Unstable State of Hydrologic Regime and Grain Yields in Northern Kazakhstan Estimated with Tree-Ring Proxies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Tree-Ring Data
# | Site Code | Coordinates | Number Trees | Span | Length, Years | EPS ≥ 0.85 Start Year | Interserial Correlation | St. Dev. |
---|---|---|---|---|---|---|---|---|
1 | CRO | 54.06° N 69.10° E | 22 | 1850–2010 | 161 | 1877 | 0.69 | 0.42 |
2 | CBK | 53.56° N 69.31° E | 27 | 1842–2011 | 170 | 1856 | 0.62 | 0.31 |
3 | CSA | 52.62° N 68.79° E | 30 | 1785–2010 | 226 | 1818 | 0.75 | 0.45 |
4 | * russ364 | 53.44° N 49.78° E | 33 | 1786–2014 | 229 | 1802 | 0.64 | 0.34 |
5 | * russ367 | 53.36° N 46.89° E | 31 | 1799–2014 | 216 | 1803 | 0.57 | 0.31 |
2.3. Climate Data
# | Station Name | Interval | Latitude, °N | Longitude, °E | Elevation, asl |
---|---|---|---|---|---|
1 | Petropavlovsk | 1933–2022 | 54.83 | 69.15 | 134 m |
2 | Saumalkol | 1966–2022 | 53.18 | 68.06 | 325 m |
3 | PDSI grid | 1947–2020 | 53–54 | 67–68 | n/a |
2.4. Crop Data
2.5. Statistical Analysis
3. Results and Discussion
3.1. Tree Ring Reconstructions
3.2. Extended History of Moisture Availability
3.3. Drought Impact on Grain Yields in SKO
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bindi, M.; Olesen, J.E. The responses of agriculture in Europe to climate change. Reg. Environ. Change 2011, 11, 151–158. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef] [PubMed]
- Heino, M.; Kinnunen, P.; Anderson, W.; Ray, D.K.; Puma, M.J.; Varis, O.; Siebert, S.; Kummu, M. Increased probability of hot and dry weather extremes during the growing season threatens global crop yields. Sci. Rep. 2023, 13, 3583. [Google Scholar] [CrossRef] [PubMed]
- Swinnen, J.; Burkitbayeva, S.; Schierhorn, F.; Prishchepov, A.V.; Müller, D. Production potential in the “Bread Baskets” of Eastern Europe and Central Asia. Glob. Food Secur. 2017, 14, 38–53. [Google Scholar] [CrossRef]
- Ferris, R.; Ellis, R.H.; Wheeler, T.R.; Hadley, P. Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Ann. Bot. 1998, 82, 631–639. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Martre, P.; Rotter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Barlow, K.M.; Christy, B.P.; O’Leary, G.J.; Riffkin, P.A.; Nuttall, J.G. Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crops Res. 2015, 171, 109–119. [Google Scholar] [CrossRef]
- Prasad, P.V.; Bheemanahalli, R.; Jagadish, S.K. Field crops and the fear of heat stress–opportunities, challenges and future directions. Field Crops Res. 2017, 200, 114–121. [Google Scholar] [CrossRef]
- Wang, D.; Li, R.; Gao, G.; Jiakula, N.; Toktarbek, S.; Li, S.; Ma, P.; Feng, Y. Impact of climate on food security in Kazakhstan. Agriculture 2022, 12, 1087. [Google Scholar] [CrossRef]
- Schierhorn, F.; Hofmann, M.; Adrian, I.; Bobojonov, I.; Müller, D. Spatially varying impacts of climate change on wheat and barley yields in Kazakhstan. J. Arid. Environ. 2020, 178, 104164. [Google Scholar] [CrossRef]
- Cherenkova, E.A.; Semenov, V.A. A new approach to identifying the influence of climate extremes on wheat yield decline in the south of the European territory of Russia. Proc. Russ. Acad. Sci. Earth Sci. 2021, 500, 88–94. [Google Scholar] [CrossRef]
- Sarto, M.V.; Sarto, J.R.; Rampim, L.; Rosset, J.S.; Bassegio, D.; da Costa, P.F.; Inagaki, A.M. Wheat phenology and yield under drought: A review. Aust. J. Crop Sci. 2017, 11, 941–946. [Google Scholar] [CrossRef]
- Hakala, K.; Jauhiainen, L.; Rajala, A.; Jalli, M.; Kujala, M.; Laine, A. Different responses to weather events may change the cultivation balance of spring barley and oats in the future. Field Crops Res. 2020, 259, 107956. [Google Scholar] [CrossRef]
- Santangelo, E.; Beni, C.; Oreti, L.; Palma, A.; Bascietto, M. Vulnerability of wheat crops to flooding outweighs benefits from precision farming and agroecology practices: A case study in Central Italy. Land 2023, 12, 915. [Google Scholar] [CrossRef]
- Fan, X.; Zhu, D.; Sun, X.; Wang, J.; Wang, M.; Wang, S.; Watson, A.E. Impacts of extreme temperature and precipitation on crops during the growing season in South Asia. Remote Sens. 2022, 14, 6093. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather. Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef]
- Dadrasi, A.; Chaichi, M.; Nehbandani, A.; Soltani, E.; Nemati, A.; Salmani, F.; Heydari, M.; Yousefi, A.R. Global insight into understanding wheat yield and production through Agro-Ecological Zoning. Sci. Rep. 2023, 13, 15898. [Google Scholar] [CrossRef] [PubMed]
- Van Wart, J.; van Bussel, L.G.; Wolf, J.; Licker, R.; Grassini, P.; Nelson, A.; Boogaard, H.; Gerber, J.; Mueller, N.D.; Claessens, L. Use of agro-climatic zones to upscale simulated crop yield potential. Field Crops Res. 2013, 143, 44–55. [Google Scholar] [CrossRef]
- Shvedov, F. Tree Like a Chronicle of Droughts; Russian Imperial Academy of Sciences: St. Petersburg, Russia, 1892; 16p. [Google Scholar]
- Powell, L.B. Tree-rings and wheat yields in Southern Saskatchewan. Mon. Weather. Rev. 1932, 60, 220–221. [Google Scholar] [CrossRef]
- Therrell, M.D.; Stanle, D.W.; Diaz, J.V.; Cornelo Oviedo, E.H.; Cleaveland, M.K. Tree-ring reconstructed maize yield in central Mexico: 1474–2001. Clim. Change 2006, 74, 493–504. [Google Scholar] [CrossRef]
- Touchan, R.; Kherchouche, D.; Oudjehih, B.; Touchan, H.; Slimani, S.; Meko, D. Dendroclimatology and wheat production in Algeria. J. Arid. Environ. 2016, 124, 102–110. [Google Scholar] [CrossRef]
- Huhtamaa, H.; Helama, S. Reconstructing crop yield variability in Finland: Long-term perspective of the cultivation history on the agricultural periphery since AD 760. Holocene 2017, 27, 3–11. [Google Scholar] [CrossRef]
- Rygalova, N.V.; Rygalov, E.V.; Bykov, N.I. Reconstruction of grain yield in the steppe zone of the Altai territory (south of Western Siberia) in the XIX-XX centuries on the basis of tree-ring chronologies of tape burs. In Proceedings of the International Conference on Sustainable Development of Cross-Border Regions, Barnaul, Russia, 19–20 April 2019; Earth and Environmental Science. Volume 395, p. 012046. [Google Scholar]
- Babushkina, E.A.; Zhirnova, D.F.; Belokopytova, L.V.; Mehrotra, N.; Shah, S.K.; Keler, V.V.; Vaganov, E.A. Prospects of using tree-ring earlywood and Latewood width for reconstruction of crops yield on example of South Siberia. Forests 2021, 12, 174. [Google Scholar] [CrossRef]
- Peng, J.; Peng, K.; Li, J.; Peng, M.; Liu, Y.; Wei, X.; Li, J.; Li, X.; Cui, J.; Li, J. Concurrent response of tree growth and grain productivity to climate change: A case study from climatic transition zone in central China. Ecol. Indic. 2023, 154, 110608. [Google Scholar] [CrossRef]
- Baysholanov, S.S. (Ed.) Handbook of Agroclimatic Resources of Severo-Kazakhstanskaya Oblast; Institute of Geography: Astana, Kazakhstan, 2017; p. 125. [Google Scholar]
- Ventresca-Miller, A.; Spengler, R.; Haruda, A.; Miller, B.; Wilkin, S.; Robinson, S.; Roberts, P.; Boivin, N. Ecosystem engineering among ancient pastoralists in northern Central Asia. Front. Earth Sci. 2020, 8, 168. [Google Scholar] [CrossRef]
- ITRDB, 2024: International Tree-Ring Data Bank, NOAA Centers for Environmental Information. Available online: https://www.ncei.noaa.gov/products/paleoclimatology/tree-ring (accessed on 1 November 2023).
- Solomina, O.N.; Bushueva, I.S.; Dolgova, E.A.; Zolotokrylin, A.N.; Kuznettsova, V.V.; Kuznetsove, T.O.; Kuhta, A.E.; Lazukova, L.I.; Lomakin, N.A.; Matskovsky, V.V.; et al. Droughts of the East European Plain according to Hydrometeorological and Tree-Ring Data; Institute of Geography of the Russian Academy of Sciences: Moscow, Russia, 2017; p. 360. [Google Scholar]
- Stokes, M.A.; Smiley, M. An Introduction to Tree-Ring Dating; University of Chicago Press: Chicago, IL, USA, 1968. [Google Scholar]
- Cook, E.R.; Peters, K. The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull. 1981, 41, 45–53. [Google Scholar]
- Osborn, T.J.; Briffa, K.R.; Jones, P.D. Adjusting variance for sample-size in tree-ring chronologies and other regional mean timeseries. Dendrochronologia 1997, 15, 89–99. [Google Scholar]
- Cook, E.R.; Krusic, P.J.; Holmes, R.H.; Peters, K. Program ARSTAN, Version 41d, Download from 2007. Available online: www.ldeo.columbia.edu/tree-ring-laboratory (accessed on 1 September 2022).
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl. Meteorol. Climatol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Menne, M.J.; Williams, C.N.; Gleason, B.E.; Rennie, J.J.; Lawrimore, J.H. The global historical climatology network monthly temperature dataset, version 4. J. Clim. 2018, 31, 9835–9854. [Google Scholar] [CrossRef]
- Dai, A. Characteristics and trends in various forms of the palmer drought severity index (PDSI) during 1900–2008. Geophys. Res. 2011, 116, D12. [Google Scholar] [CrossRef]
- Barichivich, J.; Osborn, T.J.; Harris, I.; Schrier, G.; Jones, P.D. Monitoring global drought using the self-calibrating palmer drought severity Index in “State of the climate in 2020”. Bull. Am. Meteorol. Soc. 2021, 101, S1–S429. [Google Scholar] [CrossRef]
- Meko, D.M.; Touchan, R.; Anchukaitis, K.A. Seascorr: A MATLAB program for identifying the seasonal climate signal in an annual tree-ring time series. Comput. Geosci. 2011, 37, 1234–1241. [Google Scholar] [CrossRef]
- Meko, D.M.; Biondi, F.; Taylor, A.H.; Panyushkina, I.P.; Thaxton, R.D.; Prusevich, A.; Shiklomanov, A.I.; Lammers, R.B.; Glidden, S. Runoff variability in the Truckee-Carson river basin from tree rings and water balance model. Earth Interact. 2024. [Google Scholar] [CrossRef]
- Meko, D.M.; Woodhouse, C.A.; Baisan, C.H.; Knight, T.A.; Lukas, J.J.; Hughes, M.K.; Salzer, M.W. Medieval drought in the upper Colorado river basin. Geophys. Res. Lett. 2007, 34, L10705. [Google Scholar] [CrossRef]
- Fritts, H.C.; Guiot, J.; Gordon, G.A. Verification Methods of Dendrochronology: Applications in the Environmental Sciences; Cook, E.R., Kairiukstis, L.A., Eds.; Kluwer Academic Publishers: Alphen, The Netherlands, 1990; pp. 178–185. [Google Scholar]
- Michaelsen, J. Cross-validation in statistical climate forecast models. J. Appl. Meteorol. Climatol. 1987, 26, 1589–1600. [Google Scholar] [CrossRef]
- Ozturk, A.; Aydin, F. Effect of water stress at various growth stages on some quality characteristics of winter wheat. J. Agron. Crop Sci. 2004, 190, 93–99. [Google Scholar] [CrossRef]
- Petukhova, M.S.; Voropai, N.N. About the impact of natural and climatic factors on agriculture in the Siberian Federal Okrug. Econ. Agric. Russ. 2024, 1, 10–15. [Google Scholar] [CrossRef]
- Cook, E.R.; Solomina, O.; Matskovsky, V.; Cook, B.I.; Agafonov, L.; Berdnikova, A.; Dolgova, E.; Karpukhin, A.; Knysh, N.; Kulakova, M.; et al. The European Russia drought atlas (1400–2016 CE). Clim. Dyn. 2020, 54, 2317–2335. [Google Scholar] [CrossRef]
- Zamora-Reyes, D.; Black, B.; Trouet, V. Enhanced winter, spring, and summer hydroclimate variability across California from 1940 to 2019. Int. J. Climatol. 2022, 42, 4940–4952. [Google Scholar] [CrossRef]
- Winitsky, A.G.; Meko, D.M.; Taylor, A.H.; Biondi, F. Species sensitivity to hydrologic whiplash in the tree ring record of the high Sierra Nevada. Environments 2023, 10, 12. [Google Scholar] [CrossRef]
- Stevenson, S.; Coats, S.; Touma, D.; Cole, J.; Lehner, F.; Fasullo, J. Twenty-first century hydroclimate: A continually changing baseline, with more frequent extremes. Proc. Natl. Acad. Sci. USA 2022, 119, e2108124119. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Wang, C. Projected 21st century changes in snow water equivalent over northern hemisphere landmasses from the CMIP5 model ensemble. Cryosphere 2015, 9, 1943–1953. [Google Scholar] [CrossRef]
- Ukkola, A.M.; De Kauwe, M.G.; Roderick, M.L.; Abramowitz, G.; Pitman, A.J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 2020, 47, e2020GL087820. [Google Scholar] [CrossRef]
- Schubert, S.D.; Want, H.; Koster, R.D.; Suarez, M.J.; Groisman, P.Y. Northern Eurasian heat waves and droughts. J. Clim. 2014, 27, 3169–3207. [Google Scholar] [CrossRef]
- Otto, F.E.L.; Massey, N.; van Oldenborgh, G.J.; Jones, R.G.; Allen, M.R. Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys. Res. Lett. 2012, 39, L04702. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Chen, J.; Zhao, Y.; Tuoliewubieke, D.; Li, J.; Yang, L.; Mao, W. Intensification of extreme precipitation in arid Central Asia. J. Hydrol. 2021, 598, 125760. [Google Scholar] [CrossRef]
- Zou, S.; Abuduwaili, J.; Duan, W.; Ding, J.; De Maeyer, P.; Van De Voorde, T.; Ma, L. Attribution of changes in the trend and temporal non-uniformity of extreme precipitation events in Central Asia. Sci. Rep. 2021, 11, 15032. [Google Scholar] [CrossRef]
- Saini, R.; Wang, G.; Pal, J. Role of soil moisture feedback in the development of extreme summer drought and flood in the United States. Hydrometeorology 2016, 17, 2191–2207. [Google Scholar] [CrossRef]
- Heino, M.; Puma, M.; Ward, P.; Gerten, D.; Heck, V.; Siebert, S.; Kummu, M. Two-thirds of global cropland area impacted by climate oscillations. Nat. Commun. 2018, 9, 1257. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.; Wang, S.; Yang, Z.-L.; Gentine, P. Soil moisture−atmosphere feedbacks have triggered the shifts from drought to pluvial conditions since 1980. Commun. Earth Environ. 2023, 4, 254. [Google Scholar] [CrossRef]
- Or, D.; Lehmann, P.; Shahraeeni, E.; Shokri, N. Advances in soil evaporation physics—A review. Vadose Zone J. 2013, 12, 1–16. [Google Scholar] [CrossRef]
- Screen, J.A.; Simmonds, I. Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Clim. Change 2014, 4, 704–709. [Google Scholar] [CrossRef]
- Vavrus, S.J.; Wang, F.; Martin, J.E.; Francis, J.A.; Peings, Y.; Cattiaux, J. Changes in North American atmospheric circulation and extreme weather: Influence of Arctic amplification and Northern Hemisphere snow cover. J. Clim. 2017, 30, 4317–4333. [Google Scholar] [CrossRef]
- Walsh, J.E. Intensified warming of the Arctic: Causes and impacts on middle latitudes. Glob. Planet. Change 2014, 117, 52–63. [Google Scholar] [CrossRef]
- Rowell, D.P.; Jones, R.G. Causes and uncertainty of future summer drying over Europe. Clim. Dyn. 2006, 27, 281–299. [Google Scholar] [CrossRef]
- Francis, J.A.; Skific, N. Evidence linking rapid Arctic warming to mid-latitude weather patterns. Philos. Trans. R. Soc. 2015, 373A, 20140170. [Google Scholar] [CrossRef] [PubMed]
- Cook, B.I.; Mankin, J.S.; Marvel, K.; Williams, A.P.; Smerdon, J.E.; Anchukaitis, K.J. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth’s Future 2020, 8, e2019EF001461. [Google Scholar] [CrossRef]
- Garcia, G.A.; Serrago, R.A.; Dreccer, M.F.; Miralles, D.J. Post-anthesis warm nights reduce grain weight in field-grown wheat and barley. Field Crops Res. 2016, 195, 50–59. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Pisipati, S.R.; Ristic, Z.; Bukovnik, U.; Fritz, A.K. Effect of nighttime temperature on physiology and growth of spring wheat. Crop Sci. 2008, 48, 2372–2380. [Google Scholar] [CrossRef]
- Kahan, A. Russian Economic History: The Nineteenth Century; Weiss, R., Ed.; University of Chicago Press: Chicago, IL, USA, 1989; p. 251. [Google Scholar]
Grain | Sow Dates | Harvest Dates | Length of Growth |
---|---|---|---|
Spring Wheat | 15–25 May | 15–25 August | 80–100 days |
Oats | 25 May–5 June | 15–31 August | 70–100 days |
Barley | 25 May–5 June | 25 July–10 August | 65–80 days |
Predictand | Tree Ring Series in PC Predictors | R2adj | DW | F | RMSE | REsplit A | REsplit B |
---|---|---|---|---|---|---|---|
Model Jun–Aug PDSI | CSA, CBK, CRO, russ364 | 0.48 | 1.61 p = 0.10 | 29.7 df = (3,64) p = 1e−09 | 1.62 | 0.35 | 0.46 |
Model Crop Yield | CSA, CBK, CRO, russ367 | 0.44 | 1.3 p = 0.27 | 18.6 df = (4,68) p = 8.44e−09 | 3.01 | 0.44 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panyushkina, I.P.; Shayakhmetova, A.; Pashkov, S.; Agafonov, L.I. Unstable State of Hydrologic Regime and Grain Yields in Northern Kazakhstan Estimated with Tree-Ring Proxies. Agriculture 2024, 14, 790. https://doi.org/10.3390/agriculture14060790
Panyushkina IP, Shayakhmetova A, Pashkov S, Agafonov LI. Unstable State of Hydrologic Regime and Grain Yields in Northern Kazakhstan Estimated with Tree-Ring Proxies. Agriculture. 2024; 14(6):790. https://doi.org/10.3390/agriculture14060790
Chicago/Turabian StylePanyushkina, Irina P., Altyn Shayakhmetova, Sergey Pashkov, and Leonid I. Agafonov. 2024. "Unstable State of Hydrologic Regime and Grain Yields in Northern Kazakhstan Estimated with Tree-Ring Proxies" Agriculture 14, no. 6: 790. https://doi.org/10.3390/agriculture14060790
APA StylePanyushkina, I. P., Shayakhmetova, A., Pashkov, S., & Agafonov, L. I. (2024). Unstable State of Hydrologic Regime and Grain Yields in Northern Kazakhstan Estimated with Tree-Ring Proxies. Agriculture, 14(6), 790. https://doi.org/10.3390/agriculture14060790