J. Appl. Entomol. 2001, 124, 155–161. [Google Scholar] [CrossRef]
- Damien, M.C.; Le Lann, N.; Desneux, L.; Alford, D.; Al Hassan, R.; Georges, J.V. Flowering cover crops in winter increase pest control but not trophic link diversity. Agr. Ecosyst. Environ. 2017, 247, 418–425. [Google Scholar] [CrossRef]
- Winkler, K.; Wäckers, F.L.; Kaufman, L.V.; Larraz, V.; van Lenteren, J.C. Nectar exploitation by herbivores and their parasitoids is a function of flower species and relative humidity. Biol. Control. 2009, 50, 299–306. [Google Scholar] [CrossRef]
- Thies, B.N.; Abawi, J.E. Cornell Soil Health Assessment Training a Manual, 2nd ed.; Cornell University, School of Integrative Plant Science: Ithaca, NY, USA, 2009; pp. 79–98. [Google Scholar]
- Ward, M.J.; Ryan, M.R.; Curran, W.S.; Barbercheck, M.E.; Mortensen, D.A. Cover crops and disturbance influence activity-density of weed seed predators, Amara aenea and Harpalus pensylvanicus (Coleoptera: Carabidae). Weed Sci. 2011, 59, 76–81. [Google Scholar] [CrossRef]
- Heimbach, U.; Garbe, V. Effects of reduced tillage systems in sugar beet on predatory and pest arthropods. In Arthropod Natural Enemies in Arable Land II—Survival, Reproduction and Enhancement; Booij, K., Nijs, L.D., Eds.; Aarhus University Press: Aarhus, Denmark, 1996; Volume 71, pp. 195–208. [Google Scholar]
- Groeneveld, J.H.; Klein, A.M. Double-cropping increases ground beetle diversity. Biomass Bioenergy 2015, 77, 16–25. [Google Scholar] [CrossRef]
- Root, R.B. Organization of a plant-arthropod association in simple and diverse habitats: The fauna of collards (Brassica oleracea). Ecol. Monogr. 1973, 43, 95–124. [Google Scholar] [CrossRef]
- Gospodarek, J.; Kaczmarczyk, M.; Rusin, M.; Biniaś, B. The effect of white mustard proximity on broad bean infestation with black bean aphid (Aphis fabae Scop.). J. Res. Appl. Agric. Eng. 2016, 61, 156–161. [Google Scholar]
- Daniarzadeh, S.; Karimzadeh, J.; Jalalizand, A. The strategy of trap cropping for reducing the populations of diamondback moth in common cabbage. Arch. Phytopathol. Plant Protect. 2014, 47, 1852–1859. [Google Scholar] [CrossRef]
- Bohinc, T.; Trdan, S. Sowing mixtures of Brassica trap crops is recommended to reduce Phyllotreta beetles injury to cabbage. Acta Agric. Scand. Sect. B Soil. Plant Sci. 2013, 63, 297–303. [Google Scholar] [CrossRef]
- Bohinc, T.; Košir, I.J.; Trdan, S. Glucosinolates as arsenal for defending Brassicas against cabbage flea beetle (Phyllotreta spp.) attack. Zemdirbyste 2013, 100, 199–204. [Google Scholar] [CrossRef]
- Tringovska, I.; Yankova, V.; Markova, D.; Mihov, M. Effect of companion plants on tomato greenhouse production. Sci. Hortic. 2015, 186, 31–37. [Google Scholar] [CrossRef]
- Karavina, C.; Kamota, A.; Mandumbu, R.; Parwada, C.; Mugwati, I.; Masamha, B. Nematicidal effects of brassica formulations against root-knot nematodes (Meloidogyne javanica) in tomatoes (Solanum lycopersicum L.). PJP 2015, 27, 109–114. [Google Scholar]
- Mommer, L.; Cotton, T.; Raaijmakers, J.M. Lost in diversity: The interactions between soil-borne fungi, biodiversity and plant productivity. New Phytol. 2018, 218, 542–553. [Google Scholar] [CrossRef]
- Ehrmann, J.; Ritz, K. Plant: Soil interactions in temperate multi-cropping production systems. Plant Soil. 2014, 376, 1–29. [Google Scholar] [CrossRef]
- Wang, B.; An, S.; Liang, C.; Liu, Y.; Kuzyakov, Y. Microbial necromass as the source of soil organic carbon in global ecosystems. Soil. Biol. Biochem. 2021, 162, 108422. [Google Scholar] [CrossRef]
- Hiddink, G.A.; Termorshuizen, A.J.; van Bruggen, A.H. Mixed cropping and suppression of soilborne diseases. In Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming; Lichtfouse, E., Ed.; Springer: Dordrecht, The Netherlands, 2010; Volume 4, pp. 119–146. [Google Scholar]
- Zhu, S.; Morel, J.B. Molecular mechanisms underlying microbial disease control in intercropping. Mol. Plant Microbe Interact. 2018, 32, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Kraska, P.; Mielniczuk, E. The occurrence of fungi on stem base and roots of spring wheat (Triticum aestivum L.) grown in monoculture depending on tillage systems and catch crops. Acta Agrobot. 2012, 65, 79–90. [Google Scholar] [CrossRef]
- Kadziene, G.; Suproniene, S.; Auskalniene, O.; Pranaitiene, S.; Svegzda, P.; Versuliene, A.; Feiza, V. Tillage and cover crop influence on weed pressure and Fusarium infection in spring cereals. Crop Prot. 2020, 127, 104966. [Google Scholar] [CrossRef]
- Trenbath, B.R. Intercropping for the management of pests and diseases. Field Crop. Res. 1993, 34, 381–405. [Google Scholar] [CrossRef]
- Boudreau, M.A. Diseases in intercropping systems. Ann. Rev. Phytopathol. 2013, 51, 499–519. [Google Scholar] [CrossRef] [PubMed]
- Meiners, S.J.; Kong, C.H.; Ladwig, L.M.; Pisula, N.L.; Lang, K.A. Developing an ecological context for allelopathy. Plant Ecol. 2012, 213, 1221–1227. [Google Scholar] [CrossRef]
- Turk, M.A.; Tawaha, A.M. Allelopathic effect of black mustard (Brassica nigra L.) on germination and growth of wild oat (Avena fatua L.). Crop. Prot. 2003, 22, 673–677. [Google Scholar] [CrossRef]
- Oduor, A.; van Kleunen, M.; Stift, M. Allelopathic effects of native and invasive Brassica nigra do not support the novel-weapons hypothesis. Am. J. Bot. 2020, 107, 1106–1113. [Google Scholar] [CrossRef]
- Rivera-Vega, L.J.; Krosse, S.; de Graaf, R.M.; Garvi, J.; Garvi-Bode, R.D.; van Dam, N.M. Allelopathic effects of glucosinolate breakdown products in Hanza (Boscia senegalensis (Pers.) Lam.) processing waste water. Front. Plant Sci. 2015, 6, 532. [Google Scholar] [CrossRef] [PubMed]
- Binias, B.; Gospodarek, J.; Rusin, M. The effect of intercropping of broad bean (Vicia Faba L.) with sweet alyssum (Lobularia maritima L.) and white mustard (Synapis Alba L.) on the energy and the ability of seed germination. J. Agric. Eng. 2015, 60, 11–15. [Google Scholar]
- Schwerdtner, U.; Spohn, M. Plant species interactions in the rhizosphere increase maize N and P Acquisition and maize yields in intercropping. J. Soil. Sci. Plant Nutr. 2022, 22, 3868–3884. [Google Scholar] [CrossRef]
- Letourneau, D.K.; Armbrecht, I.; Rivera, B.S.; Lerma, J.M.; Carmona, E.J.; Daza, M.C.; Escobar, S.; Galindo, V.; Gutiérrez, C.; López, S.D.; et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 2011, 21, 9–21. [Google Scholar] [CrossRef]
- Kahl, H.M.; Leslie, A.W.; Hooks, C.R. Effects of red clover living mulch on arthropod herbivores and natural enemies, and cucumber yield. Ann. Entomol. Soc. Am. 2019, 112, 356–364. [Google Scholar] [CrossRef]
- Ratnadass, A.; Fernandes, P.; Avelino, J.; Habib, R. Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: A review. Agron. Sustain. Dev. 2012, 32, 273–303. [Google Scholar] [CrossRef]
- Romaneckas, K.; Adamavičienė, A.; Šarauskis, E.; Balandaitė, J. The impact of intercropping on soil fertility and sugar beet productivity. Agronomy 2020, 10, 1406. [Google Scholar] [CrossRef]
- Rea, J.H.; Wratten, S.D.; Sedcole, R.; Cameron, P.J.; Davis, S.I.; Chapman, R.B. Trap cropping to manage green vegetable bug Nezara viridula L. (Heteroptera: Pentatomidae) in sweet corn in New Zealand. Agric. For. Entomol. 2002, 4, 101–107. [Google Scholar] [CrossRef]
- Ribeiro, A.L.; Gontijo, L.M. Alyssum flowers promote biological control of collard pests. Biol. Control 2017, 62, 185–196. [Google Scholar] [CrossRef]
- Hogg, B.N.; Nelson, E.H.; Mills, N.J.; Daane, K.M. Floral resources enhance aphid suppression by a hoverfly. Entomol. Exp. Appl. 2011, 141, 138–144. [Google Scholar] [CrossRef]
- Gontijo, L.M.; Beers, E.H.; Snyder, W.E. Flowers promote aphid suppression in apple orchards. Biol. Control 2013, 66, 8. [Google Scholar] [CrossRef]
- Araj, S.E.; Wratten, S.D. Comparing existing weeds and commonly used insectary plants as floral resources for a parasitoid. Biol. Control 2015, 81, 15. [Google Scholar] [CrossRef]
- Munir, S.; Dosdall, L.M.; Keddie, A. Selective effects of floral food sources and honey on life-history traits of a pest-parasitoid system. Entomol. Exp. Appl. 2018, 166, 500. [Google Scholar] [CrossRef]
- Tiwari, S.; Sharma, S.; Wratten, S.D. Flowering alyssum (Lobularia maritima) promote arthropod diversity and biological control of Myzus persicae. J. Asia-Pac. Entomol. 2020, 23, 634640. [Google Scholar] [CrossRef]
- Barbir, J.; Badenes-Pérez, F.R.; Fernández-Quintanilla, C.; Dorado, J. The attractiveness of flowering herbaceous plants to bees (Hymenoptera: Apoidea) and hoverflies (Diptera: Syrphidae) in agro-ecosystems of Central Spain. Agric. For. Entomol. 2015, 17, 20–28. [Google Scholar] [CrossRef]
- Pumariño, L.; Alomar, O. The role of omnivory in the conservation of predators: Orius majusculus (Heteroptera: Anthocoridae) on sweet alyssum. Biol. Control 2012, 62, 24–28. [Google Scholar] [CrossRef]
- Pease, C.G.; Zalom, F.G. Influence of non-crop plants on stink bug (Hemiptera: Pentatomidae) and natural enemy abundance in tomatoes. J. Appl. Entomol. 2010, 134, 626–636. [Google Scholar] [CrossRef]
- Phillips, B.W.; Gardiner, M.M. Does local habitat management or large-scale landscape composition alter the biocontrol services provided to pumpkin agroecosystems? Biol. Control 2016, 92, 181–194. [Google Scholar] [CrossRef]
- Sommaggio, D.; Peretti, E.; Burgio, G. The effect of cover plants management on soil invertebrate fauna in vineyard in Northern Italy. Biol. Control 2018, 63, 795–806. [Google Scholar] [CrossRef]
- Gillespie, M.; Wratten, S.; Sedcole, R.; Colfer, R. Manipulating floral resources dispersion for hoverflies (Diptera: Syrphidae) in a California lettuce agro-ecosystem. Biol. Control 2011, 59, 215–220. [Google Scholar] [CrossRef]
- Tiwari, S.; Dickinson, N.; Saville, D.J.; Wratten, S.D. Host plant selection by the wheat bug, Nysius huttoni (Hemiptera: Lygaeidae) on a range of potential trap plant species. J. Econ. Entomol. 2018, 111, 586–594. [Google Scholar] [CrossRef]
- Wäckers, F.L. Assessing the suitability of flowering herbs as parasitoid food sources: Flower attractiveness and nectar accessibility. Biol. Control 2004, 29, 307–314. [Google Scholar] [CrossRef]
- Köneke, A.; Uesugi, R.; Herz, A.; Tabuchi, K.; Yoshimura, H.; Shimoda, T.; Nagasaka, K. Effects of wheat undersowing and sweet alyssum intercropping on aphid and flea beetle infestation in white cabbage in Germany and Japan. JPDP J. Plant Dis. Prot. 2023, 130, 619–631. [Google Scholar] [CrossRef]
- Quinn, N.F.; Brainard, D.C.; Szendrei, Z. Floral strips attract beneficial insects but do not enhance yield in cucumber fields. J. Econ. Entomol. 2017, 110, 517–524. [Google Scholar] [CrossRef]
- Brennan, E.B. Agronomic aspects of strip intercropping lettuce with alyssum for biological control of aphids. Biol. Control 2013, 65, 302–311. [Google Scholar] [CrossRef]
- Lovei, G.L.; Hodgson, D.J.; MacLeod, A.; Wratten, S.D. Attractiveness of some novel crops for flower-visiting hover flies (Diptera: Syrphidae): Comparisons from two continents. In Pest Control and Sustainable Agriculture; Corey, S.A., Dall, D.J., Milne, W.M., Eds.; CSIRO Publications: Canberra, Australia, 1993; pp. 368–370. [Google Scholar]
- Bowie, M.; Wratten, S.; White, A. Agronomy and phenology of companion plants of potential for enhancement of insect biological control. N. Z. J. Crop. Hortic. Sci. 1995, 23, 423–427. [Google Scholar] [CrossRef]
- Morris, M.C.; Li, F.Y. Coriander (Coriandrum sativum) companion plants can attract hoverflies, and may reduce pest infestation in cabbages. N. Z. J. Crop Hortic. Sci. 2000, 28, 213–217. [Google Scholar] [CrossRef]
- Jankowska, B.; Wojciechowicz-Żytko, E. Effect of intercropping carrot (Daucus carota L.) with two aromatic plants, coriander (Coriandrum sativum L.) and summer savory (Satureja hortensis L.), on the population density of select carrot pests. Folia Hort. 2016, 28, 13–18. [Google Scholar] [CrossRef]
- Martínez-Uña, A.; Martín, J.; Fernández-Quintanilla, C.; Dorado, J. Provisioning floral resources to attract aphidophagous hoverflies (Diptera: Syrphidae) useful for pest management in central Spain. J. Econ. Entomol. 2013, 106, 2327–2335. [Google Scholar] [CrossRef] [PubMed]
- Hodgkiss, D.; Mark, J.F.; Browna, M.; Fountain, T. The effect of within-crop floral resources on pollination, aphid control and fruit quality in commercial strawberry. Agric. Ecosyst. Environ. 2019, 275, 112–122. [Google Scholar] [CrossRef]
- Araj, S.E.; Wratten, S.; Lister, A.; Buckley, H. Floral diversity, parasitoids and hyperparasitoids—A laboratory approach. Basic. Appl. Ecol. 2008, 9, 588–597. [Google Scholar] [CrossRef]
- Medeiros, M.A.; Sujii, E.R.; Morais, H.C. Effect of plant diversification on abundance of South American tomato pinworm and predators in two cropping systems. Hort. Bras. 2009, 27, 300–306. [Google Scholar] [CrossRef]
- Valkiacuteria, F.D.; Luis, A.S.; Alexandre, C.P.S.; dos, S.; Adriano, J.N.; dos, S.; Vitor, B.T. Companion plants associated with kale increase the abundance and species richness of the natural-enemies of Lipaphis erysimi (Kaltenbach) (Hemiptera: Aphididae). Afr. J. Agric. Res. 2016, 11, 2630–2639. [Google Scholar] [CrossRef]
- Ferrante, M.; Lövei, G.L.; Lavigne, L.; Vicente, M.C.; Tarantino, E.; Lopes, D.H.; Monjardino, P.; Borges, P.A.V. Flowering Coriander (Coriandrum sativum) Strips Do Not Enhance Ecosystem Services in Azorean Orchards. Insects 2023, 14, 634. [Google Scholar] [CrossRef] [PubMed]
- Gospodarek, J.; Boligłowa, E.; Glen-Karolczyk, K.; Kwiecien, N. The effect of broad bean intercropping with coriander and fennel on dynamic of Sitona spp. beetles feeding. J. Agric. Eng. 2017, 62, 124–129. [Google Scholar]
- Paul, S.K.; Mazumder, S.; Mujahidi, T.A.; Roy, S.K.; Kundu, S. Intercropping coriander with chickpea for pod borer insect suppression. WJAS World J. Agric. Sci. 2015, 11, 307–310. [Google Scholar] [CrossRef]
- Bickerton, M.W.; Hamilton, G.C. Effects of intercropping with flowering plants on predation of Ostrinia nubilalis (Lepidoptera: Crambidae) eggs by generalist predators in bell peppers. Environ. Entomol. 2012, 41, 612–620. [Google Scholar] [CrossRef]
- Hilje, L.; Stansly, P.A. Living ground covers for management of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and tomato yellow mottle virus in Costa Rica. Crop Prot. 2008, 27, 10–16. [Google Scholar] [CrossRef]
- Balzan, M.V.; Moonen, A.C. Field margin vegetation enhances biological control and crop damage suppression from multiple pests in organic tomato fields. Entomol. Exp. Appl. 2014, 150, 45–65. [Google Scholar] [CrossRef]
- Boligłowa, E.; Gleń-Karolczyk, K.; Gospodarek, J. Intensity of broad bean fungal diseases in intercropping with selected species of herbs. J. Agric. Eng 2017, 62, 54–57. [Google Scholar]
- Glen-Karolczyk, K.; Boligłowa, E.; Gospodarek, J. Mycological purity of broad bean (Vicia faba L.) seeds in the conditions of companion planting and differentiated protection. J. Agric. Eng. 2016, 1, 126–131. [Google Scholar]
- Marouelli, W.A.; Lage, D.A.d.C.; Gravina, C.S.; Filho, M.M.; de Souza, R.B. Sprinkler and drip irrigation in the organic tomato for single crops and when intercropped with coriander. Rev. Ciênc. Agron. 2013, 832, 825–833. [Google Scholar] [CrossRef]
- Mehta, R.S.; Meena, S.S.; Anwer, M.M. Performance of coriander (Coriandrum sativum) based intercropping systems. Indian. J. Agron. 2010, 55, 286–289. [Google Scholar] [CrossRef]
- Himmelstein, J.; Ares, A.D.; Gallagher, D.; Myers, J. A meta-analysis of intercropping in Africa: Impacts on crop yield, farmer income, and integrated pest management effects. Int. J. Agric. Sustain. 2017, 15, 1–10. [Google Scholar] [CrossRef]
- Kumar, V.; Mehta, R.S.; Meena, S.S.; Parsoya, M.; Sidh, C.N. Study on coriander (Coriandrum sativum L.) based intercropping system for enhancing system productivity. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3509–3514. [Google Scholar] [CrossRef]
- Abdullah, S.S.; Fouad, H.A. Effect of intercropping agroecosystem on the population of black legume aphid, Aphis craccivora Koch and yield of faba bean crop. J. Entomol. Zool. Stud. 2016, 4, 1367–1371. [Google Scholar]
- Abdelkader, M.A.I.; Mohsen, A.A.M. Effect of intercropping patterns on growth, yield Components, chemical constituents and competition indices of onion, fennel and coriander plants. Zagazig J. Agric. Res. 2016, 43, 67–83. [Google Scholar] [CrossRef]
Crop | Exp. Type | Duration | Effect | Notes | Ref. |
---|---|---|---|---|---|
Fungi | |||||
Wheat | Field | 3 years | Positive | Lowered steam base and root base infection. | [54] |
Barley | Field | 5 years | Lower infestation level by Fusarium graminearum Schwabe. | [55] | |
Viruses | |||||
Zucchini | Field | 2 years | Positive | Reduced incidence of the papaya ringspot virus-watermelon strain. | [29] |
Crop | Exp. Type | Duration | Benefited Organisms | Effect | Notes | Ref. |
---|---|---|---|---|---|---|
Hoverflies | ||||||
Lettuce | Field | 1 year | Eupeodes fumipennis (Thomson) | Positive | Higher number of eggs and larvae. | [70] |
Radish | Field | 1 year | Syrphids in general | Higher number of adults and larvae. | [74] | |
-- | Field | 1 year | Syrphids in general | More hoverfly feeding visits than Aurinia saxitalis L. Desv., mustard, and calendula, but only at one site and at the beginning of the observation period. At the other site, it is less attractive than coriander but similarly attractive to phacelia. | [16] | |
-- | Field | 2 years | Sphaerophoria scripta L. and Sphaerophoria rueppellii Wiedemann | More hoverfly visits than coriander in one year of study. | [75] | |
-- | Laboratory | Episyrphus balteatus Deg. | Negative | Lower oviposition rate than buckwheat, phacelia, and coriander. | [31] | |
Lady beetles | ||||||
Collard greens | Field | 2 years | Coccinellids in general | Positive | Higher number of adults and larvae. | [69] |
Radish | Field | 1 year | Coccinella septempunctata L. | Higher number of adults. | [74] | |
Anthocorids | ||||||
-- | Laboratory | 7 months | Orius majusculus Reuter | Positive | Longer survival on sweet alyssum with prey eggs, E. kuehniella, compared to alyssum without prey and green bean with prey. | [76] |
Tomato | Field | 1 year | Jalysus wickhami Van Duzee (Hemiptera: Berytidae) | Higher number in the 1st sampling period (end of June). | [77] | |
Parasitoids | ||||||
-- | Laboratory | 1 year | Diaeretiella rapae M’Intosh | Positive | Longer survival compared to the control (water), but lower than on buckwheat. | [72] |
-- | Laboratory | 1 year | Aphidius colemani Viereck | Longer survival than that of the control (water). | [33] | |
-- | Greenhouse | 1.5 year | Cotesia marginiventris Cresson and Diadegma insulare Cresson | Increased survival. | [17] | |
-- | Laboratory | 1 year | Diadegma insulare Cresson | Longer survival and body weight than on the water control diet. | [73] | |
No effect | Similar longevity in relation to B. napus, T. arvense, and S. arvensis. | |||||
Epigeal and soil fauna | ||||||
Radish | Field | 1 year | Carabidae, Staphylinidae, Formicidae | Positive | Higher number of individuals. | [74] |
Lettuce | Field | 1 year | Araneae, Cicadellidae, Carabidae | Higher number of individuals. | [7] | |
Pumpkin | Field | 3 years | Araneae, Carabidae, Formicidae, Opiliones | No effect | Similar abundance in pumpkin next to sweet alyssum and next to grass control. | [78] |
Vineyards | Field | 3 years | Carabidae, Nitidulidae, Opiliones, Staphylinidae, Araneae | Similar abundance with and without sweet alyssum. | [79] |
Crop | Exp. Type | Duration | Effect | Notes | Ref. |
---|---|---|---|---|---|
Broccoli | Field | 3 years | Positive | Higher shoot dry matter. | [11] |
Broad bean | Laboratory | 6 months | No effect | No influence on the length of the primary root, above-ground part, or the number of lateral roots. | [62] |
Cabbage | Field | 1 year | No influence on harvest weight. | [83] | |
Cucumber | Field | 2 years | No effect on the yield. | [84] | |
Lettuce | Field | 1 year | Negative | Lower dry matter content of heads in the highest density intercrop (monoculture lettuce plus additional 5333 sweet alyssum transplants per ha). | [85] |
Crop | Exp. Type | Duration | Effect | Notes | Ref. |
---|---|---|---|---|---|
Fungi | |||||
Broad bean | Field | 3 years | Positive | Reduced Botrytis fabae Sardiña, Uromyces viciae-fabae (Pers.) J. Schröt, and Botrytis cinerea Pers. pod infections. | [101] |
3 years | Negative | More fungal isolates were found in seeds obtained from plants interplanted with coriander than in seeds grown without protection. | [102] | ||
Tomato | Field | 1 year | Higher severity of late blight and powdery mildew. | [103] | |
Viruses | |||||
Tomato | Field | 2 years | Positive | Reduced disease incidence of the tomato yellow mottle virus. | [99] |
Crop | Exp. Type | Duration | Notes | Ref. |
---|---|---|---|---|
Positive | ||||
Chickpea | Field | 2 years | Higher yield, number of pods, 1000 seed weight, and height. | [97] |
Tomato | Field | 1 year | Increased yield. | [99] |
No effect | ||||
Broad bean | Field | 2 years | Number of root nodules unaffected. | [96] |
Tomato | Field | 1 year | Number of fruits per plant, total fruit yield, and marketable yield comparable in intercropping and monoculture. | [103] |
Strawberry | Greenhouse/Polythene-clad tunnels | 1 year | Mean values of fruit fresh weight, percentage of marketable fruit, and fruit yield for strawberries comparable in intercropping and monoculture. | [91] |
Negative | ||||
Broad bean | Field | 2 years | Lower yield. | [107] |
Onion | Field | 2 years | Lower yield. | [108] |
Parameters | White Mustard | Sweet Alyssum | Coriander |
---|---|---|---|
Syrphidae | |||
Occurrence | [++,0] | [++] | [++,0] |
Longevity | [--] | [?] | [+] |
Fertility | [++,-] | [-] | [?] |
Egg lying duration | [---] | [?] | [++] |
Coccinellidae | |||
Occurrence | [++,0,-] | [+++] | [+] |
Anthocoridae | |||
Occurrence | [++,0] | [++] | [?] |
Longevity | [?] | [++] | [?] |
Parasitoids | |||
Occurrence | [++] | [?] | [?] |
Longevity | [++,0] | [+++,0] | [+++] |
Fertility | [+] | [?] | [?] |
Chrysopidae | |||
Occurrence | [?] | [?] | [+++] |
Epigeal and soil fauna | |||
Carabidae occurrence | [++] | [++,0] | [?] |
Stapylinidae | [?] | [+,0] | [++] |
Aranea | [?] | [+,0] | [++] |
Formicidae | [?] | [+,0] | [?] |
Cicadellidae | [?] | [+] | [?] |
Pests, pathogens, and yield | |||
Pest suppression | [+++,0] | [++,0,-] | [++,0] |
Pathogen suppression | [+] | [?] | [+,-] |
Growth parameters and yield | [+,-] | [+,0,-] | [+,0,-] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mena, G.T.; Gospodarek, J. White Mustard, Sweet Alyssum, and Coriander as Insectary Plants in Agricultural Systems: Impacts on Ecosystem Services and Yield of Crops. Agriculture 2024, 14, 550. https://doi.org/10.3390/agriculture14040550
Mena GT, Gospodarek J. White Mustard, Sweet Alyssum, and Coriander as Insectary Plants in Agricultural Systems: Impacts on Ecosystem Services and Yield of Crops. Agriculture. 2024; 14(4):550. https://doi.org/10.3390/agriculture14040550
Chicago/Turabian StyleMena, Gedyon Tamiru, and Janina Gospodarek. 2024. "White Mustard, Sweet Alyssum, and Coriander as Insectary Plants in Agricultural Systems: Impacts on Ecosystem Services and Yield of Crops" Agriculture 14, no. 4: 550. https://doi.org/10.3390/agriculture14040550
APA StyleMena, G. T., & Gospodarek, J. (2024). White Mustard, Sweet Alyssum, and Coriander as Insectary Plants in Agricultural Systems: Impacts on Ecosystem Services and Yield of Crops. Agriculture, 14(4), 550. https://doi.org/10.3390/agriculture14040550