Nitrogen Fertiliser Effects on Grain Anthocyanin and γ-Oryzanol Biosynthesis in Black Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. UV-B Light Setup
2.2. Soil Collection and Pot Set Up
2.3. Plant Growth
2.4. Tagging and Harvesting of Grain Samples
2.5. Sample Preparation and Extraction of Anthocyanin and γ-Oryzanol
2.6. Analysis of Anthocyanin and γ-Oryzanol Concentration
2.7. Carbon and Nitrogen Determination
2.8. RNA Extraction and qPCR
2.9. Statistical Analysis
3. Results
3.1. Effect of Nitrogen on Yield Components and Grain Traits under Different UV-B Conditions
3.2. Anthocyanin and γ-Oryzanol Response to Nitrogen Fertiliser under Different UV-B Conditions in Rice Grains at the Dough Stage
3.3. Carbon and Nitrogen Status in Grains at the Dough Stage in Response to Nitrogen Fertiliser under Different UV-B Treatments
3.4. Expression of the Regulatory and Structural Genes for Anthocyanin Biosynthesis in the Grain in Response to Nitrogen Treatments at 10 DAF
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Francavilla, A.; Joye, I.J. Anthocyanins in whole grain cereals and their potential effect on health. Nutrients 2020, 12, 2922. [Google Scholar] [CrossRef] [PubMed]
- Goufo, P.; Trindade, H. Rice antioxidants: Phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Sci. Nutr. 2014, 2, 75–104. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aal, E.-S.M.; Young, J.C.; Rabalski, I. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J. Agric. Food Chem. 2006, 54, 4696–4704. [Google Scholar] [CrossRef] [PubMed]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed]
- Pojer, E.; Mattivi, F.; Johnson, D.; Stockley, C.S. The case for anthocyanin consumption to promote human health: A review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 483–508. [Google Scholar] [CrossRef] [PubMed]
- Azzini, E.; Giacometti, J.; Russo, G.L. Antiobesity effects of anthocyanins in preclinical and clinical studies. Oxidative Med. Cell. Longev. 2017, 2017, 2740364. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Kim, J.; Min, S.; Shin, K.-H.; Kim, J.; Kim, H.; Ryu, S.; Ahn, J.-H. Anthocyanin content in rice is related to expression levels of anthocyanin biosynthetic genes. J. Plant Biol. 2007, 50, 156–160. [Google Scholar] [CrossRef]
- Junya, I.; Kazue, S.; Yusuke, O.; Fan, X.; Halida, R.; Tomoyo, M.; Noriko, K.; Eunsang, K.; Takahiro, E.; Hiroyuki, H.; et al. Definitive evidence of the presence of 24-methylenecycloartanyl ferulate and 24-methylenecycloartanyl caffeate in barley. Sci. Rep. 2019, 9, 12572. [Google Scholar] [CrossRef] [PubMed]
- Eslami, S.; Esa, N.M.; Marandi, S.M.; Ghasemi, G.; Eslami, S. Effects of gamma oryzanol supplementation on anthropometric measurements & muscular strength in healthy males following chronic resistance training. Indian J. Med. Res. 2014, 139, 857–863. [Google Scholar]
- Harakotr, B.; Prompoh, K.; Suriharn, K.; Lertrat, K. Genotype by environment interaction effects on nutraceutical lipid compounds of pigmented rice (Oryza sativa L. Ssp. indica). Int. J. Agron. 2021, 2021, 8880487. [Google Scholar] [CrossRef]
- Rose, T.J.; Kearney, L.J.; Dunn, B.W.; Dunn, T.S. Recovery of nitrogen fertiliser by drill-sown rice crops using best management practice: A 15n-labelled urea study. Crop Pasture Sci. 2022, 73, 1245–1252. [Google Scholar] [CrossRef]
- Xu, Y.; Guan, X.; Han, Z.; Zhou, L.; Zhang, Y.; Asad, M.A.U.; Wang, Z.; Jin, R.; Pan, G.; Cheng, F. Combined effect of nitrogen fertilizer application and high temperature on grain quality properties of cooked rice. Front. Plant Sci. 2022, 13, 874033. [Google Scholar] [CrossRef] [PubMed]
- Ping-Han, H.; Chia-Cheng, K.; Hsin-Yu, W.; Hsiu-Chun, Y.; Early, H.M.-H. molecular events associated with nitrogen deficiency in rice seedling roots. Sci. Rep. 2018, 8, 12207. [Google Scholar] [CrossRef]
- Fritz, C.; Palacios-Rojas, N.; Feil, R.; Stitt, M. Regulation of secondary metabolism by the carbon–nitrogen status in tobacco: Nitrate inhibits large sectors of phenylpropanoid metabolism. Plant J. 2006, 46, 533–548. [Google Scholar] [CrossRef]
- Havé, M.; Marmagne, A.; Chardon, F.; Masclaux-Daubresse, C. Nitrogen remobilization during leaf senescence: Lessons from arabidopsis to crops. J. Exp. Bot. 2017, 68, 2513–2529. [Google Scholar] [CrossRef] [PubMed]
- Fongfon, S.; Prom-U-thai, C.; Pusadee, T.; Jamjod, S. Responses of purple rice genotypes to nitrogen and zinc fertilizer application on grain yield, nitrogen, zinc, and anthocyanin concentration. Plants 2021, 10, 1717. [Google Scholar] [CrossRef]
- Bae, H.K.; Oh, S.H.; Seo, J.H.; Hwang, J.D.; Kim, S.Y.; Oh, M.K. Effects of different nitrogen levels and planting densities on the quality and quantity of ‘nunkeunheugchal’ rice. Korean J. Crop Sci. 2017, 62, 118–123. [Google Scholar] [CrossRef]
- Yamuangmorn, S.; Dell, B.; Rerkasem, B.; Prom-U-Thai, C. Applying nitrogen fertilizer increased anthocyanin in vegetative shoots but not in grain of purple rice genotypes. J. Sci. Food Agric. 2018, 98, 4527–4532. [Google Scholar] [CrossRef]
- Tung, Y.-H.; Ng, L.-T. Effects of nitrogen fertilization rate on tocopherols, tocotrienols and γ-oryzanol contents and enzymatic antioxidant activities in rice grains. Physiol. Mol. Biol. Plants 2019, 25, 189–195. [Google Scholar] [CrossRef]
- Li, W.; Tan, L.; Zou, Y.; Tan, X.; Huang, J.; Chen, W.; Tang, Q. The effects of ultraviolet a/b treatments on anthocyanin accumulation and gene expression in dark-purple tea cultivar ‘ziyan’ (Camellia sinensis). Molecules 2020, 25, 354. [Google Scholar] [CrossRef]
- Dȩbski, H.; Szwed, M.; Wiczkowski, W.; Szawara-Nowak, D.; Bączek, N.; Horbowicz, M. Uv-b radiation increases anthocyanin levels in cotyledons and inhibits the growth of common buckwheat seedlings. Acta Biol. Hung. 2016, 67, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Ubi, B.E.; Honda, C.; Bessho, H.; Kondo, S.; Wada, M.; Kobayashi, S.; Moriguchi, T. Expression analysis of anthocyanin biosynthetic genes in apple skin: Effect of uv-b and temperature. Plant Sci. 2006, 170, 571–578. [Google Scholar] [CrossRef]
- Tapia, G.G.; Castro, M.M.; Gaete-Eastman, C.C.; Figueroa, C.R.C.R. Regulation of anthocyanin biosynthesis by drought and uv-b radiation in wild tomato (Solanum peruvianum) fruit. Antioxidants 2022, 11, 1639. [Google Scholar] [CrossRef] [PubMed]
- Hada, H.; Hidema, J.; Maekawa, M.; Kumagai, T. Higher amounts of anthocyanins and UV-absorbing compounds effectively lowered cpd photorepair in purple rice (Oryza sativa L.). Plant Cell Environ. 2003, 26, 1691–1701. [Google Scholar] [CrossRef]
- Reddy, V.S.; Goud, K.V.; Sharma, R.; Reddy, A.R. Ultraviolet-b-responsive anthocyanin production in a rice cultivar is associated with a specific phase of phenylalanine ammonia lyase biosynthesis. Plant Physiol. 1994, 105, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Sarma, A.D.; Sharma, R. Purification and characterization of uv-b induced phenylalanine ammonia-lyase from rice seedlings. Phytochemistry 1999, 50, 729–737. [Google Scholar] [CrossRef]
- Juliano, C.; Cossu, M.; Alamanni, M.C.; Piu, L. Antioxidant activity of gamma-oryzanol: Mechanism of action and its effect on oxidative stability of pharmaceutical oils. Int. J. Pharm. 2005, 299, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Yamuangmorn, S.; Prom-U-thai, C. The potential of high-anthocyanin purple rice as a functional ingredient in human health. Antioxidants 2021, 10, 833. [Google Scholar] [CrossRef]
- Xia, D.; Zhou, H.; Wang, Y.; Li, P.; Fu, P.; Wu, B.; He, Y. How rice organs are colored: The genetic basis of anthocyanin biosynthesis in rice. Crop J. 2021, 9, 598–608. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Z.; Li, J.; Zhang, H.; Peng, Y.; Li, Z. Uncovering hierarchical regulation among myb-bhlh-wd40 proteins and manipulating anthocyanin pigmentation in rice. Int. J. Mol. Sci. 2022, 23, 8203. [Google Scholar] [CrossRef]
- Jaakola, L.; Määttä, K.; Pirttilä, A.M.; Törrönen, R.; Kärenlampi, S.; Hohtola, A. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development1. Plant Physiol. 2002, 130, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Wang, X.; Wang, Y.; Wang, S. Conserved and non-conserved functions of the rice homologs of the arabidopsis trichome initiation-regulating mbw complex proteins. BMC Plant Biol. 2021, 21, 234. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Yang, J.; Ha, S.-H.; Kim, J.K.; Lee, J.-Y.; Lim, S.-H. An oskala3, r2r3 myb tf, is a common key player for black rice pericarp as main partner of an oskala4, bhlh tf. Front. Plant Sci. 2021, 12, 765049. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wu, H.; Zhu, H.; Huang, C.; Liu, C.; Chang, Y.; Kong, Z.; Zhou, Z.; Wang, G.; Lin, Y.; et al. Determining factors, regulation system, and domestication of anthocyanin biosynthesis in rice leaves. New Phytol. 2019, 223, 705–721. [Google Scholar] [CrossRef] [PubMed]
- Soubeyrand, E.; Basteau, C.; Hilbert, G.; van Leeuwen, C.; Delrot, S.; Gomès, E. Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-sauvignon berries. Phytochemistry 2014, 103, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Lea, U.S.; Slimestad, R.; Smedvig, P.; Lillo, C. Nitrogen deficiency enhances expression of specific myb and bhlh transcription factors and accumulation of end products in the flavonoid pathway. Planta 2007, 225, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Thapa, M.; Liu, L.; Barkla, B.J.; Kretzschmar, T.; Rogiers, S.Y.; Rose, T.J. Accumulation patterns of anthocyanin and g-oryzanol during black rice grain development. PLoS ONE 2024, 19, 5. [Google Scholar] [CrossRef] [PubMed]
- Rose, T.J.; Raymond, C.A.; Bloomfield, C.; King, G.J. Perturbation of nutrient source–sink relationships by post-anthesis stresses results in differential accumulation of nutrients in wheat grain. J. Plant Nutr. Soil Sci. 2015, 178, 89–98. [Google Scholar] [CrossRef]
- Yoshida, S.; Forno, D.A.; Cock, J.H. Laboratory manual for physiological studies of rice. In Laboratory Manual for Physiological Studies of Rice; International Rice Research Institute: Los Banos, Philippines, 1971; 61p. [Google Scholar]
- Rayment, G.; Lyons, D. Soil Chemical Methods—Australasia; CSIRO Publishing: Melbourne, Australia, 2010. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative pcr and the 2(-delta delta c(t)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Hilbert, G.; Soyer, J.P.; Molot, C.; Giraudon, J.; Milin, S.; Gaudillere, J.P. Effects of nitrogen supply on must quality and anthocyanin accumulation in berries of cv. Merlot. VITIS-J. Grapevine Res. 2003, 42, 69–76. [Google Scholar]
- Yañez-Mansilla, E.; Cartes, P.; Reyes-Díaz, M.; Ribera-Fonseca, A.; Rengel, Z.; Lobos, W.; Alberdi, M. Leaf nitrogen thresholds ensuring high antioxidant features of vaccinium corymbosum cultivars. J. Soil Sci. Plant Nutr. 2015, 15, 574–586. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Jaafar, H.Z.E. The relationship of nitrogen and c/n ratio with secondary metabolites levels and antioxidant activities in three varieties of malaysian kacip fatimah (Labisia pumila blume). Molecules 2011, 16, 5514–5526. [Google Scholar] [CrossRef]
- Peng, M.; Hudson, D.; Schofield, A.; Tsao, R.; Yang, R.; Gu, H.; Bi, Y.-M.; Rothstein, S.J. Adaptation of arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the nla gene. J. Exp. Bot. 2008, 59, 2933. [Google Scholar] [CrossRef]
- Oikawa, T.; Maeda, H.; Oguchi, T.; Yamaguchi, T.; Tanabe, N.; Ebana, K.; Yano, M.; Ebitani, T.; Izawa, T. The birth of a black rice gene and its local spread by introgression. Plant Cell 2015, 27, 2401. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Z.; Chen, C.; Wu, W.; Ren, N.; Jiang, C.; Yu, J.; Zhao, Y.; Zheng, X.; Yang, Q.; et al. The c-s-a gene system regulates hull pigmentation and reveals evolution of anthocyanin biosynthesis pathway in rice. J. Exp. Bot. 2018, 69, 1485. [Google Scholar] [CrossRef]
- Wang, X.-F.; An, J.-P.; Liu, X.; Su, L.; You, C.-X.; Hao, Y.-J. The nitrate-responsive protein mdbt2 regulates anthocyanin biosynthesis by interacting with the mdmyb1 transcription factor. Plant Physiol. 2018, 178, 890–906. [Google Scholar] [CrossRef]
- Scheible, W.R.; Morcuende, R.; Czechowski, T.; Fritz, C.; Osuna, D.; Palacios-Rojas, N.; Schindelasch, D.; Thimm, O.; Udvardi, M.K.; Stitt, M. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of arabidopsis in response to nitrogen. Plant Physiol. 2004, 136, 2483–2499. [Google Scholar] [CrossRef]
- Badalkhani, O.; Pires, P.C.; Mohammadi, M.; Babaie, S.; Paiva-Santos, A.C.; Hamishehkar, H. Nanogel containing gamma-oryzanol-loaded nanostructured lipid carriers and tio2/mbbt: A synergistic nanotechnological approach of potent natural antioxidants and nanosized uv filters for skin protection. Pharmaceuticals 2023, 16, 670. [Google Scholar] [CrossRef]
SCU212 | SCU254 | ||||||
---|---|---|---|---|---|---|---|
Traits | −N | +N | p-Value | −N | +N | p-Value | |
With UV | Plant height (cm) | 69 | 74.6 | * | 50.6 | 58.2 | ** |
No. of tillers per plant | 3.6 | 7.8 | ** | 2.5 | 12 | ** | |
Grain yield (g/plant) | 3.51 | 10.17 | ** | 2.15 | 22.81 | ** | |
Straw biomass (g/plant) | 6.67 | 16.8 | ** | 7 | 31.21 | ** | |
Grain moisture (%) | 21.3 | 23 | ns | 22.1 | 29.1 | ** | |
Grain size (g/100 grains) | 1.81 | 1.91 | * | 2.24 | 2.2 | ns | |
Without UV | Plant height (cm) | 78 | 87.4 | ** | 51.25 | 62.4 | ** |
No. of tillers per plant | 3.2 | 8.2 | ** | 2.6 | 11.2 | ** | |
Grain yield (g/plant) | 3.04 | 13.02 | ** | 2.45 | 22.64 | ** | |
Straw biomass (g/plant) | 7.25 | 22.1 | ** | 4.77 | 24.14 | ** | |
Grain moisture (%) | 22.1 | 26.3 | * | 24.5 | 30 | ** | |
Grain size (g/100 grains) | 1.63 | 1.73 | ** | 2.35 | 2.18 | * |
SCU212 | SCU254 | ||||||
---|---|---|---|---|---|---|---|
−N | +N | p-Value | −N | +N | p-Value | ||
With UV | C3G concentration (mg/100 g) | 758.34 | 913.77 | * | 575.03 | 593.31 | ns |
γ-Oryzanol concentration (mg/100 g) | 58.08 | 52.87 | * | 40.63 | 39.55 | ns | |
C3G content (mg/100 grains) | 12.25 | 15.97 | * | 11.64 | 12.27 | ns | |
γ-Oryzanol content (mg/100 grains) | 0.96 | 0.89 | * | 0.82 | 0.8 | ns | |
Without UV | C3G concentration (mg/100 g) | 666.61 | 819.25 | ** | 592.85 | 614.51 | ns |
γ-oryzanol concentration (mg/100 g) | 55.19 | 51.78 | ** | 48.97 | 48.54 | ns | |
C3G content (mg/100 grains) | 10.9 | 12.76 | * | 12.34 | 12.48 | ns | |
γ-Oryzanol content (mg/100 grains) | 0.89 | 0.81 | ** | 0.77 | 0.76 | ns |
SCU212 | SCU254 | ||||||
---|---|---|---|---|---|---|---|
Traits | −N | +N | p-Value | −N | +N | p-Value | |
With UV | N concentration (g/100 g) | 1.42 | 2.03 | ** | 1.336 | 1.388 | ns |
C/N ratio | 29.82 | 21.08 | ** | 31.7 | 30.77 | ns | |
N content (g/100 grains) | 0.023 | 0.035 | ** | 0.027 | 0.028 | ns | |
Without UV | N concentration (g/100 g) | 1.3 | 1.81 | ** | 1.336 | 1.394 | ns |
C/N ratio | 32.76 | 23.8 | ** | 32.14 | 30.59 | ns | |
N content (g/100 grains) | 0.02 | 0.029 | ** | 0.027 | 0.028 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thapa, M.; Liu, L.; Barkla, B.J.; Kretzschmar, T.; Rogiers, S.Y.; Rose, T.J. Nitrogen Fertiliser Effects on Grain Anthocyanin and γ-Oryzanol Biosynthesis in Black Rice. Agriculture 2024, 14, 817. https://doi.org/10.3390/agriculture14060817
Thapa M, Liu L, Barkla BJ, Kretzschmar T, Rogiers SY, Rose TJ. Nitrogen Fertiliser Effects on Grain Anthocyanin and γ-Oryzanol Biosynthesis in Black Rice. Agriculture. 2024; 14(6):817. https://doi.org/10.3390/agriculture14060817
Chicago/Turabian StyleThapa, Manisha, Lei Liu, Bronwyn J. Barkla, Tobias Kretzschmar, Suzy Y. Rogiers, and Terry J. Rose. 2024. "Nitrogen Fertiliser Effects on Grain Anthocyanin and γ-Oryzanol Biosynthesis in Black Rice" Agriculture 14, no. 6: 817. https://doi.org/10.3390/agriculture14060817
APA StyleThapa, M., Liu, L., Barkla, B. J., Kretzschmar, T., Rogiers, S. Y., & Rose, T. J. (2024). Nitrogen Fertiliser Effects on Grain Anthocyanin and γ-Oryzanol Biosynthesis in Black Rice. Agriculture, 14(6), 817. https://doi.org/10.3390/agriculture14060817