Interactions between Root Hair Development and Arbuscular Mycorrhizal Fungal Colonization in Trifoliate Orange Seedlings in Response to P Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Plant Materials and Growth Conditions
2.3. Determinations of Root AM Fungal Colonization
2.4. Root AM Fluorescence Staining
2.5. Root Hair Measurements
2.6. Determinations of Total P Concentration and Quantitative RT-PCR Analysis
2.7. Data and Statistical Analysis
3. Results
3.1. Changes in Root Hair Density and AM Fungal Colonization
3.2. Effects of AM Fungi and P Supply on P Content and Plant Growth
3.3. Effects of AM Fungi and P Supply on the Expression of Genes Associated with Root Hair Formation
3.4. Effects of AM Fungi and P Supply on the Expression of Genes Associated with AM Signaling
4. Discussion
4.1. AM Fungal Inoculation and P Supply Conditions Influence Root Hair Morphology and Expression of Root Hair Development Genes
4.2. P Supply Levels Affect AM Symbiosis Establishment and the Expression of AM Signaling Genes
4.3. Interactions between Root Hair Development, AM Symbiosis Establishment, and Plant P Absorption
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Skrumsager Møller, I.; White, P. Functions of macronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012; pp. 135–189. [Google Scholar]
- Erel, R.; Yalin, D.; Kushmaro-Bier, A.; Li, Q.; Gérard, F.; Toren, N. Soil properties and growing duration determine phosphorus phyto-availability dynamics of polyphosphate versus orthophosphate fertilizers. Plant Soil 2023, 485, 299–315. [Google Scholar] [CrossRef]
- Hesterberg, D.; Balwant, S.; Markus, G. Macroscale chemical properties and X-ray absorption spectroscopy of soil phosphorus. In Developments in Soil Science; Hartemink, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 313–356. [Google Scholar]
- Elhaissoufi, W.; Ghoulam, C.; Barakat, A.; Zeroual, Y.; Bargaz, A. Phosphate bacterial solubilization: A key rhizosphere driving force enabling higher P use efficiency and crop productivity. J. Adv. Res. 2022, 38, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Vengavasi, K.; Pandey, R.; Soumya, P.R.; Hawkesford, M.J.; Siddique, K.H. Below-ground physiological processes enhancing phosphorus acquisition in plants. Plant Physiol. Rep. 2021, 26, 600–613. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, P.; Zou, Y.N.; Wu, Q.S.; Kuča, K. Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Arch. Agron. Soil Sci. 2019, 65, 1316–1330. [Google Scholar] [CrossRef]
- Raghothama, K.G. Phosphorus and plant nutrition: An overview. In Phosphorus: Agriculture and the Environment; Sims, J.T., Sharpley, A.N., Eds.; American Society of Agronomy: Madison, WI, USA, 2005; pp. 355–378. [Google Scholar]
- Brown, L.K.; George, T.S.; Thompson, J.A.; Wright, G.; Lyon, J.; Dupuy, L.; Hubbard, S.F.; White, P.J. What are the implications of variation in root hair length in tolerance to phosphorus deficiency in combination with water stress in barley (Hordeum vulgare)? Ann. Bot. 2012, 110, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Vandamme, E.; Renkens, M.; Pypers, P.; Smolders, E.; Vanlauwe, B.; Merckx, R. Root hairs explain P uptake efficiency of soybean genotypes grown in a P-deficient Ferralsol. Plant Soil 2013, 369, 269–282. [Google Scholar] [CrossRef]
- Caradus, J.R. Effect of root hair length on white clover growth over a range of soil phosphorus levels. N. Z. J. Agric. Res. 1981, 24, 353–358. [Google Scholar] [CrossRef]
- Morgan, J.A.; Bending, G.D.; White, P.J. Biological costs and benefits to plant-microbe interactions in the rhizosphere. J. Exp. Bot. 2005, 56, 1729–1739. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.S.; Liu, C.Y.; Zhang, D.J.; Zou, Y.N.; He, X.H.; Wu, Q.H. Mycorrhiza alters the profile of root hairs in trifoliate orange. Mycorrhiza 2016, 26, 237–247. [Google Scholar] [CrossRef]
- Rui, W.; Mao, Z.; Li, Z. The roles of phosphorus and nitrogen nutrient transporters in the arbuscular mycorrhizal symbiosis. Int. J. Mol. Sci. 2022, 23, 11027. [Google Scholar] [CrossRef]
- Ferrol, N.; Azcón-Aguilar, C.; Pérez-Tienda, J. Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: An overview on the mechanisms involved. Plant Sci. 2019, 280, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Shu, B.; Xia, R.X.; Wang, P. Differential regulation of Pht1 phosphate transporters from trifoliata orange (Poncirus trifoliata L. Raf.) seedlings. Sci. Hortic. 2012, 146, 115–123. [Google Scholar] [CrossRef]
- Ma, X.; Li, X.; Ludewig, U. Arbuscular mycorrhizal colonization outcompetes root hairs in maize under low phosphorus availability. Ann. Bot. 2021, 127, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Shibata, M.; Sugimoto, K. A gene regulatory network for root hair development. J. Plant Res. 2019, 132, 301–309. [Google Scholar] [CrossRef]
- Galway, M.E.; Masucci, J.D.; Lloyd, A.M.; Walbot, V.; Davis, R.W.; Schiefelbein, J.W. The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Dev. Biol. 1994, 166, 740–754. [Google Scholar] [CrossRef] [PubMed]
- Masucci, J.D.; Rerie, W.G.; Foreman, D.R.; Zhang, M.; Galway, M.E.; Marks, M.D.; Schiefelbein, J.W. The homeobox gene GLABRA 2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Development 1996, 122, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.M.; Schiefelbein, J. WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell 1999, 99, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Schellmann, S.; Schnittger, A.; Kirik, V.; Wada, T.; Okada, K.; Beermann, A.; Thumfahrt, J.; Jurgens, G.; Hulskamp, M. TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J. 2002, 21, 5036–5046. [Google Scholar] [CrossRef] [PubMed]
- Kirik, V.; Simon, M.; Huelskamp, M.; Schiefelbein, J. The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Dev. Biol. 2004, 268, 506–513. [Google Scholar] [CrossRef]
- Simon, M.; Lee, M.M.; Lin, Y.; Gish, L.; Schiefelbein, J. Distinct and overlapping roles of single-repeat MYB genes in root epidermal patterning. Dev. Biol. 2007, 311, 566–578. [Google Scholar] [CrossRef]
- Molendijk, A.J.; Bischoff, F.; Rajendrakumar, C.S.; Friml, J.; Braun, M.; Gilroy, S.; Palme, K. Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J. 2001, 20, 2779–2788. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.A.; Shen, J.J.; Fu, Y.; Li, H.; Yang, Z.; Grierson, C.S. The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 2002, 14, 763–776. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.Q.; Li, E.; Ge, F.R.; Li, S.; Wang, Q.; Zhang, C.Q.; Zhang, Y. Arabidopsis RopGEF4 and RopGEF10 are important for FERONIA-mediated developmental but not environmental regulation of root hair growth. New Phytol. 2013, 200, 1089–1101. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Q.; Xie, M.M.; Hashem, A.; Abd-Allah, E.F.; Wu, Q.S. Arbuscular mycorrhizal fungi and rhizobia synergistically promote root colonization, plant growth, and nitrogen acquisition. Plant Growth Regul. 2023, 100, 691–701. [Google Scholar] [CrossRef]
- Peiter, E.; Sun, J.; Heckmann, A.B.; Venkateshwaran, M.; Riely, B.K.; Otegui Otegui, M.S.; Edwards, A.; Freshour, G.; Hahn, M.G.; Cook, D.R.; et al. The Medicago truncatula DMI1 protein modulates cytosolic calcium signaling. Plant Physiol. 2007, 145, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Oldroyd, G.E.D. Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 2013, 11, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Yoshikawa, M.; Yan, K.; Miwa, H.; Uchida, H.; Asamizu, E.; Sato, S.; Tabata, S.; Imaizumi-Anraku, H.; Umehara, Y.; et al. NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell 2007, 19, 610–624. [Google Scholar] [CrossRef]
- Kanamori, N.; Madsen, L.H.; Radutoiu, S.; Frantescu, M.; Quistgaard, E.M.; Miwa, H.; Downie, J.A.; James, E.K.; Felle, H.H.; Haaning, L.L.; et al. A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc. Natl. Acad. Sci. USA 2006, 103, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Kistner, C.; Winzer, T.; Pitzschke, A.; Mulder, L.; Sato, S.; Kaneko, T.; Tabata, S.; Sandal, N.; Stougaard, J.; Webb, K.J.; et al. Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 2005, 17, 2217–2229. [Google Scholar] [CrossRef] [PubMed]
- Groth, M.; Takeda, N.; Perry, J.; Uchida, H.; Dräxl, S.; Brachmann, A.; Sato, S.; Tabata, S.; Kawaguchi, M.; Wang, T.L.; et al. NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhizal fungi and rhizobia but dispensable for cortical endosymbiotic development. Plant Cell 2010, 22, 2509–2526. [Google Scholar] [CrossRef]
- Liu, X.Q.; Liu, Z.; Zou, Y.N.; Alqahtani, M.D.; Wu, Q.S. Defense responses and symbiotic functional initiation in trifoliate orange–arbuscular mycorrhizal fungi interaction. Chem. Biol. Technol. Agric. 2024, 11, 3. [Google Scholar] [CrossRef]
- Cao, X.; Chen, C.L.; Zhang, D.J.; Shu, B.; Xiao, J.; Xia, R.X. Influence of nutrient deficiency on root architecture and root hair morphology of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings under sand culture. Sci. Hortic. 2013, 162, 100–105. [Google Scholar] [CrossRef]
- Sun, X.G.; Tang, M. Effect of arbuscular mycorrhizal fungi inoculation on root traits and root volatile organic compound emissions of Sorghum bicolor. S. Afr. J. Bot. 2013, 88, 373–379. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improve procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- McGonigle, T.P.; Miller, M.H.; Evans, D.G.; Fairchild, G.L.; Swan, J.A. A new method which gives an objective measure of colonisation of roots by vesicular arbuscular mycorrhizal fungi. New Phytol. 1990, 115, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.H.; Syvertsen, J.P. Host determinants of mycorrhizal dependency of citrus rootstock seedlings. New Phytol. 1985, 101, 667–676. [Google Scholar] [CrossRef]
- Javot, H.; Penmetsa, R.V.; Terzaghi, N.; Cook, D.R.; Harrison, M.J. A Medicago truncatula phosphate transporter in dispensable for the arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. USA 2007, 104, 1720–1725. [Google Scholar] [CrossRef]
- De Smet, I.; Vassileva, V.; De Rybel, B.; Levesque, M.P.; Grunewald, W.; Van Damme, D.; Van Noorden, G.; Naudts, M.; Van Isterdael, G.; De Clercq, R.; et al. Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root. Science 2008, 322, 594–597. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ou, S.; Peng, S.A.; Zhou, G.F.; Wei, Q.J.; Li, Q.H. Growth, root morphology and boron uptake by citrus rootstock seedlings differing in boron-deficiency responses. Sci. Hortic. 2011, 129, 426–432. [Google Scholar]
- Wang, Y.; Li, J.; Yang, J.; Xia, R.X. Expression of lycopene cyclase genes and their regulation on downstream carotenoids during fruit maturation of Guoqing No. 1 Satsuma mandarin and Cara Cara navel orange. Sci. Hortic. 2011, 127, 267–274. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Lynch, J.P.; Brown, K.M. Ethylene and phosphorus availability have interacting yet distinct effects on root hair development. J. Exp. Bot. 2003, 54, 2351–2361. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.D.; James, D.; Thai, P. Induction of root hair growth in a phosphorus-buffered culture solution. Agric. Sci. China 2006, 5, 370–376. [Google Scholar] [CrossRef]
- Schikora, A.; Schmidt, W. Acclimative changes in root epidermal cell fate in response to Fe and P deficiency: A specific role for auxin? Protoplasma 2001, 218, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.; Santangeli, M.; Steininger-Mairinger, T.; Oburger, E.; Reemtsma, T.; Lechtenfeld, O.J.; Hann, S. The effect of root hairs on exudate composition: A comparative non-targeted metabolomics approach. Anal. Bioanal. Chem. 2023, 415, 823–840. [Google Scholar] [CrossRef] [PubMed]
- Orfanoudakis, M.; Wheeler, C.T.; Hooker, J.E. Both the arbuscular mycorrhizal fungus Gigaspora rosea and Frankia increase root system branching and reduce root hair frequency in Alnus glutinosa. Mycorrhiza 2010, 20, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.K.; George, T.S.; Barrett, G.E.; Hubbard, S.F.; White, P.J. Interactions between root hair length and arbuscular mycorrhizal colonisation in phosphorus deficient barley (Hordeum vulgare). Plant Soil 2013, 372, 195–205. [Google Scholar] [CrossRef]
- Wu, Q.S.; Li, Y.; Zou, Y.N.; He, X.H. Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels. Mycorrhiza 2015, 25, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Lan, P.; Li, W.; Schmidt, W. Genome-wide co-expression analysis predicts protein kinases as important regulators of phosphate deficiency-induced root hair remodeling in Arabidopsis. BMC Genom. 2013, 4, 210. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Wang, X. Role of OsPHR2 on phosphorus homoestasis and root hairs development in rice (Oryza sativa L.). Plant Signal. Behav. 2008, 3, 674–675. [Google Scholar] [CrossRef]
- Ringli, C. The hydroxyproline-rich glycoprotein domain of the Arabidopsis LRX1 requires Tyr for function but not for insolubilization in the cell wall. Plant J. 2010, 63, 662–669. [Google Scholar] [CrossRef]
- Song, S.K.; Ryu, K.H.; Kang, Y.H.; Song, J.H.; Cho, Y.H.; Yoo, S.D.; Schiefelbein, J.; Lee, M.M. Cell fate in the Arabidopsis root epidermis is determined by competition between WEREWOLF and CAPRICE. Plant Physiol. 2011, 157, 1196–1208. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.N.; Zhang, D.J.; Liu, C.Y.; Wu, Q.S. Relationships between mycorrhizas and root hairs. Pak. J. Bot. 2019, 51, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Rongsawat, T.; Peltier, J.B.; Boyer, J.C.; Véry, A.A.; Sentenac, H. Looking for root hairs to overcome poor soils. Trends Plant Sci. 2021, 26, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Christie, P.; Li, X. Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Environ. Geochem. Health 2006, 28, 111–119. [Google Scholar] [CrossRef]
- Smith, S.E.; Smith, F.A. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 2011, 62, 227–250. [Google Scholar] [CrossRef]
Treatments | Root Hair Density (num./mm2) | Root Hair Length (μm) | Epidermal Cell Length (μm) | Epidermal Cell Number | |
---|---|---|---|---|---|
NM | P0 | 131.50 ± 4.16 a | 33.30 ± 0.47 a | 10.09 ± 0.22 d | 110 ± 8 a |
P50 | 100.61 ± 0.52 c | 29.03 ± 0.93 c | 11.18 ± 0.37 c | 103 ± 1 b | |
P500 | 58.70 ± 4.74 e | 31.63 ± 0.12 b | 12.13 ± 0.29 b | 100 ± 6 bc | |
AMF | P0 | 111.42 ± 1.18 b | 30.97 ± 0.99 b | 12.95 ± 0.33 a | 95 ± 1 c |
P50 | 113.18 ± 2.28 b | 28.80 ± 0.44 c | 11.96 ± 0.63 bc | 102 ± 6 b | |
P500 | 85.06 ± 3.958 d | 34.278 ± 0.45 a | 12.31 ± 0.76 ab | 100 ± 5 bc | |
ANOVA | |||||
P levels | *** | *** | * | NS | |
AMF | ** | NS | *** | ** | |
Interaction | *** | *** | *** | ** |
Treatments | Total P Content (mg/g) | Shoot Dry Mass (g) | Root Dry Mass (g) | Totle Dry Mass (g) | Mycorrhizal Dependency (%) | |
---|---|---|---|---|---|---|
NM | P0 | 0.69 ± 0.05 d | 0.67 ± 0.04 e | 0.14 ± 0.01 e | 0.81 ± 0.05 e | |
P50 | 0.83 ± 0.05 c | 0.75 ± 0.05 d | 0.19 ± 0.04 d | 0.94 ± 0.02 d | ||
P500 | 1.64 ± 0.04 a | 0.91 ± 0.02 c | 0.22 ± 0.02 cd | 1.14 ± 0.04 c | ||
AMF | P0 | 1.04 ± 0.06 b | 1.48 ± 0.02 a | 0.48 ± 0.02 a | 1.96 ± 0.03 a | 241.98 ± 8.17 a |
P50 | 0.98 ± 0.03 b | 1.26 ± 0.05 b | 0.36 ± 0.01 b | 1.62 ± 0.05 b | 172.34 ± 5.85 b | |
P500 | 1.68 ± 0.08 a | 0.92 ± 0.03 c | 0.24 ± 0.03 c | 1.16 ± 0.05 c | 101.70 ± 1.28 c | |
ANOVA | ||||||
P levels | *** | *** | *** | *** | *** | |
AMF | *** | *** | *** | *** | - | |
Interaction | *** | *** | *** | *** | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Zhao, Y.; Xia, R.-X.; Wu, Q.-S.; Hashem, A.; Abd_Allah, E.F. Interactions between Root Hair Development and Arbuscular Mycorrhizal Fungal Colonization in Trifoliate Orange Seedlings in Response to P Levels. Agriculture 2024, 14, 763. https://doi.org/10.3390/agriculture14050763
Cao X, Zhao Y, Xia R-X, Wu Q-S, Hashem A, Abd_Allah EF. Interactions between Root Hair Development and Arbuscular Mycorrhizal Fungal Colonization in Trifoliate Orange Seedlings in Response to P Levels. Agriculture. 2024; 14(5):763. https://doi.org/10.3390/agriculture14050763
Chicago/Turabian StyleCao, Xiu, Yu Zhao, Ren-Xue Xia, Qiang-Sheng Wu, Abeer Hashem, and Elsayed Fathi Abd_Allah. 2024. "Interactions between Root Hair Development and Arbuscular Mycorrhizal Fungal Colonization in Trifoliate Orange Seedlings in Response to P Levels" Agriculture 14, no. 5: 763. https://doi.org/10.3390/agriculture14050763
APA StyleCao, X., Zhao, Y., Xia, R.-X., Wu, Q.-S., Hashem, A., & Abd_Allah, E. F. (2024). Interactions between Root Hair Development and Arbuscular Mycorrhizal Fungal Colonization in Trifoliate Orange Seedlings in Response to P Levels. Agriculture, 14(5), 763. https://doi.org/10.3390/agriculture14050763