Precision Livestock Farming Technology: Applications and Challenges of Animal Welfare and Climate Change
Abstract
:1. Introduction
2. Challenges and Demands of the Livestock Sector
2.1. Environmental Concerns
2.2. Climate Change
2.3. Heat Stress
2.4. Transportation Stress
2.5. Food-Chain Consequences and Sustainability
3. Applications and Benefits of PLF in Livestock Production
4. Challenges of PLF in Livestock Production
4.1. Challenges for Farmers
4.2. Animal Welfare Considerations
4.3. Environmental Impact
5. The Legislative Framework for Animal Welfare and Climate Change
6. Assessing the Modernity of EU Legislation on Animal Welfare and Climate Change
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dopelt, K.; Radon, P.; Davidovitch, N. Environmental Effects of the Livestock Industry: The Relationship between Knowledge, Attitudes, and Behavior among Students in Israel. Int. J. Environ. Res. Public Health 2019, 16, 1359. [Google Scholar] [CrossRef]
- Oppenlander, R. Food Choice and Sustainability: Why Buying Local, Eating Less Meat, and Taking Baby Steps Won’t Work; Hillcrest Publishing Group: Minneapolis, MN, USA, 2013. [Google Scholar]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; pp. 1–392. [Google Scholar]
- Ilea, R.C. Intensive livestock farming: Global trends, increased environmental concerns, and ethical solutions. J. Agric. Environ. Ethics 2009, 22, 153–167. [Google Scholar] [CrossRef]
- Godde, C.M.; Mason-D’Croz, D.; Mayberry, D.E.; Thornton, P.K.; Herrero, M. Impacts of climate change on the livestock food supply chain; a review of the evidence. Glob. Food Sec. 2021, 28, 100488. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Havlík, P.; Valin, H.; Notenbaert, A.M.; Rufino, M.C.; Thornton, P.K.; Blümmel, M.; Weiss, F.; Grace, D.; Obersteiner, M. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl. Acad. Sci. USA 2013, 110, 20888. [Google Scholar] [CrossRef] [PubMed]
- Berckmans, D. General introduction to precision livestock farming. Anim. Front. 2017, 7, 6–11. [Google Scholar] [CrossRef]
- European Commission. Regulation (EU) 2016/429 of the European Parliament and of the Council of 9 March 2016 on transmissible animal diseases and amending and repealing certain acts in the area of animal health (‘Animal Health Law’). Off. J. Eur. Union 2016, 59, 1–208. [Google Scholar]
- Gebreyes, W.A.; Dupouy-Camet, J.; Newport, M.J.; Oliveira, C.J.; Schlesinger, L.S.; Saif, Y.M.; Kariuki, S.; Saif, L.J.; Saville, W.; Wittum, T.; et al. The global one health paradigm: Challenges and opportunities for tackling infectious diseases at the human, animal, and environment interface in low resource settings. PLoS Negl. Trop. Dis. 2014, 8, e3257. [Google Scholar] [CrossRef] [PubMed]
- Grossi, G.; Goglio, P.; Vitali, A.; Williams, A. Livestock and climate change: Impact of livestock on climate and mitigation strategies. Anim. Front. 2018, 9, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Bozzo, G.; Corrente, M.; Testa, G.; Casalino, G.; Dimuccio, M.M.; Circella, E.; Brescia, N.; Barrasso, R.; Celentano, F.E. Animal Welfare, Health and the Fight against Climate Change: One Solution for Global Objectives. Agriculture 2021, 11, 1248. [Google Scholar] [CrossRef]
- Shields, S.; Orme-Evans, G. The Impacts of Climate Change Mitigation Strategies on Animal Welfare. Animals 2015, 5, 361–394. [Google Scholar] [CrossRef]
- Mostert, P.F.; Bokkers, E.A.; de Boer, I.M.; van Middelaar, C.E. Estimating the impact of clinical mastitis in dairy cows on greenhouse gas emissions using a dynamic sthocastic simulation model: A case study. Animal 2019, 13, 2913–2961. [Google Scholar] [CrossRef] [PubMed]
- Mostert, P.F.; van Middelaar, C.E.; Bokkers, E.M.; de Boer, I.M. The impact of subclinical ketosis in dairy cows on greenhouse gas emissions of milk production. J. Clean. Prod. 2018, 171, 773–782. [Google Scholar] [CrossRef]
- McMichael, A.J.; Powles, J.W.; Butler, C.D.; Uauy, R. Food, livestock production, energy, climate change, and health. Lancet 2007, 370, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.; World Resources Institute. Everything You Need to Know about Agricultural Emissions. 2014. Available online: http://www.wri.org/blog/2014/05/everything-you-need-know-about-agricultural-emissions (accessed on 24 November 2018).
- Goodland, R.; Anhang, J. Livestock and Climate Change: What If the Key Actors in Climate Change Are… Cows, Pigs, and Chickens? World Watch; World Bank Group: Washington, DC, USA, 2009; pp. 10–19. [Google Scholar]
- Leytem, A.B.; Dungan, R.S.; Bjorneberg, D.L.; Koehn, A.C. Emissions of ammonia, methane, carbon dioxide, and nitrous oxide from dairy cattle housing and manure management systems. J. Environ. Qual. 2011, 40, 1383–1394. [Google Scholar] [CrossRef] [PubMed]
- Leitzmann, C. Nutrition ecology: The contribution of vegetarian diets. Am. J. Clin. Nutr. 2003, 78, 657S–659S. [Google Scholar] [CrossRef]
- Muluneh, M.G. Impact of climate change on biodiversity and food security: A global perspective—A review article. Agric. Food Secur. 2021, 10, 36. [Google Scholar] [CrossRef]
- Ceballos, G.; Ehrlich, P.R.; Barnosky, A.D.; García, A.; Pringle, R.M.; Palmer, T.M. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 2015, 1, e1400253. [Google Scholar] [CrossRef]
- Worm, B.; Barbier, E.B.; Beaumont, N.; Duffy, J.E.; Folke, C.; Halpern, B.S.; Sala, E. Impacts of biodiversity loss on ocean ecosystem services. Science 2006, 314, 787–790. [Google Scholar] [CrossRef] [PubMed]
- Capper, J.L.; Cady, R.A.; Bauman, D.E. The environmental impact of dairy production: 1944 compared with 2007. J. Anim. Sci. 2009, 87, 2160–2167. [Google Scholar] [CrossRef]
- Rauw, W.M.; Kanis, E.; Noordhuizen-Stassen, E.N.; Grommers, F.J. Undesirable side effects of selection for high production efficiency in farm animals: A review. Livest. Prod. Sci. 1998, 56, 15–33. [Google Scholar] [CrossRef]
- Wathes, C.M.; Kristensen, H.H.; Aerts, J.M.; Berckmans, D. Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? Comput. Electron. Agric. 2008, 64, 2–10. [Google Scholar] [CrossRef]
- Caulfield, M.P.; Cambridge, H.; Foster, S.F.; McGreevy, P.D. Heat stress: A major contributor to poor animal welfare associated with long-haul live export voyages. Vet. J. 2014, 199, 223–228. [Google Scholar] [CrossRef]
- Collins, T.; Hampton, J.O.; Barnes, A.L. A systematic review of heat load in australian livestock transported by sea. Animals 2018, 8, 164. [Google Scholar] [CrossRef]
- Forastiere, F. Climate change and health: A challenge for epidemiology and public health. Int. J. Public Health 2010, 55, 83–84. [Google Scholar] [CrossRef]
- Lacetera, N. Impact of climate change on animal health and welfare. Anim. Front. 2018, 9, 26–31. [Google Scholar] [CrossRef]
- Bernabucci, U.; Colavecchia, L.; Danieli, P.P.; Basirico, L.; Lacetera, N.; Nardone, A.; Ronchi, B. Aflatoxin B1 and fumonisin B1 affect the oxidative status of bovine peripheral blood mononuclear cells. Toxicol. Vitro 2011, 25, 684–691. [Google Scholar] [CrossRef]
- Polsky, L.; von Keyserlingk, M.A.G. Invited review: Effects of heat stress on dairy cattle welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef]
- Papatsiros, V.G.; Katsogiannou, E.G.; Papakonstantinou, G.; Michel, A.; Petrotos, K.; Athanasiou, L.V. Effects of Phenolic Phytogenic Feed Additives on Certain Oxidative Damage Biomarkers and the Performance of Primiparous Sows Exposed to Heat Stress under Field Conditions. Antioxidants 2022, 11, 593. [Google Scholar] [CrossRef]
- Dahl, G.E.; Tao, S.; Monteiro, A.P.A. Effects of late-gestation heat stress on immunity and performance of calves. J. Dairy Sci. 2016, 99, 3193–3198. [Google Scholar] [CrossRef]
- Monteiro, A.P.A.; Tao, S.; Thompson, I.M.T.; Dahl, G.E. In utero heat stress decreases calf survival and performance through the first lactation. J. Dairy Sci. 2016, 99, 8443–8450. [Google Scholar] [CrossRef]
- Boddicker, R.L.; Seibert, J.T.; Johnson, J.S.; Pearce, S.C.; Selsby, J.T.; Gabler, N.K.; Lucy, M.C.; Safranski, T.J.; Rhoads, R.P.; Baumgard, L.H.; et al. Gestational heat stress alters postnatal offspring body composition indices and metabolic parameters in pigs. PLoS ONE 2014, 9, e110859. [Google Scholar] [CrossRef]
- Johnson, J.S.; Sanz Fernandez, M.V.; Patience, J.F.; Ross, J.W.; Gabler, N.K.; Lucy, M.C.; Safranski, T.J.; Rhoads, R.P.; Baumgard, L.H. Effects of in utero heat stress on postnatal body composition in pigs: II. Finishing phase. J. Anim. Sci. 2015, 93, 82–92. [Google Scholar] [CrossRef]
- Bernabucci, U.; Lacetera, N.; Baumgard, L.H.; Rhoads, R.P.; Ronchi, B.; Nardone, A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 2010, 4, 1167–1183. [Google Scholar] [CrossRef]
- Rashamol, V.P.; Sejian, V.; Pragna, P.; Lees, A.M.; Bagath, M.; Krishnan, G.; Gaughan, J.B. Prediction models, assessment methodologies and biotechnological tools to quantify heat stress response in ruminant livestock. Int. J. Biometeorol. 2019, 63, 1265–1281. [Google Scholar] [CrossRef]
- Saeed, M.; Abbas, G.; Alagawany, M.; Kamboh, A.A.; Abd El-Hack, M.E.; Khafaga, A.F.; Chao, S. Heat stress management in poultry farms: A comprehensive overview. J. Therm. Biol. 2019, 84, 414–425. [Google Scholar] [CrossRef]
- Cook, N.B.; Nordlund, K.V. The influence of the environment on dairy cow behavior, claw health and herd lameness dynamics. Vet. J. 2009, 179, 360–369. [Google Scholar] [CrossRef]
- Basiricò, L.; Bernabucci, U.; Morera, P.; Lacetera, N.; Nardone, A. Gene expression and protein secretion of apolipoprotein B100 (ApoB100) in transition dairy cows under hot or thermoneutral environments. Ital. J. Anim. Sci. 2009, 8, 592–594. [Google Scholar] [CrossRef]
- Nawab, A.; Ibtisham, F.; Li, G.; Kieser, B.; Wu, J.; Liu, W.; Zhao, Y.; Nawab, Y.; Li, K.; Xiao, M.; et al. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J. Therm. Biol. 2018, 78, 131–139. [Google Scholar] [CrossRef]
- Mashaly, M.M.; Hendricks, G.L.; Kalama, M.A.; Gehad, A.E.; Abbas, A.O.; Patterson, P.H. Effect of heat stress on production parameters and immune responses of commercial laying hens. Poult. Sci. 2004, 83, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Bernabucci, U.; Lacetera, N.; Ronchi, B.; Nardone, A. Effects of the hot season on milk protein fractions in Holstein cows. Anim. Res. 2002, 51, 25–33. [Google Scholar] [CrossRef]
- Sevi, A.; Caroprese, M. Impact of heat stress on milk production, immunity and udder health in sheep: A critical review. Small Rumin. Res. 2012, 107, 1–7. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef] [PubMed]
- Bagath, M.; Krishnan, G.; Devaraj, C.; Rashamol, V.P.; Pragna, P.; Lees, A.M.; Sejian, V. The impact of heat stress on the immune system in dairy cattle: A review. Res. Vet. Sci. 2019, 126, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Hirakawa, R.; Nurjanah, S.; Furukawa, K.; Murai, A.; Kikusato, M.; Nochi, T.; Toyomizu, M. Heat stress causes immune abnormalities via massive damage to effect proliferation and differentiation of lymphocytes in broiler chickens. Front. Vet. Sci. 2020, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Denadai, J.C.; Mendes, A.A.; Garcia, R.G.; Almeida, I.L.; Moreira, J.; Takita, T.S.; Pavan, A.C.; Garcia, E.A. Effect of feed and water withdrawal on carcass yield and breast meat quality of broilers. Braz. J. Poult. Sci. 2002, 4, 101–109. [Google Scholar] [CrossRef]
- Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How to glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000, 21, 55–89. [Google Scholar] [PubMed]
- Gomes, A.S.; Quinteiro-Filho, W.M.; Ribeiro, A.; Ferraz-de-Paula, V.; Pinheiro, M.L.; Baskeville, E.; Akamine, A.T.; Astolfi-Ferreira, A.P.; Palermo-Neto, J. Overcrowding stress decreases 14 macrophage activity and increases Salmonella enteritidis invasion in broiler chickens. Avian Pathol. 2014, 43, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Bozzo, G.; Di Pinto, A.; Bonerba, E.; Ceci, E.; Mottola, A.; Roma, R.; Capozza, P.; Samoilis, G.; Tantillo, G.; Celano, G.V. Kosher slaughter paradigms: Evaluation of slaughterhouse inspection procedures. Meat Sci. 2017, 128, 30–33. [Google Scholar] [CrossRef]
- Werkheiser, I. Technology and responsibility: A discussion of underexamined risks and concerns in Precision Livestock Farming. Anim. Front. 2020, 10, 51–57. [Google Scholar] [CrossRef]
- Berckmans, D. Basic principles of PLF: Gold standard, labelling and field data. In Proceedings of the 6th European Conference on Precision Livestock Farming, ECPLF2013, Leuven, Belgium, 10–12 September 2013; pp. 21–29. [Google Scholar]
- EU-PLF Project. Bright Farm by Precision Livestock Farming, Grant Agreement no: 311825; Final report; Katholieke Universiteit Leuven: Leuven, Belgium, 2016. [Google Scholar]
- Schillings, J.; Bennett, R.; Rose, D.C. Animal welfare and other ethical implications of Precision Livestock Farming technology. CABI Agric. Biosci. 2021, 2, 17. [Google Scholar] [CrossRef]
- Kuch, D.; Kearnes, M.; Gulson, K. The promise of precision: Datafication in medicine, agriculture and education. Policy Stud. 2020, 41, 527–546. [Google Scholar] [CrossRef]
- Miles, C. The combine will tell the truth: On precision agriculture and algorithmic rationality. Big Data Soc. 2019, 6, 1–12. [Google Scholar] [CrossRef]
- Yang, W.; Edwards, J.P.; Eastwood, C.R.; Rue, B.T.D.; Renwick, A. Analysis of adoption trends of in-parlor technologies over a 10-year period for labor saving and data capture on pasture-based dairy farms. J. Dairy Sci. 2021, 104, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Barrett, H.; Rose, D.C. Perceptions of the fourth agricultural revolution: What’s In, What’s Out, and What Consequences are Anticipated? Sociol. Rural 2020, 62, 162–189. [Google Scholar] [CrossRef]
- Werkheiser, I. Precision livestock farming and farmers’ duties to livestock. J. Agric. Environ. Ethics 2018, 31, 181–195. [Google Scholar] [CrossRef]
- Butler, D.; Holloway, L. Technology and restructuring the social field of dairy farming: Hybrid capitals, ‘stockmanship’ and automatic milking systems. Sociol. Rural. 2016, 56, 513–530. [Google Scholar] [CrossRef]
- Fielke, S.; Taylor, B.M.; Jakku, E. Digitalisation of agricultural knowledge and advice networks: A state-of-the-art review. Agric. Syst. 2020, 180, 102763. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and T agriculture 4.0: New contributions and a future research agenda. NJAS Wagening. J. Life Sci. 2019, 90–91, 100315. [Google Scholar] [CrossRef]
- Wiseman, L.; Sanderson, J.; Zhang, A.; Jakku, E. Farmers and their data: An examination of farmers’ reluctance to share their data through the lens of the laws impacting smart farming. NJAS Wageningen J. Life Sci. 2019, 90–91, 100301. [Google Scholar] [CrossRef]
- Gupta, M.; Abdelsalam, M.; Khorsandroo, S.; Mittal, S. Security and privacy in smart farming: Challenges and opportunities. IEEE Access. 2020, 8, 34564–34584. [Google Scholar] [CrossRef]
- Hazrati, M.; Dara, R.; Kaur, J. On-farm data security: Practical recommendations for securing farm data. Front. Sustain. Food Syst. 2022, 6, 884187. [Google Scholar] [CrossRef]
- Jouanjean, M.A.; Casalini, F.; Wiseman, L.; Gray, E. Issues Around Data Governance in the Digital Transformation of Agriculture: The Farmers’ Perspective; OECD Publishing: Paris, France, 2020. [Google Scholar]
- Knight, B.; Malcolm, B. A whole-farm investment analysis of some precision agriculture technologies. AFBM J. 2009, 6, 41–54. [Google Scholar]
- Kamphuis, C.; Steeneveld, W.; Hogeveen, H. Economic modelling to evaluate the benefits of precision livestock farming technologies. In Precision Livestock Farming Applications: Making Sense of Sensors to Support Farm Management; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 163–171. [Google Scholar]
- Banhazi, T.; Vranken, E.; Berckmans, D.; Rooijakkers, L. 3.4. Word of caution for technology providers: Practical problems associated with large scale deployment of PLF technologies on commercial farms. In Precision Livestock Farming Applications: Making Sense of Sensors to Support Farm Management; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 2–10. [Google Scholar]
- Rose, D.C.; Morris, C.; Lobley, M.; Winter, M.; Sutherland, W.J.; Dicks, L.V. Exploring the spatialities of technological and user re-scripting: The case of decision support tools in UK agriculture. Geoforum 2018, 89, 11–18. [Google Scholar] [CrossRef]
- Blokhuis, H.J. International cooperation in animal welfare: The Welfare Quality® project. Acta Vet. Scand. 2008, 50, S10. [Google Scholar] [CrossRef]
- Barzanti, F. La tutela del benessere degli animali nel Trattato di Lisbona. Riv. Dirit. Agrar. 2013, 1, 49. [Google Scholar]
- Yadav, S.; Kaushik, A.; Sharma, M.; Sharma, S. Disruptive Technologies in Smart Farming: An Expanded View with Sentiment Analysis. Agric. Eng. 2022, 4, 424–460. [Google Scholar] [CrossRef]
- Van der Burg, S.; Bogaardt, M.-J.; Sjaak, W. Ethics of smart farming: Current questions and directions for responsible innovation towards the future. NJAS—Wagening. J. Life Sci. 2019, 90–91, 100289. [Google Scholar] [CrossRef]
- Hackfort, S. Patterns of Inequalities in Digital Agriculture: A Systematic Literature Review. Sustainability 2021, 13, 12345. [Google Scholar] [CrossRef]
- Neethirajan, S. Is Seeing Still Believing? Leveraging Deepfake Technology for Livestock Farming. Front. Vet. Sci. 2021, 8, 740253. [Google Scholar]
- Shepherd, M.; Turner, J.A.; Small, B.; Wheeler, D. Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’ revolution. J. Sci. Food Agric. 2020, 100, 5083–5092. [Google Scholar] [CrossRef]
- Papst, F.; Saukh, O.; Römer, K.; Grandl, F.; Jakovljevic, I.; Steininger, F.; Mayerhofer, M.; Duda, J.; Egger-Danner, C. Embracing Opportunities of Livestock Big Data Integration with Privacy Constraints. In Proceedings of the 9th International Conference on the Internet of Things, Bilbao, Spain, 22–25 October 2019; Volume 27, pp. 1–4. [Google Scholar]
- European Commission. Sustainable Development: EU Sets Out Its Priorities (22 November 2016). Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_16_3883 (accessed on 5 March 2024).
- European Parliament; Council of the European Union. Regulation (EU) 2023/1115 of the European Parliament and of the Council of 31 May 2023 on the making available on the Union market and the export from the Union of certain commodities and products associated with deforestation and forest degradation and repealing Regulation (EU) No 995/2010. Off. J. Eur. Union 2023, 150, 206–247. [Google Scholar]
- European Commission. Regulation (EC) No 999/2001 of the European Parliament and of the Council of 22 May 2001 laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies. Off. J. Eur. Union 2001, 147, 1–40. [Google Scholar]
- European Commission. Directive 2003/99/EC of the European Parliament and of the Council of 17 November 2003 on the monitoring of zoonoses and zoonotic agents, amending Council Decision 90/424/EEC and repealing Council Directive 92/117/EEC. Off. J. Eur. Union 2003, 325, 31–40. [Google Scholar]
- European Commission. Council Regulation (EC) No 1/2005 of 22 December 2004 on the protection of animals during transport and related operations and amending Directives 64/432/EEC and 93/119/EC and Regulation (EC) No 1255/97. Off. J. Eur. Union 2005, 3, 1–44. [Google Scholar]
- European Commission. Regulation (EU) 2017/625 of the European Parliament and of the Council of 15 March 2017 on official controls and other official activities performed to ensure the application of food and feed law, rules on animal health and welfare, plant health and plant protection products, amending Regulations (EC) No 999/2001, (EC) No 396/2005, (EC) No 1069/2009, (EC) No 1107/2009, (EU) No 1151/2012, (EU) No 652/2014, (EU) 2016/429 and (EU) 2016/2031 of the European Parliament and of the Council, Council Regulations (EC) No 1/2005 and (EC) No 1099/2009 and Council Directives 98/58/EC, 1999/74/EC, 2007/43/EC, 2008/119/EC and 2008/120/EC, and repealing Regulations (EC) No 854/2004 and (EC) No 882/2004 of the European Parliament and of the Council, Council Directives 89/608/EEC, 89/662/EEC, 90/425/EEC, 91/496/EEC, 96/23/EC, 96/93/EC and 97/78/EC and Council Decision 92/438/EEC (Official Controls Regulation). Off. J. Eur. Union 2017, 95, 1–142. [Google Scholar]
- European Commission. Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on organic production and labelling of organic products and repealing Council Regulation (EC) No 834/2007. Off. J. Eur. Union 2018, 150, 1–92. [Google Scholar]
- Agriculture and Rural Development. Available online: https://agriculture.ec.europa.eu/document/download/9a459d2e-3de0-499e-8b8c-124540e0b9e2_en?filename=building-stronger-akis_en.pdf (accessed on 3 April 2024).
- European Commission. Regulation (EU) 2021/2115 of the European Parliament and of the Council of 2 December 2021 establishing rules on support for strategic plans to be drawn up by Member States under the common agricultural policy (CAP Strategic Plans) and financed by the European Agricultural Guarantee Fund (EAGF) and by the European Agricultural Fund for Rural Development (EAFRD) and repealing Regulations (EU) No 1305/2013 and (EU) No 1307/2013. Off. J. Eur. Union 2021, 435, 1–186. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papakonstantinou, G.I.; Voulgarakis, N.; Terzidou, G.; Fotos, L.; Giamouri, E.; Papatsiros, V.G. Precision Livestock Farming Technology: Applications and Challenges of Animal Welfare and Climate Change. Agriculture 2024, 14, 620. https://doi.org/10.3390/agriculture14040620
Papakonstantinou GI, Voulgarakis N, Terzidou G, Fotos L, Giamouri E, Papatsiros VG. Precision Livestock Farming Technology: Applications and Challenges of Animal Welfare and Climate Change. Agriculture. 2024; 14(4):620. https://doi.org/10.3390/agriculture14040620
Chicago/Turabian StylePapakonstantinou, Georgios I., Nikolaos Voulgarakis, Georgia Terzidou, Lampros Fotos, Elisavet Giamouri, and Vasileios G. Papatsiros. 2024. "Precision Livestock Farming Technology: Applications and Challenges of Animal Welfare and Climate Change" Agriculture 14, no. 4: 620. https://doi.org/10.3390/agriculture14040620
APA StylePapakonstantinou, G. I., Voulgarakis, N., Terzidou, G., Fotos, L., Giamouri, E., & Papatsiros, V. G. (2024). Precision Livestock Farming Technology: Applications and Challenges of Animal Welfare and Climate Change. Agriculture, 14(4), 620. https://doi.org/10.3390/agriculture14040620