Analysis of the Club Convergence and Driving Factors of China’s Green Agricultural Development Levels
Abstract
:1. Introduction
2. Measurement and Comparison of Green Agricultural Development in China
2.1. Indicator Construction and Data Sources
2.2. Determine the Index Weight
- (1)
- Positive indicator processing:
- (2)
- Negative indicator processing:
2.3. Green Agricultural Development Level Analysis
3. Analysis of the Causes of Convergence Clubs
3.1. Model Building
3.1.1. Log(t) Model
3.1.2. Ordered Probit Model
3.2. Data Processing
3.3. Empirical Analysis
3.3.1. Green Agricultural Development Level Club Convergence
3.3.2. Analysis of the Causes of Green Agricultural Development Level Club Convergence
4. Discussion
5. Conclusions
- (1)
- The results of the calculation of the GADLshow that the GADLs in various regions of China are on the rise, but the overall level is not high, and regional gaps are obvious. From the weighting results of the GADL indicators, it can be seen that the number of green organic food products at the output end has the largest weight.
- (2)
- From the club convergence grouping results, the GADLs of China’s 31 provinces (municipalities and autonomous regions) converge to four clubs. Club 1 includes Shandong, Jiangsu, Heilongjiang, Anhui, Chongqing, Hunan, Beijing, Yunnan, Zhejiang, Sichuan, and Shanghai, involving most of China’s main agricultural producing areas. Club 2 includes Inner Mongolia, Gansu, Hubei, Hebei, Fujian, Liaoning, Henan, Shanxi, Guangxi, and Qinghai; Club 3 includes Jiangxi, Jilin, Tianjin, Xinjiang, Shaanxi, Ningxia, Guangdong, Guizhou, and Hainan; Club 4 only includes Tibet.
- (3)
- By analyzing the causes of the club convergence results, it is found that the convergence trend of ERs on the GADL has the characteristics of first narrowing, then expanding, and then narrowing; the regional gross product (GDP), grain production area (GPA), fiscal expenditure for agricultural (FSA), and rural human capital (RHC) will promote the GADL to converge towards high-level clubs, and the possibility of entering Club 1 will increase by 2.9%, 1%, 1%, and 6.9%, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GADL | green agricultural development level |
GDP | gross domestic product |
GPA | grain production area |
FSA | financial support for agriculture |
RHC | rural human capital |
ER | environmental regulation |
References
- Zhang, F.; Wang, F.; Hao, R.; Wu, L. Agricultural science and technology innovation, spatial spillover and agricultural green development—Taking 30 provinces in China as the research object. Appl. Sci. 2022, 12, 845. [Google Scholar] [CrossRef]
- Guo, H.; Xu, S.; Pan, C. Measurement of the spatial complexity and its influencing factors of agricultural green development in China. Sustainability 2020, 12, 9259. [Google Scholar] [CrossRef]
- Chen, Z.; Li, X.; Xia, X. Measurement and spatial convergence analysis of China’s agricultural green development index. Environ. Sci. Pollut. Res. 2021, 28, 19694–19709. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, K.; Zhao, F. Research on the regional spatial effects of green development and environmental governance in China based on a spatial autocorrelation model. Struct. Chang. Econ. Dyn. 2020, 55, 1–11. [Google Scholar] [CrossRef]
- Chi, M.; Guo, Q.; Mi, L.; Wang, G.; Song, W. Spatial distribution of agricultural eco-efficiency and agriculture high-quality development in China. Land 2022, 11, 722. [Google Scholar] [CrossRef]
- Kijek, A.; Kijek, T.; Nowak, A. Club convergence of labour productivity in agriculture: Evidence from EU countries. Agric. Econ./Zemed. Ekon. 2020, 66, 391–401. [Google Scholar]
- Tian, Y.; Zhang, J. Study on regional differences and genesis in development level of green agriculture in China. Res. Agric. Mod. 2013, 34, 85–89. [Google Scholar]
- Nowak, A.; Kasztelan, A. Economic competitiveness vs. green competitiveness of agriculture in the European Union countries. Oeconomia Copernic. 2022, 13, 379–405. [Google Scholar] [CrossRef]
- Liu, Y.F.; Sun, D.S.; Wang, H.J.; Wang, X.J.; Yu, G.Q.; Zhao, X.J. An evaluation of China’s agricultural green production: 1978–2017. J. Clean. Prod. 2020, 243, 118483. [Google Scholar] [CrossRef]
- Gong, Q.; Li, X. Construction and measurement of agricultural green development index: 2005–2018. Reform 2020, 1, 133–145. [Google Scholar]
- Koohafkan, P.; Altieri, M.A.; Gimenez, E.H. Green agriculture: Foundations for biodiverse, resilient and productive agricultural systems. Int. J. Agric. Sustain. 2012, 10, 61–75. [Google Scholar] [CrossRef]
- Yan, J.; Tang, Z.; Guan, Y.; Xie, M.; Huang, Y. Analysis of measurement, regional differences, convergence and dynamic evolutionary trends of the green production level in Chinese agriculture. Agriculture 2023, 13, 2016. [Google Scholar] [CrossRef]
- Wang, F.; Wang, H.; Liu, C.; Xiong, L.; Kong, F. Does economic agglomeration improve agricultural green total factor productivity? Evidence from China’s Yangtze river delta. Sci. Prog. 2022, 105, 00368504221135460. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhu, X.; Wang, Y. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Hamid, S.; Wang, K. Environmental total factor productivity of agriculture in South Asia: A generalized decomposition of Luenberger-Hicks-Moorsteen productivity indicator. J. Clean. Prod. 2022, 351, 131483. [Google Scholar] [CrossRef]
- Ang, F.; Kerstens, P.J. Decomposing the Luenberger–Hicks–Moorsteen total factor productivity indicator: An application to US agriculture. Eur. J. Oper. Res. 2017, 260, 359–375. [Google Scholar] [CrossRef]
- Yu, C.; Wenxin, L.; Khan, S.U.; Yu, C.; Jun, Z.; Yue, D.; Zhao, M. Regional differential decomposition and convergence of rural green development efficiency: Evidence from China. Environ. Sci. Pollut. Res. 2020, 27, 22364–22379. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Yin, K.; Guo, H.; Yang, B. Regional differences and convergence of inter-provincial green total factor productivity in China under technological heterogeneity. Int. J. Environ. Res. Public Health 2022, 19, 5688. [Google Scholar] [CrossRef]
- Zou, Y.; Cheng, Q.; Jin, H.; Pu, X. Evaluation of green agricultural development and its influencing factors under the framework of sustainable development goals: Case study of Lincang city, an underdeveloped mountainous region of China. Sustainability 2023, 15, 11918. [Google Scholar] [CrossRef]
- Chen, Z.; Sarkar, A.; Rahman, A.; Li, X.; Xia, X. Exploring the drivers of green agricultural development (GAD) in China: A spatial association network structure approaches. Land Use Policy 2022, 112, 105827. [Google Scholar] [CrossRef]
- LUO, X.; LI, Z. Analysis on spatial-temporal differences and influence factors of agricultural green production level in China. J. China Agric. Univ. 2017, 22, 183–190. [Google Scholar]
- Li, Z.; Luo, X.; Xue, L. Agricultural green technical efficiency and its affecting factors in China. J. China Agric. Univ 2017, 22, 203–212. [Google Scholar]
- Qi, Y.; Han, S.; Deng, X. China’s green agriculture development: Production level measurement, regional spatial difference and convergence analysis. J. Agrotech. Econ. 2020, 4, 51–65. [Google Scholar]
- Yu, L.W.; Liu, W.X.; Yang, S.X.; Kong, R.; He, X.S. Impact of environmental literacy on farmers’ agricultural green production behavior: Evidence from rural China. Front. Environ. Sci. 2022, 10, 19. [Google Scholar] [CrossRef]
- National Bureau of Statistics. China Rural Statistical Yearbook; China Statistics Press: Beijing, China, 2021.
- Bao, B.; Jiang, A.; Jin, S. What Drives the Fluctuations of “Green” Development in China’s Agricultural Sector? An Entropy Method Approach. Pol. J. Environ. Stud. 2022, 31, 3491–3507. [Google Scholar] [CrossRef]
- Phillips, P.C.; Sul, D. Transition modeling and econometric convergence tests. Econometrica 2007, 75, 1771–1855. [Google Scholar] [CrossRef]
- Xu, J.; Wang, J.; Wang, H.; Li, C. Evolution trend and promotion potential of environmental efficiency of dairy farming in China from the perspective of “club convergence”. Front. Environ. Sci. 2022, 10, 967150. [Google Scholar] [CrossRef]
- Delgado, F.J.; Presno, M.J. Tax evolution in the EU: A convergence club approach. Panoeconomicus 2017, 64, 623–643. [Google Scholar] [CrossRef]
- Ghosh, M.; Ghoshray, A.; Malki, I. Regional divergence and club convergence in India. Econ. Model. 2013, 30, 733–742. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Dunya, R. How Does Environmental Regulation Affect the Development of China’s Pig Industry. Sustainability 2023, 15, 8258. [Google Scholar] [CrossRef]
- Hu, W.; Wang, D. How does environmental regulation influence China’s carbon productivity? An empirical analysis based on the spatial spillover effect. J. Clean. Prod. 2020, 257, 120484. [Google Scholar] [CrossRef]
- Zhang, H.; Qin, Y.; Xu, J.; Ren, W. Analysis of the evolution characteristics and impact factors of green production efficiency of grain in China. Land 2023, 12, 852. [Google Scholar] [CrossRef]
- Yang, M.; Liu, X.; Wu, X. The temporal and spatial effects of fiscal support for agriculture on rural green development. Fisc. Sci. 2022, 2, 85–99. [Google Scholar] [CrossRef]
- National Bureau of Statistics. China Environmental Statistical Yearbook; China Environmental Statistical Yearbook Committee: Beijing, China, 2021.
- National Bureau of Statistics. China Statistical Yearbook; China Statistical Yearbook Committee: Beijing, China, 2021.
- Zhu, L.; Shi, R.; Mi, L.; Liu, P.; Wang, G. Spatial distribution and convergence of agricultural green total factor productivity in China. Int. J. Environ. Res. Public Health 2022, 19, 8786. [Google Scholar] [CrossRef] [PubMed]
- Hu, J. Green productivity growth and convergence in Chinese agriculture. J. Environ. Plan. Manag. Sci. 2023, 1–30. [Google Scholar] [CrossRef]
- Zhan, X.; Shao, C.; He, R.; Shi, R. Evolution and efficiency assessment of pesticide and fertiliser inputs to cultivated land in China. Int. J. Environ. Res. Public Health 2021, 18, 3771. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Zhou, F. Zero growth of chemical fertilizer and pesticide use: China’s objectives, progress and challenges. J. Resour. Ecol. 2018, 9, 50–58. [Google Scholar]
- Liu, H. The tripartite evolutionary game of green agro-product supply in an agricultural industrialization consortium. Sustainability 2022, 14, 11582. [Google Scholar] [CrossRef]
- Otsuka, K.; Kijima, Y. Technology policies for a green revolution and agricultural transformation in Africa. J. Afr. Econ. 2010, 19, ii60–ii76. [Google Scholar] [CrossRef]
- Zhou, F.; Wen, C. Research on the level of agricultural green development, regional disparities, and dynamic distribution evolution in China from the perspective of sustainable development. Agriculture 2023, 13, 1441. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, C.; Chen, X. Dynamic analysis of agricultural green development efficiency in China: Spatiotemporal evolution and influencing factors. J. Arid Land 2023, 15, 127–144. [Google Scholar] [CrossRef]
- Lei, S.; Yang, X.; Qin, J. Does agricultural factor misallocation hinder agricultural green production efficiency? Evidence from China. Sci. Total Environ. 2023, 891, 164466. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Tan, Y.; Wang, H. Impact of Environmental Regulation on Green Technology Adoption by Farmers Microscopic Investigation Evidence from Pig Breeding in China. Front. Environ. Sci. 2022, 10, 885933. [Google Scholar] [CrossRef]
- Lohr, L.; Salomonsson, L. Conversion subsidies for organic production: Results from Sweden and lessons for the United States. Agric. Econ. 2000, 22, 133–146. [Google Scholar] [CrossRef]
- Xu, P.; Jin, Z.; Tang, H. Influence paths and spillover effects of agricultural agglomeration on agricultural green development. Sustainability 2022, 14, 6185. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, S.; Luo, Q.; Liu, Y.; Xu, X.; Chen, Z. The Rural Regional Coordination Development in UK and the Enlighten-ment to China. J. China Agric. Resour. Reg. Plan. 2018, 39, 272–279. [Google Scholar] [CrossRef]
Indicator | Metrics Interpretation | |
---|---|---|
Pre-production stage | Efficiency of chemical fertilizer use | Amount of agricultural chemical fertilizer/total agricultural output value, kg/CNY 10,000 |
Efficiency of pesticide use | Amount of pesticide used/total agricultural output value, kg/CNY 10,000 | |
Efficiency of use of agricultural film | Amount of agricultural film used/total agricultural output value, kg/CNY 10,000 | |
Water-saving irrigation rate | Water-saving irrigated area/arable land irrigated area, % | |
Mid-production stage | Comprehensive utilization rate of livestock and poultry manure | Comprehensive utilization rate of livestock and poultry manure, % |
Comprehensive utilization rate of crop straw | Comprehensive utilization rate of crop straw, % | |
Output stage | Number of green organic food products | Number of green food products + number of organic food products, pcs |
Indicator | Weight | Orientation |
---|---|---|
Efficiency of chemical fertilizer use | 0.078 | − |
Efficiency of pesticide use | 0.036 | − |
Efficiency of use of agricultural film | 0.042 | − |
Water-saving irrigation rate | 0.269 | + |
Comprehensive utilization rate of livestock and poultry manure | 0.080 | + |
Comprehensive utilization rate of crop straw | 0.031 | + |
Number of green organic food products | 0.465 | + |
Region | Province | 2013 | 2015 | 2017 | 2019 | 2020 | Average | Increasing Rate |
---|---|---|---|---|---|---|---|---|
Northeast China | Heilongjiang | 0.365 | 0.354 | 0.382 | 0.392 | 0.692 | 0.533 | 89% |
Jilin | 0.207 | 0.180 | 0.206 | 0.236 | 0.362 | 0.275 | 75% | |
Liaoning | 0.302 | 0.303 | 0.321 | 0.434 | 0.410 | 0.369 | 36% | |
North China | Beijing | 0.424 | 0.396 | 0.382 | 0.431 | 0.522 | 0.485 | 23% |
Tianjin | 0.244 | 0.361 | 0.391 | 0.441 | 0.361 | 0.303 | 48% | |
Shanxi | 0.212 | 0.214 | 0.237 | 0.287 | 0.386 | 0.270 | 82% | |
Hebei | 0.392 | 0.338 | 0.371 | 0.445 | 0.445 | 0.401 | 14% | |
Inner Mongolia | 0.298 | 0.521 | 0.521 | 0.680 | 0.490 | 0.379 | 64% | |
East China | Shandong | 0.584 | 0.457 | 0.498 | 0.542 | 0.775 | 0.681 | 33% |
Jiangsu | 0.453 | 0.286 | 0.303 | 0.323 | 0.728 | 0.562 | 61% | |
Zhejiang | 0.409 | 0.239 | 0.241 | 0.321 | 0.499 | 0.459 | 22% | |
Anhui | 0.271 | 0.337 | 0.351 | 0.405 | 0.669 | 0.439 | 147% | |
Shanghai | 0.280 | 0.333 | 0.438 | 0.593 | 0.495 | 0.352 | 77% | |
Jiangxi | 0.246 | 0.223 | 0.256 | 0.339 | 0.367 | 0.299 | 49% | |
Fujian | 0.302 | 0.457 | 0.583 | 0.638 | 0.433 | 0.361 | 43% | |
Central China | Hubei | 0.296 | 0.443 | 0.454 | 0.501 | 0.476 | 0.386 | 61% |
Hunan | 0.250 | 0.669 | 0.660 | 0.745 | 0.529 | 0.349 | 112% | |
Henan | 0.183 | 0.299 | 0.310 | 0.360 | 0.391 | 0.265 | 113% | |
South China | Guangdong | 0.231 | 0.266 | 0.289 | 0.323 | 0.318 | 0.277 | 38% |
Guangxi | 0.228 | 0.393 | 0.405 | 0.471 | 0.375 | 0.289 | 64% | |
Hainan | 0.133 | 0.237 | 0.289 | 0.327 | 0.269 | 0.194 | 103% | |
Southwest China | Guizhou | 0.188 | 0.286 | 0.332 | 0.432 | 0.307 | 0.239 | 64% |
Sichuan | 0.331 | 0.243 | 0.267 | 0.335 | 0.498 | 0.411 | 51% | |
Yunnan | 0.236 | 0.300 | 0.334 | 0.434 | 0.505 | 0.341 | 114% | |
Chongqing | 0.235 | 0.269 | 0.268 | 0.306 | 0.578 | 0.356 | 146% | |
Tibet | 0.188 | 0.257 | 0.296 | 0.331 | 0.245 | 0.209 | 30% | |
Northwest China | Gansu | 0.231 | 0.152 | 0.187 | 0.246 | 0.478 | 0.342 | 107% |
Shaanxi | 0.228 | 0.294 | 0.317 | 0.464 | 0.358 | 0.289 | 57% | |
Qinghai | 0.257 | 0.281 | 0.293 | 0.330 | 0.369 | 0.315 | 44% | |
Ningxia | 0.171 | 0.242 | 0.277 | 0.318 | 0.333 | 0.266 | 94% | |
Xinjiang | 0.209 | 0.275 | 0.322 | 0.457 | 0.359 | 0.279 | 71% |
Variables | Average | Min. | Max. | Std. Dev. |
---|---|---|---|---|
ER | 2.871 | 0 | 26 | 3.473 |
ER2 | 20.190 | 0 | 676 | 58.381 |
ER3 | 236.359 | 0 | 17,576 | 1254.522 |
GDP | 2.654 | 0.082 | 11.076 | 2.167 |
GPA | 3730.282 | 46.5 | 14,438.4 | 3159.18 |
FSA | 586.919 | 123.03 | 1339.36 | 272.392 |
RHC | 7.719 | 3.807 | 9.825 | 0.826 |
Variable | Coeff | SE | T-Stat |
---|---|---|---|
log(t) | −1.3003 | 0.3797 | −3.4241 |
Region | Club 1 | Club 2 | Club 3 | Club 4 |
---|---|---|---|---|
Northeast China | Heilongjiang | Liaoning | Jilin | - |
North China | Beijing | Inner Mongolia, Hebei, and Shanxi | Tianjin | - |
East China | Shandong, Jiangsu, Anhui, Zhejiang, and Shanghai | Fujian | Jiangxi | - |
Central China | Hunan | Hubei and Henan | - | - |
South China | - | Guangxi | Guangdong and Hainan | - |
Southwest China | Chongqing and Sichuan | - | Guizhou | - |
Northwest China | - | Gansu and Qinghai | Xinjiang, Shaanxi, and Ningxia | Tibet |
Variables | Ordered Logit | Ordered Probit |
---|---|---|
ER | −0.515 (0.197) *** | −0.280 (0.115) ** |
ER2 | 0.077 (0.035) ** | 0.044 (0.021) ** |
ER3 | −0.003 (0.002) ** | −0.002 (0.001) ** |
GDP | −0.173 (0.095) * | −0.080 (0.050) |
GPA | −0.001 (0.000) *** | −0.001 (0.000) *** |
FSA | −0.002 (0.000) ** | −0.001 (0.001) ** |
RHC | −0.412 (0.203) ** | −0.263 (0.110) ** |
LR chi2(8) | 86.92 | 90.12 |
Prob > chi2 | 0.000 | 0.000 |
R2 | 0.1500 | 0.1556 |
Ob | 240 | 240 |
Variables | Ordered Logit | Ordered Probit | ||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
ER | 0.086 *** (0.032) | 0.002 (0.006) | −0.073 *** (0.027) | −0.016 ** (0.007) | 0.081 ** (0.033) | 0.001 (0.005) | −0.067 ** (0.027) | −0.014 ** (0.007) |
ER2 | −0.013 ** (0.006) | −0.001 (0.001) | 0.011 ** (0.005) | 0.002 * (0.001) | −0.013 ** (0.006) | −0.001 (0.000) | 0.011 ** (0.005) | 0.002 * (0.001) |
ER3 | 0.001 ** (0.000) | 0.001 (0.000) | −0.001 ** (0.000) | −0.001 * (0.000) | 0.001 ** (0.000) | 0.000 (0.000) | −0.001 ** (0.000) | −0.001 * (0.000) |
GDP | 0.029 * (0.015) | 0.001 (0.002) | −0.024 * (0.013) | −0.005 (0.003) | 0.023 (0.014) | 0.001 (0.001) | −0.019 (0.012) | −0.004 (0.003) |
GPA | 0.001 ** (0.000) | 0.000 (0.000) | −0.001 ** (0.000) | −0.000 ** (0.000) | 0.001 *** (0.000) | 0.000 (0.000) | −0.001 *** (0.000) | −0.000 (0.000) |
FSA | 0.001 ** (0.000) | 0.000 (0.000) | −0.001 ** (0.000) | −0.001 * (0.000) | 0.001 * (0.000) | 0.000 (0.000) | −0.001 ** (0.000) | −0.001 * (0.000) |
RHC | 0.069 ** (0.035) | 0.002 (0.004) | −0.058 ** (0.029) | −0.013 * (0.007) | 0.077 ** (0.033) | 0.001 (0.004) | −0.063 ** (0.027) | −0.013 ** (0.006) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Guo, X. Analysis of the Club Convergence and Driving Factors of China’s Green Agricultural Development Levels. Agriculture 2024, 14, 553. https://doi.org/10.3390/agriculture14040553
Chen S, Guo X. Analysis of the Club Convergence and Driving Factors of China’s Green Agricultural Development Levels. Agriculture. 2024; 14(4):553. https://doi.org/10.3390/agriculture14040553
Chicago/Turabian StyleChen, Silin, and Xiangyu Guo. 2024. "Analysis of the Club Convergence and Driving Factors of China’s Green Agricultural Development Levels" Agriculture 14, no. 4: 553. https://doi.org/10.3390/agriculture14040553
APA StyleChen, S., & Guo, X. (2024). Analysis of the Club Convergence and Driving Factors of China’s Green Agricultural Development Levels. Agriculture, 14(4), 553. https://doi.org/10.3390/agriculture14040553