Design and Optimization of Geometry of Liquid Feed Conveyor Pipes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation Modeling
2.2. Governing Equation of the Liquid and Solid Phases
2.3. Model Validation
2.3.1. Grid Size Independence Tests
2.3.2. Experimental Verification
3. Results
3.1. Velocity Distributions
3.2. Swirl Effectiveness
3.3. Concentration Distributions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Plumed-Ferrer, C.; von Wright, A. Fermented pig liquid feed: Nutritional, safety and regulatory aspects. J. Appl. Microbiol. 2009, 106, 351–368. [Google Scholar] [CrossRef] [PubMed]
- Nannen, C.; Schmitt-Pauksztat, G.; Buscher, W.J.L. Microscopic test of dust particles in pig fattening houses: Differences between dry and liquid feeding. Landtechnik 2005, 60, 218–219. [Google Scholar]
- Torok, V.A.; Luyckx, K.; Lapidge, S. Human food waste to animal feed: Opportunities and challenges. Anim. Prod. Sci. 2022, 62, 1129–1139. [Google Scholar] [CrossRef]
- Kil, D.Y.; Stein, H.H. Board Invited Review: Management and feeding strategies to ameliorate the impact of removing antibiotic growth promoters from diets fed to weanling pigs. Can. J. Anim. Sci. 2010, 90, 447–460. [Google Scholar] [CrossRef]
- Canibe, N.; Jensen, B.B. Fermented liquid feed-Microbial and nutritional aspects and impact on enteric diseases in pigs. Anim. Feed. Sci. Technol. 2012, 173, 17–40. [Google Scholar] [CrossRef]
- Kobek-Kjeldager, C.; Vodolazs’ka, D.y.; Lauridsen, C.; Canibe, N.; Pedersen, L.J. Impact of supplemental liquid feed pre-weaning and piglet weaning age on feed intake post-weaning. Livest. Sci. 2021, 252, 252. [Google Scholar] [CrossRef]
- Xin, H.; Wang, M.; Xia, Z.; Yu, B.; He, J.; Yu, J.; Mao, X.; Huang, Z.; Luo, Y.; Luo, J.; et al. Fermented Diet Liquid Feeding Improves Growth Performance and Intestinal Function of Pigs. Animals 2021, 11, 1452. [Google Scholar] [CrossRef]
- Cullen, J.T.; Lawlor, P.G.; Cormican, P.; Gardiner, G.E. Microbial Quality of Liquid Feed for Pigs and Its Impact on the Porcine Gut Microbiome. Animals 2021, 11, 2983. [Google Scholar] [CrossRef]
- Zhao, D.; Guan, Y.; Qi, Z.; Wu, L.; Liang, L.; Yao, Y. Design and experiment of intelligent feeding vehicle for pig liquid feed. J. Chin. Agric. Mech. 2022, 043, 91–98. [Google Scholar] [CrossRef]
- Newitt, D.M.; Richardson, J.F.; Abbott, M.; Turtle, R.B. Hydraulic conveying of solids in horizontal pipes. Trans. Inst. Chem. Eng. 1955, 33, 93–113. [Google Scholar]
- Thomas, D.G. Transport characteristics of suspensions: Part VI. Minimum transport velocity for large particle size suspensions in round horizontal pipes. AIChE J. 2010, 8, 373–378. [Google Scholar] [CrossRef]
- Wood, R.J.K.; Jones, T.F.; Miles, N.J.; Ganeshalingam, J. Upstream swirl-induction for reduction of erosion damage from slurries in pipeline bends. Wear 2001, 250, 770–778. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Li, X.; He, R.; Han, S.; Chen, Y. Erosion prediction of liquid-particle two-phase flow in pipeline elbows via CFD-DEM coupling method. Powder Technol. Int. J. Sci. Technol. Wet Dry Part. Syst. 2015, 275, 182–187. [Google Scholar]
- Durand, R. Basic relationships of the transportation of solids in pipes-experimental research. In Proceedings of the IAHR 5th Congress, Minneapolis, MN, USA, 1–4 September 1953; pp. 89–103. [Google Scholar]
- Yanuar, Y.; Gunawan, G.; Sapjah, D. Characteristics of Silica Slurry Flow in a Spiral Pipe. Int. J. Technol. 2015, 6, 916. [Google Scholar] [CrossRef]
- Watanabe, K.; Kamoshida, T.; Kato, H. Pressure loss of fly ash slurries in a spiral tube. Trans. Jpn. Soc. Mech. Eng. Ser. B 1988, 54, 1064–1072. [Google Scholar] [CrossRef]
- Qi, J.; Yin, J.; Yan, F.; Liu, P.; Wang, T.; Chen, C. Liquid–solid flow characteristics in vertical swirling hydraulic transportation with tangential jet inlet. J. Mar. Sci. Eng. 2021, 9, 1091. [Google Scholar] [CrossRef]
- Krishna, R.; Kumar, N.; Gupta, P.K. CFD investigation of pressure drop reduction in hydrotransport of multisized zinc tailings slurry through horizontal pipes. Int. J. Hydrog. Energy 2023, 48, 16435–16444. [Google Scholar] [CrossRef]
- Tang, J.; Gao, R. Numerical simulation of high-speed spiral flow in lifting pipe. J. Jiangxi Univ. Sci. Technol. 2015, 36, 64–68. [Google Scholar] [CrossRef]
- Yanuar, Y.; Waskito, K.T.; Mau, S.; Wulandari, W.; Sari, S.P. Helical Twisted Effect of Spiral Pipe in Generating Swirl Flow for Coal Slurries Conveyance. J. Teknol. 2017, 79, 69–79. [Google Scholar] [CrossRef]
- Charles, M.E.; Cheh, H.-S.; Chu, H.-L. The flow of “settling” slurries in tubes with internal spiral ribs. Can. J. Chem. Eng. 2009, 49, 737–741. [Google Scholar] [CrossRef]
- Li, H.; Tomita, Y. Characteristics of Swirling Flow in a Circular Pipe. J. Fluids Eng. 1994, 116, 370–373. [Google Scholar] [CrossRef]
- Fokeer, S.; Lowndes, I.S.; Hargreaves, D.M. Numerical modelling of swirl flow induced by a three-lobed helical pipe. Chem. Eng. Process. Process Intensif. 2010, 49, 536–546. [Google Scholar] [CrossRef]
- Zhou, J.-w.; Du, C.-l.; Liu, S.-y.; Liu, Y. Comparison of three types of swirling generators in coarse particle pneumatic conveying using CFD-DEM simulation. Powder Technol. 2016, 301, 1309–1320. [Google Scholar] [CrossRef]
- Ariyaratne, C. Design and Optimisation of Swirl Pipes and Transition Geometries for Slurry Transport. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2005. [Google Scholar]
- Rao, Y.; Liu, Z.; Wang, S.; Li, L.; Sun, Q. Numerical Simulation of Swirl Flow Characteristics of CO2 Hydrate Slurry by Short Twisted Band. Entropy 2021, 23, 913. [Google Scholar] [CrossRef] [PubMed]
- Schaan, J.; Sumner, R.J.; Gillies, R.G.; Shook, C.A. The effect of particle shape on pipeline friction for Newtonian slurries of fine particles. Can. J. Chem. Eng. 2000, 78, 717–725. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, S.; Kuang, S.; Luo, K.; Fan, J.; Yu, A. CFD-DEM modelling of hydraulic conveying of solid particles in a vertical pipe. Powder Technol. 2019, 354, 893–905. [Google Scholar] [CrossRef]
- Li, M.-z.; He, Y.-p.; Liu, Y.-d.; Huang, C. Pressure drop model of high-concentration graded particle transport in pipelines. Ocean. Eng. 2018, 163, 630–640. [Google Scholar] [CrossRef]
- Wu, J.; Wang, C.; Wang, M.; Liu, Y.; Li, Y. Numerical simulation of turbulent fluid flow and heat transfer in a circular tube with twisted tape inserts. J. Zhengzhou Univ. (Eng. Sci.) 2017, 38, 10–14. [Google Scholar] [CrossRef]
- Liang, J.; Rao, Y.; Wang, S.; Yan, S.; Ge, H.; Cai, Y. Numerical simulation of spiral flow and heat transfer in natural gas hydrate pipelines. Oil-Gas Field Surf. Eng. 2018, 37, 6–11. [Google Scholar] [CrossRef]
- Wen, C.; Cao, X.; Yang, Y. Swirling flow of natural gas in supersonic separators. Chem. Eng. Process. Process Intensif. 2011, 50, 644–649. [Google Scholar] [CrossRef]
- Yuan, F.; Wang, H.; Zhou, P.; Xu, A.; He, D. Heat transfer performances of honeycomb regenerators with square or hexagon cell opening. Appl. Therm. Eng. 2017, 125, 790–798. [Google Scholar] [CrossRef]
- Tao, Y.B.; He, Y.-L. A review of phase change material and performance enhancement method for latent heat storage system. Renew. Sustain. Energy Rev. 2018, 93, 245–259. [Google Scholar] [CrossRef]
- Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 1986, 1, 3–51. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, J.; Li, Y. Influence analysis of 2D dimple concave non-smooth units’ depth on drag-reduction performance. J. Chin. Agric. Mech. 2016, 37, 44–48. [Google Scholar] [CrossRef]
- Messa, G.V.; Malavasi, S. Computational investigations of solid–liquid particle interaction in a two-phase flow around a ducted obstruction. J. Hydraul. Res. 2011, 49, 840–841. [Google Scholar] [CrossRef]
- Li, M.; Tao, L.; Yu, Z.; Yu, Q. Numerical investigation on cooling and heat transfer of supercritical CO2 in horizontal spiral groove tubes. J. Eng. Therm. Energy Power 2021, 36, 51–59. [Google Scholar] [CrossRef]
- Basavarajappa, M.; Draper, T.; Toth, P.; Ring, T.A.; Miskovic, S. Numerical and experimental investigation of single phase flow characteristics in stirred tanks using Rushton turbine and flotation impeller. Miner. Eng. 2015, 83, 156–167. [Google Scholar] [CrossRef]
- Tsuo, Y.P.; Gidaspow, D. Computation of flow patterns in circulating fluidized beds. AIChE J. 1990, 36, 885–896. [Google Scholar] [CrossRef]
- Chen, L.; Duan, Y.; Liu, M.; Pu, W.; Zhao, C. Numerical simulation of characteristics of coal-water slurry flow in the inlet section of a horizontal Pipe. J. Southeast Univ. (Nat. Sci. Ed.) 2010, 40, 402–408. [Google Scholar] [CrossRef]
- An, J.; Huang, K. Simulation design of pipeline type device for microwave heating of solid materials. J. Microw. 2015, 31, 35–42. [Google Scholar] [CrossRef]
Number (N) | Angle (θ) | Length (L) | Height (H) | Code |
---|---|---|---|---|
1 | 30° | 1.5D | 0.5R | N1 |
2 | 30° | 1.5D | 0.5R | N2 |
3 | 30° | 1.5D | 0.5R | N3 |
4 | 30° | 1.5D | 0.5R | N4 |
5 | 30° | 1.5D | 0.5R | N5 |
6 | 30° | 1.5D | 0.5R | N6 |
3 | 10° | 1.5D | 0.5R | A1 |
3 | 20° | 1.5D | 0.5R | A2 |
3 | 40° | 1.5D | 0.5R | A4 |
3 | 50° | 1.5D | 0.5R | A5 |
3 | 60° | 1.5D | 0.5R | A6 |
3 | 30° | 0.5D | 0.5R | L1 |
3 | 30° | 1.0D | 0.5R | L2 |
3 | 30° | 2.0D | 0.5R | L4 |
3 | 30° | 2.5D | 0.5R | L5 |
3 | 30° | 3.0D | 0.5R | L6 |
3 | 30° | 1.5D | 0.125R | H1 |
3 | 30° | 1.5D | 0.25R | H2 |
3 | 30° | 1.5D | 0.375R | H3 |
3 | 30° | 1.5D | 0.625R | H5 |
3 | 30° | 1.5D | 0.75R | H6 |
3 | 30° | 1.5D | 0.875R | H7 |
Object | Settings | Parameters |
---|---|---|
Liquid phase | Density/(kg·m−3) | 998.2 |
Viscosity/(kg·m−1·s−1) | 1.003 × 10−3 | |
Solid phase | Density/(kg·m−3) | 1500 |
Volume fraction | 0.175 | |
Diameter/(μm) | 75 | |
Inlet | Velocity inlet/(m·s−1) | 3 |
Outlet | Pressure outlet/(Pa) | 0 |
Wall | No-slip condition | |
Turbulence | Turbulence intensity/(%) | 3.50399 |
Hydraulic diameter/(m) | 0.063 |
Grid | Number of Nodes | Number of Cells |
---|---|---|
Coarse grid | 169,768 | 60,274 |
Coarse-M grid | 580,940 | 186,099 |
Medium grid | 1,308,650 | 467,189 |
Medium-M grid | 3,034,836 | 1,126,833 |
Fine-M grid | 10,651,510 | 4,042,539 |
Fine grid | 38,602,658 | 14,861,850 |
40D–50D | 50D–60D | 60D–70D | 70D–80D | 80D–90D | |
---|---|---|---|---|---|
Re = 1.5 × 105 | 8.416% | 5.811% | 1.982% | −1.175% | −0.374% |
Re = 1.5 × 105 | 5.279% | 3.644% | 1.623% | −0.494% | 0.008% |
Re = 2.5 × 105 | 3.729% | 1.791% | 0.647% | −0.057% | 0.541% |
Re = 3.0 × 105 | 3.371% | 1.635% | 0.635% | 0.176% | 0.837% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Hu, J.; Hu, H.; Hu, H.; Xiao, J.; Liu, R. Design and Optimization of Geometry of Liquid Feed Conveyor Pipes. Agriculture 2024, 14, 863. https://doi.org/10.3390/agriculture14060863
Xia Y, Hu J, Hu H, Hu H, Xiao J, Liu R. Design and Optimization of Geometry of Liquid Feed Conveyor Pipes. Agriculture. 2024; 14(6):863. https://doi.org/10.3390/agriculture14060863
Chicago/Turabian StyleXia, Yuwen, Jie Hu, Huiyue Hu, Haibin Hu, Jiajia Xiao, and Renxin Liu. 2024. "Design and Optimization of Geometry of Liquid Feed Conveyor Pipes" Agriculture 14, no. 6: 863. https://doi.org/10.3390/agriculture14060863
APA StyleXia, Y., Hu, J., Hu, H., Hu, H., Xiao, J., & Liu, R. (2024). Design and Optimization of Geometry of Liquid Feed Conveyor Pipes. Agriculture, 14(6), 863. https://doi.org/10.3390/agriculture14060863