Resistant S. aureus Isolates Capable of Producing Biofilm from the Milk of Dairy Cows with Subclinical Mastitis in Slovakia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling, Isolation, and Identification of Staphylococcus aureus
2.2. DNA Extraction
2.3. Gene Detection Using Simplex PCR (PCR) and Multiplex PCR (mPCR)
2.4. Antibiotic Susceptibility Testing
2.5. Biofilm Activity Testing—Crystal Violet Biofilm Testing
2.6. Statistical Evaluation of Biofilm Formation
3. Results
3.1. Confirmation of the Genus S. aureus
3.2. Antimicrobial Susceptibility Profile
3.3. Phenotypic Identification of Biofilm-Forming S. aureus
3.4. Detection of Biofilm-Associated Genes in S. aureus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Pedersen, R.R.; Kromker, V.; Bjarnsholt, T.; Dahl-Pedersen, K.; Buhl, R.; Jorgensen, E. Biofilm Research in Bovine Mastitis. Front. Vet. Sci. 2021, 8, 656810. [Google Scholar] [CrossRef] [PubMed]
- Javed, S.; McClure, J.; Syed, M.A.; Obasuyi, O.; Ali, S.; Tabassum, S.; Ejaz, M.; Zhang, K. Epidemiology and molecular characterization of Staphylococcus aureus causing bovine mastitis in water buffaloes from the Hazara division of Khyber Pakhtunkhwa, Pakistan. PLoS ONE 2022, 175, e0268152. [Google Scholar] [CrossRef] [PubMed]
- Ozbey, G.; Cambay, Z.; Yilmaz, S.; Aytekin, O.; Zigo, F.; Ozçelik, M.; Otlu, B. Identification of bacterial species in milk by MALDI-TOF and assessment of some oxidant-antioxidant parameters in blood and milk from cows with different health status of the udder. Pol. J. Vet. Sci. 2022, 25, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Mbindyo, C.M.; Gitao, G.C.; Mulei, C.M. Prevalence, Etiology, and Risk Factors of Mastitis in Dairy Cattle in Embu and Kajiado Counties, Kenya. Vet. Med. Int. 2020, 2020, 8831172. [Google Scholar] [CrossRef] [PubMed]
- Zigo, F.; Farkašová, Z.; Výrostková, J.; Regecová, I.; Ondrašovičová, S.; Vargová, M.; Sasáková, N.; Pecka-Kielb, E.; Bursová, Š.; Kiss, D.S. Dairy Cows’ Udder Pathogens and Occurrence of Virulence Factors in Staphylococci. Animals 2022, 12, 470. [Google Scholar] [CrossRef] [PubMed]
- Petinaki, E.; Papagiannitsis, C. Resistance of Staphylococci to Macrolides-Lincosamides-Streptogramins B (MLSB): Epidemiology and Mechanisms of Resistance. In Staphylococcus Aureus; Hassan, H., Hani, O., Farhat, A., Eds.; IntechOpen: Berlin, Germany, 2018. [Google Scholar] [CrossRef]
- Zigo, F.; Elečko, J.; Farkašová, Z.; Zigová, M.; Vasiľ, M.; Ondrašovičová, S.; Kudělková, L. Preventive methods in reduction of mastitis pathogens in dairy cows. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 121–126. [Google Scholar] [CrossRef]
- EMA, European Medicines Agency. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2018; 10th ESVAC Report; EMA: Amsterdam, The Netherlands, 2020; pp. 1–101. Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2018-trends-2010-2018-tenth-esvac-report_en.pdf (accessed on 7 January 2024).
- FDA, Food and Drug Administration. 2019 Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals. 2020; p. 49. Available online: https://www.fda.gov/media/154820/download (accessed on 7 January 2024).
- Schnitt, A.; Tenhagen, B.A. Risk Factors for the Occurrence of Methicillin-Resistant Staphylococcus aureus in Dairy Herds: An Update. Foodborne Pathog. Dis. 2020, 17, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Zecconi, A.; Cesaris, L.; Liandris, E.; Dapra, V.; Piccinini, R. Role of several Staphylococcus aureus virulence factors on the inflammatory response in bovine mammary gland. Microb. Pathog. 2006, 40, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Vargová, M.; Zigo, F.; Výrostková, J.; Farkašová, Z.; Rehan, I.F. Biofilm-Producing Ability of Staphylococcus aureus Obtained from Surfaces and Milk of Mastitic Cows. Vet. Sci. 2023, 10, 386. [Google Scholar] [CrossRef]
- Zaatout, N.; Ayachi, A.; Kecha, M.; Kadlec, K. Identification of staphylococci causing mastitis in dairy cattle from Algeria and characterization of Staphylococcus aureus. J. Appl. Microbiol. 2019, 127, 1305–1314. [Google Scholar] [CrossRef]
- Khazaie, F.; Ahmadi, E. Bovine subclinical mastitis-associated methicillin-resistant Staphylococcus aureus, selective genotyping and antimicrobial susceptibility profile of the isolates in Kurdistan province of Iran. Iran J. Microbiol. 2021, 13, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Deurenberg, R.H.; Vink, C.; Kalenic, S.; Friedrich, A.W.; Bruggeman, C.A.; Stobberingh, E.E. The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect. 2007, 13, 222–235. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Li, F.; Liu, D.; Xue, H.; Zhao, X. Novel Type XII Staphylococcal Cassette Chromosome mec Harboring a New Cassette Chromosome Recombinase, CcrC2. Antimicrob. Agents Chemother. 2015, 59, 7597–7601. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Alvarez, L.; Holden, M.T.; Lindsay, H.; Webb, C.R.; Brown, D.F.; Curran, M.D.; Walpole, E.; Brooks, K.; Pickard, D.J.; Teale, C.; et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: A descriptive study. Lancet Infect. Dis. 2011, 11, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Jain, A. Association between drug resistance and production of biofilm in staphylococci. Indian J. Med. Res. 2012, 135, 562–564. [Google Scholar] [PubMed]
- Moufti, M.F.E.; Baddour, M.; Harfoush, R.A.H.; Owais, H.M.A. Characterization of Some Genotypic and Phenotypic Traits of Biofilm Producing Clinical Isolates of Methicillin Resistant Staphylococcus epidermidis. Am. J. Infect. Dis. Microbiol. 2015, 3, 95–103. [Google Scholar]
- Hoiby, N.; Bjarnsholt, T.; Moser, C.; Bassi, G.L.; Coenye, T.; Donelli, G.; Hall-Stoodley, L.; Hola, V.; Imbert, C.; Kirketerp-Moller, K.; et al. ESCMID Study Group for Biofilms (ESGB) and Consulting External Expert Werner Z. ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin. Microbiol. Infect. 2015, 21 (Suppl. S1), S1–S25. [Google Scholar] [CrossRef] [PubMed]
- Hoiby, N.; Ciofu, O.; Johansen, H.K.; Song, Z.J.; Moser, C.; Jensen, P.O.; Molin, S.; Givskov, M.; Tolker-Nielsen, T.; Bjarnsholt, T. The clinical impact of bacterial biofilms. Int. J. Oral Sci. 2011, 3, 55–65. [Google Scholar] [CrossRef]
- Darwish, S.F.; Asfour, H.A.E. Investigation of biofilm forming ability in Staphylococci causing bovine mastitis using phenotypic and genotypic assays. Sci. World J. 2013, 2013, 378492. [Google Scholar] [CrossRef]
- Arciola, C.R.; Campoccia, D.; Gamberini, S.; Baldassarri, L.; Montanaro, L. Prevalence of cna, fnbA and fnbB adhesin genes among Staphylococcus aureus isolates from orthopedic infections associated to different types of implant. FEMS Microbiol. Lett. 2005, 246, 81–86. [Google Scholar] [CrossRef]
- Cucarella, C.; Solano, C.; Valle, J.; Amorena, B.; Lasa, I.; Penades, J.R. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J. Bacteriol. 2001, 183, 2888–2896. [Google Scholar] [CrossRef]
- Tsompanidou, E.; Denham, E.L.; Sibbald, M.J.; Yang, X.M.; Seinen, J.; Friedrich, A.W.; Buist, G.; van Dijl, J.M. The sortase A substrates FnbpA, FnbpB, ClfA and ClfB antagonize colony spreading of Staphylococcus aureus. PLoS ONE 2012, 7, e44646. [Google Scholar] [CrossRef] [PubMed]
- Khoramrooz, S.S.; Mansouri, F.; Marashifard, M.; Malek Hosseini, S.A.; Akbarian Chenarestane-Olia, F.; Ganavehei, B.; Gharibpour, F.; Shahbazi, A.; Mirzaii, M.; Darban-Sarokhalil, D. Detection of biofilm related genes, classical enterotoxin genes and agr typing among Staphylococcus aureus isolated from bovine with subclinical mastitis in southwest of Iran. Microb. Pathog. 2016, 97, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, P.; Nair, M.K.; Annamalai, T.; Venkitanarayanan, K.S. Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet. Microbiol. 2003, 92, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Kryvtsova, M.V.; Király, J.; Koščová, J.; Kostenko, Y.Y.; Bubnov, R.V.; Spivak, M.Y. Determination of biofilm formation and associated gene detection in Staphylococcus genus isolated from the oral cavity under inflammatory periodontal diseases. Stud. Biol. 2020, 14, 49–64. [Google Scholar] [CrossRef]
- Hussain, M.; von Eiff, C.; Sinha, B.; Joost, I.; Herrmann, M.; Peters, G.; Becker, K. eap Gene as novel target for specific identification of Staphylococcus aureus. J. Clin. Microbiol. 2008, 46, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, Z.; Seleem, M.N.; Hussain, H.I.; Huang, L.; Hao, H.; Yuan, Z. Comparative virulence studies and transcriptome analysis of Staphylococcus aureus strains isolated from animals. Sci. Rep. 2016, 6, 35442. [Google Scholar] [CrossRef] [PubMed]
- Nourbakhsh, F.; Namvar, A.E. Detection of genes involved in biofilm formation in Staphylococcus aureus isolates. GMS Hyg. Infect. Control 2016, 11, Doc07. [Google Scholar] [CrossRef] [PubMed]
- Pereyra, E.A.L.; Picech, F.; Renna, M.S.; Baravalle, C.; Andreotti, C.S.; Russi, R.; Calvinho, L.F.; Diez, C.; Dallard, B.E. Detection of Staphylococcus aureus adhesion and biofilm-producing genes and their expression during internalization in bovine mammary epithelial cells. Vet. Microbiol. 2016; 183, 69–77. [Google Scholar] [CrossRef]
- Englerová, K.; Bedlovičová, Z.; Nemcová, R.; Király, J.; Maďar, M.; Hajdučková, V.; Styková, E.; Mucha, R.; Reiffová, K. Bacillus amyloliquefaciens-Derived Lipopeptide Biosurfactants Inhibit Biofilm Formation and Expression of Biofilm-Related Genes of Staphylococcus aureus. Antibiotics 2021, 10, 1252. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, Second Informational Supplement; CLSI Document VET01-S2; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2013. [Google Scholar]
- EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance. Version 2.0. 2017, pp. 1–43. Available online: http://www.eucast.org (accessed on 7 January 2024).
- Gattringer, R.; Niks, M.; Ostertag, R.; Schwarz, K.; Medvedovic, H.; Graninger, W.; Georgopoulos, A. Evaluation of MIDITECH automated colorimetric MIC reading for antimicrobial susceptibility testing. J. Antimicrob. Chemother. 2002, 49, 651–659. [Google Scholar] [CrossRef]
- O’Toole, G.A.; Pratt, L.A.; Watnick, P.I.; Newman, D.K.; Weaver, V.B.; Kolter, R. Genetic approaches to study of biofilms. Methods Enzym. 1999, 310, 91–109. [Google Scholar] [CrossRef]
- Torres, G.; Vargas, K.; Sanchez-Jimenez, M.; Reyes-Velez, J.; Olivera-Angel, M. Genotypic and phenotypic characterization of biofilm production by Staphylococcus aureus strains isolated from bovine intramammary infections in Colombian dairy farms. Heliyon 2019, 5, e02535. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Dominguez, M.S.; Carvajal, H.D.; Calle-Echeverri, D.A.; Chinchilla-Cardenas, D. Molecular Detection and Characterization of the mecA and nuc Genes From Staphylococcus Species (S. aureus, S. pseudintermedius, and S. schleiferi) Isolated From Dogs Suffering Superficial Pyoderma and Their Antimicrobial Resistance Profiles. Front. Vet. Sci. 2020, 7, 376. [Google Scholar] [CrossRef] [PubMed]
- Qolbaini, E.N.; Khoeri, M.M.; Salsabila, K.; Paramaiswari, W.T.; Tafroji, W.; Artika, I.M.; Safari, D. Identification and antimicrobial susceptibility of methicillin-resistant Staphylococcus aureus-associated subclinical mastitis isolated from dairy cows in Bogor, Indonesia. Vet. World 2021, 14, 1180–1184. [Google Scholar] [CrossRef] [PubMed]
- van Hoek, A.H.; Mevius, D.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H.J. Acquired antibiotic resistance genes: An overview. Front. Microbiol. 2011, 2, 203. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Nishiyama, A.; Takano, T.; Yabe, S.; Higuchi, W.; Razvina, O.; Shi, D. Community-acquired methicillin-resistant Staphylococcus aureus: Community transmission, pathogenesis, and drug resistance. J. Infect. Chemother. 2010, 16, 225–254. [Google Scholar] [CrossRef] [PubMed]
- Bagcigil, F.A.; Moodley, A.; Baptiste, K.E.; Jensen, V.F.; Guardabassi, L. Occurrence, species distribution, antimicrobial resistance and clonality of methicillin- and erythromycin-resistant staphylococci in the nasal cavity of domestic animals. Vet. Microbiol. 2007, 121, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Szczuka, E.; Porada, K.; Wesolowska, M.; Leska, B. Occurrence and Characteristics of Staphylococcus aureus Isolated from Dairy Products. Molecules 2022, 27, 4649. [Google Scholar] [CrossRef]
- Cvetnic, L.; Samardzija, M.; Duvnjak, S.; Habrun, B.; Cvetnic, M.; Jaki Tkalec, V.; Duricic, D.; Benic, M. Multi Locus Sequence Typing and spa Typing of Staphylococcus aureus Isolated from the Milk of Cows with Subclinical Mastitis in Croatia. Microorganisms 2021, 9, 725. [Google Scholar] [CrossRef]
- Mehli, L.; Hoel, S.; Thomassen, G.M.; Jakobsen, A.; Karlsen, H. The prevalence, genetic diversity and antibiotic resistance of Staphylococcus aureus in milk, whey, and cheese from artisan farm dairies. Int. Dairy J. 2016, 65, 20–27. [Google Scholar] [CrossRef]
- Kou, X.; Cai, H.; Huang, S.; Ni, Y.; Luo, B.; Qian, H.; Ji, H.; Wang, X. Prevalence and Characteristics of Staphylococcus aureus Isolated from Retail Raw Milk in Northern Xinjiang, China. Front. Microbiol. 2021, 12, 705947. [Google Scholar] [CrossRef] [PubMed]
- Vyrostkova, J.; Regecova, I.; Zigo, F.; Semjon, B.; Gregova, G. Antimicrobial Resistance of Staphylococcus sp. Isolated from Cheeses. Animals 2021, 12, 36. [Google Scholar] [CrossRef] [PubMed]
- Rychshanova, R.; Mendybayeva, A.; Micinski, B.; Mamiyev, N.; Shevchenko, P.; Bermukhametov, Z.; Orzechowski, B.; Micinski, J. Antibiotic resistance and biofilm formation in Staphylococcus aureus isolated from dairy cows at the stage of subclinical mastitis in northern Kazakhstan. Arch. Anim. Breed. 2022, 65, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lin, X.; Jiang, T.; Peng, Z.; Xu, J.; Yi, L.; Li, F.; Fanning, S.; Baloch, Z. Prevalence and Characterization of Staphylococcus aureus Cultured from Raw Milk Taken from Dairy Cows with Mastitis in Beijing, China. Front. Microbiol. 2018, 9, 1123. [Google Scholar] [CrossRef] [PubMed]
- Gajewska, J.; Chajecka-Wierzchowska, W. Biofilm Formation Ability and Presence of Adhesion Genes among Coagulase-Negative and Coagulase-Positive Staphylococci Isolates from Raw Cow’s Milk. Pathogens 2020, 9, 654. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Kohler, C.; Becker, K. Role of SrtA in Pathogenicity of Staphylococcus lugdunensis. Microorganisms 2020, 8, 1975. [Google Scholar] [CrossRef]
- Mohammadi, A.; Goudarzi, M.; Dadashi, M.; Soltani, M.; Goudarzi, H.; Hajikhani, B. Molecular Detection of Genes Involved in Biofilm Formation in Staphylococcus aureus Strains Isolates: Evidence from Shahid Motahari Hospital in Tehran. Jundishapur J. Microbiol. 2020, 13, e102058. [Google Scholar] [CrossRef]
Gene | Primer | Sequence (5′→3′) | Product (bp) | Reference |
---|---|---|---|---|
16S rRNA | 16S rRNA_Fw | CTACAATGGACAATACAAAGGGC | 141 | [28] |
16S rRNA_Rev | TCACCGTAGCATGCTGATCT | |||
eap | EAP-CON1 | TACTAACGAAGCATCTGCC | 230 | [29] |
EAP-CON2 | TTAAATCGATATCACTAATACCTC | |||
nuc | nuc_Fw | ACCTGCGACATTAATTAAAGCG | 103 | This study |
nuc_Rev | TGTTTCAGGTGTATCAACCAATAATAG | |||
mecA | mecA_Fw | TGGAAGTTAGATTGGGATCATAGC | 154 | This study |
mecA_Rev | CGATGCCTATCTCATATGCTGTT | |||
mecC | mecC_Fw | GACGATGGATCTGGTACAGCA | 94 | This study |
mecC_Rev | CATTCATGAATGGATAAACATCGTA | |||
bap | bap_Fw | TTGACGAGGTTGGTAATGGC | 87 | This study |
bap_Rev | CGCCTACAGTTTCTGGTAATGC | |||
icaA | icaA_Fw | CTTGCTGGCGCAGTCAATAC | 75 | [30] |
icaA_Rev | GTAGCCAACGTCGACAACTG | |||
icaB | icaB_Fw | ATACCGGCGACTGGGTTTAT | 141 | [31] |
icaB_Rev | ATGCAAATCGTGGGTATGTGT | |||
icaC | icaC_Fw | CTTGGGTATTTGCACGCATT | 209 | [32] |
icaC_Rev | GCAATATCATGCCGACACCT | |||
icaD | icaD_Fw | ACCCAACGCTAAAATCATCG | 211 | [31] |
icaD_Rev | GCGAAAATGCCCATAGTTTC | |||
srtA | srtA_Fw | GTGGTACTTATCCTAGTGGCAGC | 183 | [33] |
srtA_Rev | GCCTGCCACTTTCGATTTATC | |||
agr | agr_Fw | TCGTAAGCATGACCCAGTTG | 96 | [33] |
agr_Rev | AAATCCATCGCTGCAACTTT | |||
fnbA | fnbA_Fw | GAAGTGGCACAGCCAAGAAC | 192 | [33] |
fnbA_Rev | ACGTTGACCAGCATGTGG | |||
fnbB | fnbB_Fw | CAATGATCCTATCATTGAGAAGAGTG | 156 | [33] |
fnbB_Rev | CCTTCTACACCTTCAACAGCTGTA | |||
clfA | clfA_Fw | GAGAGCATTTAGTTTAGCGGCA | 180 | This study |
clfA_Rev | TCACCTTTAACAGCAGAATTAGGC | |||
clfB | clfB_Fw | GTCTACACAAACGAGCAATACCAC | 120 | This study |
clfB_Rev | TGAGGAACAGTTTGATCTTGCA |
Process | Temperature (°C) | Time (s/min) | Number of Cycles |
---|---|---|---|
Initial denaturation | 95 | 3 min | 1 |
Denaturation | 95 | 30 s | 30 |
Annealing | 55 | 30 s | |
Extension | 72 | 20 s | |
Denaturation | 95 | 30 s | 10 |
Annealing | 61 | 30 s | |
Extension | 72 | 20 s | |
Final extension | 72 | 10 min | 1 |
Process | Temperature (°C) | Time (s/min) | Number of Cycles |
---|---|---|---|
Initial denaturation | 95 | 3 min | 1 |
Denaturation | 95 | 30 s | 35 |
Annealing | 61 | 30 s | |
Extension | 72 | 20 s | |
Final extension | 72 | 10 min | 1 |
Sample | 7 | 8 | 9 | 10 | 11 | 12 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ATB | MICxG (mg/L) | Antimicrobial Susceptibility Profile | MICxG (mg/L) | Antimicrobial Susceptibility Profile | MICxG (mg/L) | Antimicrobial Susceptibility Profile | MICxG (mg/L) | Antimicrobial Susceptibility Profile | MICxG (mg/L) | Antimicrobial Susceptibility Profile | MICxG (mg/L) | Antimicrobial Susceptibility Profile |
AMP | 0.25 | S | 0.25 | S | 0.25 | S | 2 | R | 0.25 | S | >32 | R |
SAM | 0.25 | S | 0.25 | S | 0.25 | S | 0.5 | S | 0.25 | S | >32 | R |
OXA | 0.25 | S | 0.25 | S | 0.25 | S | 0.5 | S | 0.25 | S | 0.25 | S |
FOX | 2 | S | 2 | S | 2 | S | 2 | S | 2 | S | 2 | S |
TZP | 0.5 | S | 0.5 | S | 0.5 | S | 2 | S | 0.5 | S | 0.5 | S |
ERY | 0.25 | S | 0.25 | S | 0.25 | S | >8 | R | 0.25 | S | 0.12 | S |
CLI | 0.12 | S | 0.12 | S | 0.12 | S | 4 | R | 0.12 | S | 0.06 | S |
LNZ | 4 | S | 4 | S | 4 | S | 2 | S | 4 | S | 2 | S |
RIF | 0.03 | S | 0.03 | S | 0.03 | S | 0.03 | S | 0.03 | S | 0.03 | S |
GEN | 0.5 | S | 0.5 | S | 1 | S | 1 | S | 0.5 | S | 0.5 | S |
TEC | 1 | S | 2 | S | 2 | S | 2 | S | 1 | S | 1 | S |
VAN | 1 | S | 2 | S | 1 | S | 1 | S | 1 | S | 1 | S |
TMP | 2 | S | 4 | S | 4 | S | 2 | S | 1 | S | 1 | S |
CHL | 8 | S | 8 | S | 8 | S | 16 | R | 8 | S | 8 | S |
TGC | 0.12 | S | 0.06 | S | 0.06 | S | 0.12 | S | 0.06 | S | 0.06 | S |
MFX | 0.12 | S | 0.06 | S | 0.06 | S | 0.06 | S | 0.03 | S | 0.03 | S |
CIP | 0.5 | I | 0.25 | I | 0.5 | I | 0.5 | I | 0.25 | I | 0.25 | I |
TET | 1 | S | 0.5 | S | 0.25 | S | 0.5 | S | 0.25 | S | 0.25 | S |
COT | 0.25 | S | 0.25 | S | 0.25 | S | 0.25 | S | 0.25 | S | 0.25 | S |
NIT | 16 | S | 32 | S | 32 | S | 16 | S | 16 | S | 16 | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Király, J.; Hajdučková, V.; Gregová, G.; Szabóová, T.; Pilipčinec, E. Resistant S. aureus Isolates Capable of Producing Biofilm from the Milk of Dairy Cows with Subclinical Mastitis in Slovakia. Agriculture 2024, 14, 571. https://doi.org/10.3390/agriculture14040571
Király J, Hajdučková V, Gregová G, Szabóová T, Pilipčinec E. Resistant S. aureus Isolates Capable of Producing Biofilm from the Milk of Dairy Cows with Subclinical Mastitis in Slovakia. Agriculture. 2024; 14(4):571. https://doi.org/10.3390/agriculture14040571
Chicago/Turabian StyleKirály, Ján, Vanda Hajdučková, Gabriela Gregová, Tatiana Szabóová, and Emil Pilipčinec. 2024. "Resistant S. aureus Isolates Capable of Producing Biofilm from the Milk of Dairy Cows with Subclinical Mastitis in Slovakia" Agriculture 14, no. 4: 571. https://doi.org/10.3390/agriculture14040571
APA StyleKirály, J., Hajdučková, V., Gregová, G., Szabóová, T., & Pilipčinec, E. (2024). Resistant S. aureus Isolates Capable of Producing Biofilm from the Milk of Dairy Cows with Subclinical Mastitis in Slovakia. Agriculture, 14(4), 571. https://doi.org/10.3390/agriculture14040571