Exploring the Potential of Russula griseocarnosa: A Molecular Ecology Perspective
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Nutritional Composition of R. griseocarnosa
3.2. Health Benefits of R. griseocarnosa
3.3. Isolation and Identification of ‘Strains’ from R. griseocarnosa
3.4. The Symbiotic Characteristics of R. griseocarnosa
3.5. Habitat Molecular Ecology of R. griseocarnosa
3.6. Artificial Domestication
4. Discussion
- 1.
- Enhancing the accurate identification of R. griseocarnosa
- 2.
- Navigating challenges for isolation of R. griseocarnosa culture
- 3.
- The Symbiotic Interaction between R. griseocarnosa and its host plant
- 4.
- Clarify the functional interaction of R. griseocarnosa with microorganisms in habitat soil and endophytic fungi in the fruiting body
- 5.
- Challenges in the artificial domestication of R. griseocarnosa
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Volatile Compouds | Secondary (CAS) | Name | Formula |
---|---|---|---|
1 | 57-10-3 | Palmitic acid | C16H32O2 |
2 | 60-12-8 | 2-Phenylethanol | C8H10O |
3 | 1002-43-3 | 3-Methylundecane | C12H26 |
4 | 1004-29-1 | 2-butyl tetrahydrofuran | C8H16O |
5 | 100-52-7 | Benzaldehyde | C7H6O |
6 | 1014-60-4 | Benzene,1,3-bis(1,1-dimethylethyl)- | C14H22 |
7 | 104-46-1 | cis-Anethol | C10H12O |
8 | 10482-56-1 | (-)-α-Terpineol | C10H18O |
9 | 107-50-6 | Tetradecamethyl Cycloheptasiloxane | C14H42O7Si7 |
10 | 109-08-0 | methylpyrazine | C5H6N2 |
11 | 110-43-0 | 2-Heptanone | C7H14O |
12 | 111150-30-2 | Pyrazine, 3,5-dimethyl-2-(3-methylbutyl)-(9CI) | C11H18N2 |
13 | 111-71-7 | Heptanal | C7H14O |
14 | 1120-21-4 | Undecane | C11H24 |
15 | 112-12-9 | 2-Undecanone | C11H22O |
16 | 112-31-2 | Decanal | C10H20O |
17 | 112-40-3 | Dodecane | C12H26 |
18 | 1124-11-4 | Tetramethylpyrazine | C8H12N2 |
19 | 112-41-4 | dodecene | C12H24 |
20 | 112-44-7 | Undecanal | C11H22O |
21 | 1125-21-9 | 2,6,6-Trimethyl-2-cyclohexene-1,4-dione | C9H12O2 |
22 | 116-53-0 | 2-Methylbutyric acid | C5H10O2 |
23 | 118-65-0 | isocaryophyllene | C15H24 |
24 | 120-94-5 | 1-Methylpyrrolidine | C5H11N |
25 | 122-78-1 | Phenylacetaldehyde | C8H8O |
26 | 123-32-0 | 2,5-Dimethylpyrazine | C6H8N2 |
27 | 124-13-0 | Octanal | C8H16O |
28 | 124-19-6 | Nonanal | C9H18O |
29 | 13019-16-4 | 2-Butyl-2-octenal | C12H22O |
30 | 13152-44-8 | Butylcyclobutane | C8H16 |
31 | 13286-73-2 | 3-Ethyltridecane | C15H32 |
32 | 13360-65-1 | 2-Ethyl-3,5-dimethylpyrazine | C8H12N2 |
33 | 140-67-0 | Estragole | C10H12O |
34 | 142-50-7 | Nerolidol, cis-(+) | C15H26O |
35 | 14309-57-0 | 3-Nonen-2-one | C9H16O |
36 | 1472-09-9 | octylcyclopropane | C11H22 |
37 | 1502-38-1 | methylcyclooctane | C9H18 |
38 | 15870-10-7 | 2-Methyl-1-heptene | C8H16 |
39 | 17301-25-6 | 2,8-Dimethylundecane | C13H28 |
40 | 17301-28-9 | Undecane,3,6-dimethyl- | C13H28 |
41 | 17301-29-0 | Undecane,3,7-dimethyl- | C13H28 |
42 | 17301-30-3 | 3,8-Dimethylundecane | C13H28 |
43 | 17301-32-5 | Undecane,4,7-dimethyl- | C13H28 |
44 | 17302-28-2 | NONANE,2,6-DIMETHYL- | C11H24 |
45 | 17312-68-4 | 4,4-Dimethylundecane | C13H28 |
46 | 17312-80-0 | 2,4-Dimethyl-undecane | C13H28 |
47 | 17453-93-9 | 5-methyldodecane | C13H28 |
48 | 17615-91-7 | Undecane,5,6-dimethyl- | C13H28 |
49 | 19132-06-0 | (+)-2,3-Butanediol | C4H10O2 |
50 | 192823-15-7 | 2,3,5,8-tetramethyldecane | C14H30 |
51 | 19780-34-8 | Tridecane, 3-methylene- | C14H28 |
52 | 19780-74-6 | 5-Ethyl-1-nonene | C11H22 |
53 | 2027-47-6 | octadec-9-enoic acid | C18H34O2 |
54 | 2471-84-3 | 1H-Indene,1-methilene- | C10H8 |
55 | 25117-31-1 | 5-Methyltridecane | C14H30 |
56 | 25117-33-3 | 5-methylpentadecane | C16H34 |
57 | 2801-84-5 | 2,4-dimethyldecane | C12H26 |
58 | 2882-96-4 | 3-Methylpentadecane | C16H34 |
59 | 295-17-0 | cyclotetradecane | C14H28 |
60 | 31295-56-4 | 2,6,11-Trimethyldodecane | C15H32 |
61 | 3391-86-4 | Oct-1-en-3-ol | C8H16O |
62 | 3393-45-1 | 5,6-DIHYDRO-2H-PYRAN-2-ONE | C5H6O2 |
63 | 3777-69-3 | 2-Amylfuran | C9H14O |
64 | 3879-26-3 | neryl acetone | C13H22O |
65 | 4126-78-7 | Methylcycloheptane | C8H16 |
66 | 41446-67-7 | (Z)-tetradec-3-ene | C14H28 |
67 | 4292-19-7 | 1-Iodododecane | C12H25I |
68 | 4411-89-6 | 2-phenyl-2-butenal | C10H10O |
69 | 4457-00-5 | hexylcyclopentane | C11H22 |
70 | 503-74-2 | 3-Methylbutanoic acid | C5H10O2 |
71 | 50656-61-6 | (3aR,8aS)-2,2,8-trimethyl-3,3a,6,8a-tetrahydro-1H-azulene-5,6-dicarbal dehyde | C15H20O2 |
72 | 51756-29-7 | 3-Butyl-3-methylcyclohexanone | C11H20O |
73 | 51945-98-3 | 1,5-Heptadiene-3,4-diol | C7H12O2 |
74 | 540-97-6 | Dodecamethylcyclohexasiloxane | C12H36O6Si6 |
75 | 541-02-6 | Decamethylcyclopentasiloxane | C10H30O5Si5 |
76 | 541-05-9 | hexamethylcyclotrisiloxane | C6H18O3Si3 |
77 | 544-76-3 | Hexadecane | C16H34 |
78 | 556-67-2 | Octamethylcyclotetrasiloxane | C8H24O4Si4 |
79 | 556-68-3 | hexadecamethylcyclooctasiloxane | C16H48O8Si8 |
80 | 563-16-6 | 3,3-Dimethylhexane | C8H18 |
81 | 5876-87-9 | 1,11-Dodecadiene | C12H22 |
82 | 590-86-3 | Isovaleraldehyde | C5H10O |
83 | 61141-72-8 | dodecane,4,6-dimethyl | C14H30 |
84 | 62016-37-9 | 2,4,6-trimethyl octane | C11H24 |
85 | 62108-21-8 | 6-ethyl-2-methyl-decane | C13H28 |
86 | 62108-22-9 | 2,5,9-trimethyldecane | C13H28 |
87 | 62108-23-0 | Trimethyldecane, 2,5,6- | C13H28 |
88 | 622-39-9 | 2-Propylpyridine | C8H11N |
89 | 62338-50-5 | (E)-8-Methyl-4-decene | C11H22 |
90 | 629-50-5 | Tridecane | C13H28 |
91 | 629-59-4 | Tetradecane | C14H30 |
92 | 6418-41-3 | 3-methyltridecane | C14H30 |
93 | 6418-43-5 | 3-methylhexadecane | C17H36 |
94 | 64-19-7 | acetic acid | C2H4O2 |
95 | 66-25-1 | Hexanal | C6H12O |
96 | 67-64-1 | Acetone | C3H6O |
97 | 6831-17-0 | aristolone | C9H11N3 |
98 | 693-54-9 | 2-Decanone | C10H20O |
99 | 69460-62-4 | (4aS,8R)-4,4a,5,6,7,8-Hexahydro-4a,8-dimethyl-2(3H)-naphthalenone | C12H18O |
100 | 71138-64-2 | Undecane, 3-methylene- | C12H24 |
101 | 7154-79-2 | 2,2,3,3-Tetramethylpentane | C9H20 |
102 | 74630-39-0 | 4-Methyl-1-undecene | C12H24 |
103 | 74645-98-0 | DODECANE,2,7,10-TRIMETHYL- | C15H32 |
104 | 74663-85-7 | Nonylcyclopropane | C12H24 |
105 | 74685-36-2 | Oxacyclotetradecane-2,11-dione, 13 methyl- | C14H24O3 |
106 | 7473-98-5 | 2-Hydroxy-2-methyl propiophenone | C10H12O2 |
107 | 75-50-3 | Trimethylamine | C3H9N |
108 | 78-84-2 | Isobutyraldehyde | C4H8O |
109 | 79-31-2 | Isobutyric acid | C4H8O2 |
110 | 79-50-5 | DL-Pantolactone | C6H10O3 |
111 | 84-69-5 | Diisobutyl phthalate | C16H22O4 |
112 | 91010-41-2 | 2-methyl-6-(3-methyl-butyl)-pyrazine | C10H16N2 |
113 | 91-20-3 | Naphthalene | C10H8 |
114 | 96-17-3 | 2-Methylbutanal | C5H10O |
115 | 96-76-4 | 2,4-Di-t-butylphenol | C14H22O |
116 | 98-55-5 | alpha-Terpineol | C10H18O |
References
- Tang, C.; Chen, Y.; Liu, R. Advances in studies of edible mycorrhizal fungi. Mycosystema 2011, 30, 367–378. (In Chinese) [Google Scholar] [CrossRef]
- Cao, B.; Li, G.; Zhao, R. Species diversity and geographic components of Russula from the Greater and Lesser Khinggan Mountains. Biodivers. Sci. 2019, 27, 854. [Google Scholar] [CrossRef]
- Algaebase. Index Fungorum; CABI Bioscience: Wallingford, UK; CBS: New York, NY, USA; Landcare Research: Lincoln, New Zealand, 2018; Available online: https://www.indexfungorum.org/names/names.asp (accessed on 12 March 2024).
- Kirk, P.M.; Cannon, P.F.; Stalpers, J.A. Dictionary of the Fungi, 10th ed.; CABI Europe: Wallingford, UK, 2008. [Google Scholar]
- Li, G.J. The Taxonomy of Russula in China. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2014. (In Chinese). [Google Scholar]
- Bo, L. Chinese Medicinal Fungi; Shanxi People’s Publishing House: Taiyuan, China, 1984. (In Chinese) [Google Scholar]
- Dai, Y.C.; Yang, Z.L. A revised checklist of medicinal fungi in China. Mycosystema 2008, 27, 801–824. (In Chinese) [Google Scholar] [CrossRef]
- Dai, Y.C.; Zhou, L.W.; Yang, Z.L.; Wen, H.A.; Bau, T.; Li, T.H. A revised checklist of edible fungi in China. Mycosystema 2010, 29, 1–21. (In Chinese) [Google Scholar] [CrossRef]
- Li, G.J.; Li, S.F.; Wen, H.A. Economic value of Russula species resources in China. In Proceedings of the 9th National Edible Fungi Academic Symposium, Shanghai, China, 15 October 2010; pp. 155–160. (In Chinese). [Google Scholar]
- Dai, Y.C.; Bau, T.; Cui, B.K.; Qin, G.F. Illustration of Chinese Medicinal Fungi; Northeast Forestry University Press: Harbin, China, 2012. (In Chinese) [Google Scholar]
- Li, C.H.; Qu, M.Q.; Cao, H.; Deng, W.Q.; Shang, X.D.; Song, B.; Tan, Q. Checklist of Common Names of Mushrooms in China. Acta Edulis Fungi 2013, 20, 50–72. (In Chinese) [Google Scholar] [CrossRef]
- Cheng, Y.; Gan, J.; Yan, B.; Wang, P.; Wu, H.; Huang, C. Polysaccharides from Russula: A review on extraction, purification, and bioactivities. Front. Nutr. 2024, 11, 1406817. [Google Scholar] [CrossRef]
- Zhou, X.P.; Lu, Q.; Wang, X.P.; Wang, J. Research progress on Russula mushrooms. Edible Fungi 2010, 32, 1–2. (In Chinese) [Google Scholar]
- Huang, N.; Lin, Z.; Chen, G. Medicinal and Edible Fungi in China; Shanghai Science and Technology Literature Publishing House: Shanghai, China, 2010; p. 1414. (In Chinese) [Google Scholar]
- Das, K.; Van de Putte, K.; Buyck, B. New or interesting Russula from Sikkim Himalaya (India). Cryptogam. Mycol. 2010, 31, 373–387. [Google Scholar]
- Anh, C.N.; Chi, N.M.; Kiet, T.T.; Long, P.D.; Thuy, P.T.T.; Van Loi, V.; Dell, B. Morphological and molecular identification of an edible Russula mushroom in northeast Vietnam. J. For. Sci. Technol. 2023, 50–59. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Z.; Li, Y.; Knudsen, H.; Liu, P. Russula griseocarnosa sp. nov. (Russulaceae, Russulales), a commercially important edible mushroom in tropical China: Mycorrhiza, phylogenetic position, and taxonomy. Nova Hedwig. 2009, 88, 269–282. [Google Scholar] [CrossRef]
- Liu, H.; Chen, X. Morphological and structural characteristics of Russula griseocarnosa sp. nov. in Guangdong. Guangdong Agric. Sci. 2011, 38, 140–143. (In Chinese) [Google Scholar] [CrossRef]
- Li, Z.; Zhong, Y.Y.; Chen, Y.X. Investigation on the resources of wild Russula griseocarnosa in Meizhou, Guangdong. Edible Fungi 2012, 34, 8–9. (In Chinese) [Google Scholar]
- Lou, X.-H.; Gan, Y.-K.; Wang, L.-M.; Yan, L.; Yang, X. Protective effect of extract from Russula sp. on oxidative damage caused by formaldehyde. J. Toxicol. 2007, 21, 225–226. (In Chinese) [Google Scholar]
- Chen, X.J.; Zhang, Y.Q. Polysaccharide Extract from Russula and Its Role of Lowering Blood Glucose and Lipid. Food Sci. 2010, 31, 255–258. (In Chinese) [Google Scholar]
- Liu, X. Study on the Structural Characterization of Russula griseocarnosa Polysaccharide and Its Improvement on Hematopoietic Function Based on Immunoregulation. Ph.D. Thesis, Jilin University, Changchun, China, 2023. (In Chinese). [Google Scholar]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Section 2 Ectomycorrhizas; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Hall, I.R.; Zambonelli, A. Laying the Foundations. In Edible Ectomycorrhizal Mushrooms: Current Knowledge and Future Prospects; Zambonelli, A., Bonito, G.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 3–16. [Google Scholar]
- Chen, X. Studies on Morphological and Molecular Identifications, Nutrient Components Analysis and Biological Properties of Commercial Russula sp. Produce in Guangdong. Ph.D. Thesis, Central South university, Changsha, China, 2010. (In Chinese). [Google Scholar]
- Liang, F. Effects of Summer and Winter on Slaughter Performance, Meat Quality and Fat Metabolism of Pheasants. Master’s Thesis, Jilin University, Changchun, China, 2023. (In Chinese). [Google Scholar]
- Li, J. Fatty Acid Enrichment and Metabolomics of Egg Yolk in Diets Supplemented with Fish Oil. Master’s Thesis, Yunnan Agricultural University, Kunming, China, 2023. (In Chinese). [Google Scholar]
- Ming, T.; Li, J.; Huo, P.; Wei, Y.; Chen, X. Analysis of Free Amino Acids in Russula griseocarnosa Harvested at Different Stages of Maturity Using iTRAQ®-LC-MS/MS. Food Anal. Methods 2014, 7, 1816–1823. [Google Scholar] [CrossRef]
- Wei, Y.; Li, J.; Xu, S.Y.; Zhao, L.Y.; Chen, X.H. Study on the chemical constituents of the essential oil from Russula griseocarnosa by steam distillation and petrol ether extract. Sci. Technol. Food Ind. 2013, 34, 91–93+117. (In Chinese) [Google Scholar] [CrossRef]
- Chen, X.H.; Xia, L.X.; Zhou, H.B.; Qiu, G.Z. Chemical Composition and Antioxidant Activities of Russula griseocarnosa sp. nov. J. Agric. Food Chem. 2010, 58, 6966–6971. [Google Scholar] [CrossRef]
- He, T. Study on Structure and Bioactivity of Polysaccarides from Russula griseocarnosa. Master’s Thesis, South China University of Technology, Guangzhou, China, 2015. (In Chinese). [Google Scholar]
- Gan, Y.K.; Lou, X.H.; Li, Y.; Wang, L.M.; Yang, X. Preliminary study on the antioxidant properties of Russula fruiting bodies. Edible Fungi 2007, 29, 57–59. (In Chinese) [Google Scholar]
- Gan, Y.K.; Chen, X.B.; Zeng, S.Y.; Wei, X.J.; Xiong, X.L. Study on the anti-exercise fatigue effect of Russula extract. Edible Fungi 2010, 32, 66–67. (In Chinese) [Google Scholar]
- Gan, Y.K.; Liu, Y.Z.; Liang, J.S.; Zeng, S.Y.; Yu, J.R.; Zhou, Z.Y. Preliminary Exploration about the Anti-aging Effect of Liquid Extraction from the Russula Fruitbodyon. J. Yulin Norm. Univ. 2011, 32, 81–85+82. (In Chinese) [Google Scholar] [CrossRef]
- Zeng, S.Y.; Gang, Y.K.; Ye, C.F. Study on Effect of Russula Extracting Solution on Anti-oxidation of the Elder Mice. J. Anhui Agric. Sci. 2009, 37, 7464–7466. [Google Scholar] [CrossRef]
- Zhao, F.L.; Zhang, Y.G.; Ning, L.D. Extraction, isolation and antioxidant activity of Russula-polysaccharide. China Brew. 2009, 28, 98–101. (In Chinese) [Google Scholar]
- Cai, X.; Zhang, P.; He, Y.; Kuang, X.; Yin, L. The Role of Reducing Blood Cholesterin of Auricularia Polysaccharide and Russula Polysaccharide. Shenzhen J. Integr. Tradit. Chin. West. Med. 2002, 12, 137–139. (In Chinese) [Google Scholar] [CrossRef]
- Cai, X.L.; Hu, C.Y.; Liu, M.P.; Xue, X.W. Effects of Russula and its Polysaccharides on Hemorrhagic Anemia in Mice. Edible Fungi 2002, 24, 40–41. (In Chinese) [Google Scholar]
- Liu, Y.Z.; Gan, Y.K.; Chen, X.J.; Ming, T.H.; Zeng, X.Y. Comparison of Bacteriostatic Effects between Extracts from Russula and Cyclobalanopsis glauca. Food Sci. 2011, 32, 36–38. (In Chinese) [Google Scholar]
- Zhao, S.; Zhao, Y.; Li, S.; Zhao, J.; Zhang, G.; Wang, H.; Ng, T.B. A novel lectin with highly potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the edible wild mushroom Russula delica. Glycoconj. J. 2010, 27, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Sun, J.; Wang, H.; Ng, T.B. First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom. Phytomedicine 2010, 17, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Chen, Q.; Zhao, S.; Wang, S.; Wang, H. Purification and comparison of two lectins from the genus Russula. Mycosystema 2012, 31, 110–118. (In Chinese) [Google Scholar] [CrossRef]
- Chen, J.; Shen, C.; He, T.; Yan, S.F. Anticancer and Immunoregulation Activities of a Polysaccharide from Russula vinosa. Mod. Food Sci. Technol. 2016, 32, 16–21. (In Chinese) [Google Scholar] [CrossRef]
- Wang, X.H. Taxonomic comments on edible species of Russulaceae. Mycosystema 2020, 39, 1617–1639. [Google Scholar] [CrossRef]
- Li, M.; Liang, J.; Li, Y.; Feng, B.; Yang, Z.L.; James, T.Y.; Xu, J. Genetic Diversity of Dahongjun, the Commercially Important “Big Red Mushroom” from Southern China. PLoS ONE 2010, 5, e10684. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Liu, Y.; Liu, M.; Chen, Q.; Jiao, Y.; Liu, Y.; Meng, Z. Optimization extraction and bioactivities of polysaccharide from wild Russula griseocarnosa. Saudi Pharm. J. 2017, 25, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Geng, H.; Zhao, C.; Li, F.; Li, Z.F.; Lun, B.; Wang, C.; Yu, H.; Bie, S.; Li, Z. Chemical Constituents with Inhibitory Activity of NO Production from a Wild Edible Mushroom, Russula vinosa Lindbl, May Be Its Nutritional Ingredients. Molecules 2019, 24, 1305. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhang, M.; Lu, L.; Sun, L.; Xu, M. Nitric oxide fumigation stimulates flavonoid and phenolic accumulation and enhances antioxidant activity of mushroom. Food Chem. 2012, 135, 1220–1225. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lim, J.; Xu, J.; Yu, J.H.; Zheng, W. Nitric oxide as a developmental and metabolic signal in filamentous fungi. Mol. Microbiol. 2020, 113, 872–882. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, J.; Meng, Z. Purification, characterization and anti-tumor activities of polysaccharides extracted from wild Russula griseocarnosa. Int. J. Biol. Macromol. 2018, 109, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Qi, C.; Peng, G.; Liu, Y.; Zhang, X.; Meng, Z. Immune-enhancing effects of a polysaccharide PRG1-1 from Russula griseocarnosa on RAW264. 7 macrophage cells via the MAPK and NF-κB signalling pathways. Food Agric. Immunol. 2018, 29, 833–844. [Google Scholar] [CrossRef]
- Liu, X.; Dong, M.; Li, Y.; Li, L.; Zhang, Y.; Zhou, A.; Wang, D. Structural characterization of Russula griseocarnosa polysaccharide and its improvement on hematopoietic function. Int. J. Biol. Macromol. 2024, 263, 130355. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Medina, G.A.; Chávez-González, M.L.; Verma, D.K.; Prado-Barragán, L.A.; Martínez-Hernández, J.L.; Flores-Gallegos, A.C.; Thakur, M.; Srivastav, P.P.; Aguilar, C.N. Bio-funcional components in mushrooms, a health opportunity: Ergothionine and huitlacohe as recent trends. J. Funct. Food. 2021, 77, 104326. [Google Scholar] [CrossRef]
- Liu, X.; Dong, M.; Li, Y.; Li, L.; Zhang, Y.; Wang, C.; Wang, N.; Wang, D. Structural properties of glucan from Russula griseocarnosa and its immunomodulatory activities mediated via T cell differentiation. Carbohydr. Polym. 2024, 339, 122214. [Google Scholar] [CrossRef]
- Liu, B.; Mo, T.Y. Separation of Russula and Observation of Its Culture Characteristics. J. Guangxi Agric. Univ. 1994, 13, 345–347. (In Chinese) [Google Scholar]
- Cai, X.-L.; Ge, G.; Guo, Y.; He, Z.-Z. Isolated and purified cultrue of Russula lepida Fr. Guangzhou Food Sci. Technol. 2003, 19, 30–31. (In Chinese) [Google Scholar] [CrossRef]
- Chen, S.-Z.; Huang, S.-L.; Bi, Z.-Q.; Cai, B.-H.; Chen, L.-X.; Xia, L.; Su, G.-X. Isolation of Mycellia from Wild Russula sp. Chin. Agric. Sci. Bull. 2004, 20, 5–7. (In Chinese) [Google Scholar]
- Chen, H.-T.; Zhang, Y.-H.; Zhai, D.-P.; Luo, Z.-W. Selection of the Optimum Medium for Mother Species of Russula vinosa. Edible Fungi 2012, 26–27. (In Chinese) [Google Scholar]
- Zhang, B.; Zhou, Z.Z.; Chen, Y.; Liang, K.N.; Yu, X.B. Screening of Nutrient Elements for Culturing Mycelia of Russula sp. Chin. J. Trop. Crops 2009, 30, 827–831. (In Chinese) [Google Scholar]
- Zhang, B.; Zhou, Z.Z.; Chen, Y.; Liang, K.N.; Yu, X.B. Research on the Optimum Combination of Nutritional Factors of Liquid Culture of Russual sp. J. Anhui Agric. Sci. 2009, 37, 11871–11873. (In Chinese) [Google Scholar]
- Chen, X.-J.; Gan, Y.-K. Preliminary Study on Nutritional Factors of Russula in Deep Culture. Edible Fungi 2007, 21–22. (In Chinese) [Google Scholar]
- Zhang, Y.X.; Zhang, K.; Li, M.M. Research about Submerged Fermentation Culture Conditions of Russula lepida. North. Hortic. 2010, 220–221. (In Chinese) [Google Scholar]
- Chai, D.-D.; Guo, S.-J.; Sun, X.-B.; Qin, T.-T. Optimization of culture conditions for 7 chestnut ectomycorrhizal fungi in Yanshan Area. J. Northwest AF Univ. (Nat. Sci. Ed.) 2014, 42, 109–116. (In Chinese) [Google Scholar] [CrossRef]
- Liu, D.-M.; Yuan, D.-Y.; Zou, F.; Zhang, X.-H.; Zhu, Z.-J.; Tan, L.-M. Optimization of Culture Conditions for 3 Castanea henryi Ectomycorrhizal fungi. J. Northwest For. Univ. 2016, 31, 195–200. (In Chinese) [Google Scholar] [CrossRef]
- Huang, F.-C.; Mo, T.-Y.; Liu, B. A Study on the Physiological Character of the Pure Culture of Russula vinosa. J. Guangxi Agric. Univ. 1998, 17, 33–39. (In Chinese) [Google Scholar]
- Tang, L.-H.; Liu, Z.-H.; Shi, Q.-Q.; Wu, S.-G. Effect of Plant Growth Regulators and Vitamins on Russula vinosa Growth. J. Fujian Teach. Univ. (Nat. Sci.) 2001, 17, 84–87. (In Chinese) [Google Scholar]
- Li, Z.-L. Effects of Rare Earth Elements of Praseodymium, Neodymium and Erbium on Production of Polysaccharide by Submerged Fermentation of Russula sp. Food Sci. 2007, 28, 312–316. (In Chinese) [Google Scholar]
- Chen, X.-J.; Gan, Y.-K.; Wang, M.-G.; Chen, B.-Y. The Initial Research in Separating Culture of Russular. J. Yulin Teach. Coll. (Nat. Sci.) 2005, 26, 64–65+77. (In Chinese) [Google Scholar]
- Gan, Y.-K.; Chen, X.-J.; Wei, Q.-C.; Peng, S.-N.; Chen, L. The Influence of Temperature upon the Growth of the Natural Red Mushroom Hypha. J. Yulin Teach. Coll. (Nat. Sci.) 2007, 28, 58–60+64. (In Chinese) [Google Scholar] [CrossRef]
- Gan, Y.-K.; Chen, X.-J.; Su, L.; He, Y. Effects of Aquatic Extraction Substance from Tenebrio molitor Linnaeus Feces on Mycelium Growth of Five Edible Fungi. J. Anhui Agric. Sci. 2008, 36, 11295–11296+11320. (In Chinese) [Google Scholar]
- Li, Z.-L. Effect of initial pH and culture time on production of polysaccharide by submerged fermentation of Russula sp. Food Sci. Technol. 2006, 32, 21–25. (In Chinese) [Google Scholar] [CrossRef]
- Mo, T.-Y.; Huang, F.-C. Studies on the Physiological Characterestics of Russufa vinosa. J. Jilin Agric. Univ. 1998, 20, 113. (In Chinese) [Google Scholar]
- Wang, G.-W.; Sun, W.B. Nucleotide Sequence Analysis on ITS rDNA of Fruitbodies and Isolates of Russula in Guangxi. Guangxi Sci. 2004, 11, 261–265. (In Chinese) [Google Scholar]
- Wu, X.; Li, H.; Fu, L.; Wei, H.; Wu, Q. Pure culture of ectomycorrhizal fungi with RAPD and ITS molecular markers for identification. In Proceedings of the First National Academic Exchange Conference of Young and Middle-Aged Edible Fungi Experts, Wuhan, China, 1 June 2006; pp. 47–54. (In Chinese). [Google Scholar]
- Li, H.; Wu, X.; Wei, H.; Fu, L.; Wu, Q. Identification of Pure Culture for Macrofungi with RAPD and ITS Molecular Markers. Sci. Silvae Sin. 2007, 43, 94–100. (In Chinese) [Google Scholar]
- Zeng, X.L.; Liu, D.L. Isolation and Mycelial Growth Characteristics of Nectria sp. Isolated from Russula griseocarnosa. Edible Fungi China 2013, 32, 32–34. (In Chinese) [Google Scholar]
- Luan, Q.-S.; Jin, R.-Z.; Yun, L.-L. Study on Isolation and Cultivation of Wild Macro Fungi in Forest. In Proceedings of the 11th Chapter of the 2004 China Association for Science and Technology Annual Conference, Hainan, China, 20–21 November 2004; pp. 489–491. (In Chinese). [Google Scholar]
- Hintikka, V.; Niemi, K. Aseptic culture of slowly growing mycorrhizal Russula and Cortinarius species. Karstenia 1999, 39, 39–41. [Google Scholar] [CrossRef]
- Atlas, R.M. Handbook of Microbiological Media, 4th ed.; CRC Press (Taylor & Francis Group): Washington, DC, USA, 2010; pp. 1–2043. [Google Scholar]
- Yamada, A.; Katsuya, K. Mycorrhizal association of isolates from sporocarps and ectomycorrhizas with Pinus densiflora seedlings. Mycoscience 1995, 36, 315–323. [Google Scholar] [CrossRef]
- Huang, G.W.; Zhang, P. Symbiosis Cultivation of Ectomycorrhizal Mycelium. Edible Fungi China 2005, 24, 16–17. (In Chinese) [Google Scholar] [CrossRef]
- Yang, R.-H.; Li, Y.; Tang, L.-H.; Li, C.-H.; Bao, D.-P. Genome-wide comparison of lignocellulose degradation enzymes in Agaricales. Mycosystema 2017, 36, 705–717. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Y.; Hu, H.; Cai, M.; Liang, X.; Wu, X.; Wang, A.; Chen, X.; Li, X.; Xiao, C.; Huang, L.; et al. Whole genome sequencing of an edible and medicinal mushroom, Russula griseocarnosa, and its association with mycorrhizal characteristics. Gene 2022, 808, 145996. [Google Scholar] [CrossRef] [PubMed]
- van Galen, L.G.; Orlovich, D.A.; Lord, J.M.; Nilsen, A.R.; Dutoit, L.; Larcombe, M.J. Correlated evolution in an ectomycorrhizal host-symbiont system. New Phytol. 2023, 238, 1215–1229. [Google Scholar] [CrossRef] [PubMed]
- van Der Heijden, M.G.; Martin, F.M.; Selosse, M.A.; Sanders, I.R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 2015, 205, 1406. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, P.; Hyvonen, R.; Berglund, S.L.; Clemmensen, K.E.; Agren, G.I.; Lindahl, B.D.; Manzoni, S. Modelling the influence of ectomycorrhizal decomposition on plant nutrition and soil carbon sequestration in boreal forest ecosystems. New Phytol. 2017, 213, 1452–1465. [Google Scholar] [CrossRef]
- Treseder, K.K.; Torn, M.S.; Masiello, C.A. An ecosystem-scale radiocarbon tracer to test use of litter carbon by ectomycorrhizal fungi. Soil Biol. Biochem. 2006, 38, 1077–1082. [Google Scholar] [CrossRef]
- Martin, F.; Duplessis, S.; Ditengou, F.; Lagrange, H.; Voiblet, C.; Lapeyrie, F. Developmental cross talking in the ectomycorrhizal symbiosis: Signals and communication genes. New Phytol. 2001, 151, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Spanu, P.D. The Genomics of Obligate (and Nonobligate) Biotrophs. Annu. Rev. Phytopathol. 2012, 50, 91–109. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, B.D.; Tunlid, A. Ectomycorrhizal fungi—Potential organic matter decomposers, yet not saprotrophs. New Phytol. 2015, 205, 1443–1447. [Google Scholar] [CrossRef] [PubMed]
- Read, D.; Leake, J.R.; Perezmoreno, J. Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Botany 2004, 82, 1243–1263. [Google Scholar] [CrossRef]
- Martin, F.; Aerts, A.; Ahren, D.; Brun, A.; Danchin, E.G.J.; Duchaussoy, F.; Gibon, J.; Kohler, A.; Lindquist, E.; Pereda, V. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 2008, 452, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.; Kohler, A.; Murat, C.; Balestrini, R.; Coutinho, P.M.; Jaillon, O.; Montanini, B.; Morin, E.; Noel, B.; Percudani, R. Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 2010, 464, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Kohler, A.; Kuo, A.; Nagy, L.; Morin, E.; Barry, K.; Buscot, F.; Canback, B.; Choi, C.; Cichocki, N.; Clum, A. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 2015, 47, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Lundell, T.K.; Mäkelä, M.R.; de Vries, R.P.; Hildén, K.S. Chapter Eleven—Genomics, Lifestyles and Future Prospects of Wood-Decay and Litter-Decomposing Basidiomycota. Adv. Bot. Res. 2014, 70, 329–370. [Google Scholar] [CrossRef]
- Peter, M.; Kohler, A.; Ohm, R.A.; Kuo, A.; Krutzmann, J.; Morin, E.; Arend, M.; Barry, K.; Binder, M.; Choi, C. Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum. Nat. Commun. 2016, 7, 12662. [Google Scholar] [CrossRef]
- Plett, J.M.; Yin, H.; Mewalal, R.; Hu, R.; Li, T.; Ranjan, P.; Jawdy, S.S.; De Paoli, H.C.; Butler, G.A.; Burchsmith, T.M. Populus trichocarpa encodes small, effector-like secreted proteins that are highly induced during mutualistic symbiosis. Sci. Rep. 2017, 7, 382. [Google Scholar] [CrossRef]
- Plett, J.M.; Kemppainen, M.; Kale, S.D.; Kohler, A.; Legué, V.; Brun, A.; Tyler, B.M.; Pardo, A.G.; Martin, F. A Secreted Effector Protein of Laccaria bicolor Is Required for Symbiosis Development. Curr. Biol. 2011, 21, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Plett, J.M.; Daguerre, Y.; Wittulsky, S.; Vayssières, A.; Deveau, A.; Melton, S.J.; Kohler, A.; Morrell-Falvey, J.L.; Brun, A.; Veneault-Fourrey, C.; et al. Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proc. Natl. Acad. Sci. USA 2014, 111, 8299–8304. [Google Scholar] [CrossRef] [PubMed]
- Larsen, P.E.; Sreedasyam, A.; Trivedi, G.; Desai, S.; Dai, Y.; Cseke, L.J.; Collart, F. Multi-Omics Approach Identifies Molecular Mechanisms of Plant-Fungus Mycorrhizal Interaction. Front. Plant Sci. 2016, 6, 1061. [Google Scholar] [CrossRef] [PubMed]
- Twieg, B.D.; Durall, D.M.; Simard, S.W. Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol. 2007, 176, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Cottenie, K. Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett. 2010, 8, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Peay, K.G.; Bruns, T.D. Spore dispersal of basidiomycete fungi at the landscape scale is driven by stochastic and deterministic processes and generates variability in plant-fungal interactions. New Phytol. 2014, 204, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Zhang, Y.U.; Shi, N.N.; Zheng, Y.; Chen, L.; Wubet, T.; Bruelheide, H.; Both, S.; Buscot, F.; Ding, Q.; et al. Community assembly of ectomycorrhizal fungi along a subtropical secondary forest succession. New Phytol. 2015, 205, 771–785. [Google Scholar] [CrossRef]
- Kennedy, P.G.; Hortal, S.; Bergemann, S.E.; Bruns, T.D. Competitive interactions among three ectomycorrhizal fungi and their relation to host plant performance. J. Ecol. 2007, 95, 1338–1345. [Google Scholar] [CrossRef]
- Bahram, M.; Polme, S.; Koljalg, U.; Zarre, S.; Tedersoo, L. Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol. 2012, 193, 465–473. [Google Scholar] [CrossRef]
- Geml, J.; Pastor, N.; Fernandez, L.; Pacheco, S.; Semenova, T.A.; Becerra, A.G.; Wicaksono, C.Y.; Nouhra, E. Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol. Ecol. 2014, 23, 2452–2472. [Google Scholar] [CrossRef]
- Cao, H.; Chen, R.; Wang, L.; Jiang, L.; Yang, F.; Zheng, S.; Wang, G.; Lin, X. Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale. Sci. Rep. 2016, 6, 25815. [Google Scholar] [CrossRef] [PubMed]
- Baeza-Guzmán, Y.; Camargo-Ricalde, S.L.; Trejo Aguilar, D.; Montaño, N.M. Fungal and bacterial communities in a forest relict of Pinus pseudostrobus var. coatepecensis. Iforest-Biogeosci. For. 2023, 16, 299–306. [Google Scholar] [CrossRef]
- Ge, W.; Ren, Y.; Dong, C.; Shao, Q.; Bai, Y.; He, Z.; Yao, T.; Zhang, Y.; Zhu, G.; Deshmukh, S.K. New perspective: Symbiotic pattern and assembly mechanism of Cantharellus cibarius-associated bacteria. Front. Microbiol. 2023, 14, 1074468. [Google Scholar] [CrossRef] [PubMed]
- Gittel, A.; Barta, J.; Kohoutova, I.; Mikutta, R.; Owens, S.M.; Gilbert, J.A.; Schnecker, J.; Wild, B.; Hannisdal, B.; Maerz, J. Distinct microbial communities associated with buried soils in the Siberian tundra. ISME J. 2014, 8, 841–853. [Google Scholar] [CrossRef] [PubMed]
- Llado, S.; Lopezmondejar, R.; Baldrian, P. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change. Microbiol. Mol. Biol. Rev. 2017, 81, e00063-00016. [Google Scholar] [CrossRef] [PubMed]
- Mediavilla, O.; Geml, J.; Olaizola, J.; Oria-de-Rueda, J.A.; Baldrian, P.; Martín-Pinto, P. Effect of forest fire prevention treatments on bacterial communities associated with productive Boletus edulis sites. Microb. Biotechnol. 2019, 12, 1188–1198. [Google Scholar] [CrossRef] [PubMed]
- Bera, I.; Nidhin, I.K.; Hembrom, M.E.; Das, K.; Chattopadhyay, I. Metagenomics offers insights into the rhizospheric bacterial diversity of mushrooms from a tropical forest and temperate forest of India. Ecol. Genet. Genom. 2023, 29, 100203. [Google Scholar] [CrossRef]
- Garbaye, J. Tansley Review No. 76 Helper bacteria: A new dimension to the mycorrhizal symbiosis. New Phytol. 1994, 128, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Freyklett, P.; Garbaye, J.; Tarkka, M.T. The mycorrhiza helper bacteria revisited. New Phytol. 2007, 176, 22–36. [Google Scholar] [CrossRef]
- Aspray, T.J.; Freyklett, P.; Jones, J.; Whipps, J.M.; Garbaye, J.; Bending, G.D. Mycorrhization helper bacteria: A case of specificity for altering ectomycorrhiza architecture but not ectomycorrhiza formation. Mycorrhiza 2006, 16, 533–541. [Google Scholar] [CrossRef]
- Yu, F.; Liang, J.F.; Song, J.; Wang, S.K.; Lu, J.K. Bacterial Community Selection of Russula griseocarnosa Mycosphere Soil. Front. Microbiol. 2020, 11, 347. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.Y.; Peng, M.H.; Wang, J.J.; Ye, W.Y.; Li, Y.L.; Zhang, T.; Wang, A.R.; Zhang, D.M.; Wang, Z.H.; Lu, G.D.; et al. Microbial community associated with ectomycorrhizal Russula symbiosis and dominated nature areas in southern China. FEMS Microbiol. Lett. 2021, 368, fnab028. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.L.; Wu, X.-J.; Li, L.-Y.; Mo, C.-M.; Lang, N.; Chen, Z.-N. Diversity Research of Soil Fungi under Fruiting Bodies of Russula griseocarnosa and Its Related Species. Chin. J. Trop. Crops 2022, 43, 430–437. (In Chinese) [Google Scholar] [CrossRef]
- Fei, Y.; Liang, J.-F. The Effect of Russula rosea and Russula griseocarnosa on Microorganism Structure of Mycosphere Soil. For. Res. 2022, 35, 52–63. [Google Scholar] [CrossRef]
- Wand, R.; Liu, C.-G.; Xu, J. The Separation and Cultivation of Ectomycorrhizal Fungi. Edible Fungi China 2013, 32, 4–7. (In Chinese) [Google Scholar]
- Looney, B.P.; Meidl, P.; Piatek, M.J.; Miettinen, O.; Martin, F.M.; Matheny, P.B.; Labbé, J.L. Russulaceae: A new genomic dataset to study ecosystem function and evolutionary diversification of ectomycorrhizal fungi with their tree associates. New Phytol. 2018, 218, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H. The theories and application of the cultivation of Russula vinosa. In Proceedings of the First Cross-Strait Symposium on Edible (Medicinal) Fungi, Fuzhou, China, 1 November 2005; pp. 97–100. (In Chinese). [Google Scholar]
- Chen, Y.H.; Chen, Z.M. Mycorrbizal biodiversity’s influence on the fine root mass of Cyclobalanopsis chungii and basidiocarp collection of Russula vinosa. Mycosystema 2005, 24, 94–96. (In Chinese) [Google Scholar]
- Chen, Y.-H.; Chen, Z.-M. Effect of mycorrhizal biodiversity on fine root mass of Cyclobalanopsis chungii and basidiocarp collection of Russula vinosa. Chin. J. Eco-Agric. 2007, 15, 171–173. (In Chinese) [Google Scholar]
- Chen, Y.; Liang, J.F.; Zhou, Z.Z.; Zhong, C.L.; Chen, Z. The Effect of Seedling Inoculation of Three Local Tree Species Inoculated by Russula lepida and R. vinosa. Guangdong For. Sci. Technol. 2010, 26, 22–28. (In Chinese) [Google Scholar]
- Li, K.X.; Liang, W.H.; Zeng, G.Y.; Li, Y.J.; Pang, X.; Chen, Q.S. Technique of Promoting Propagation of Russula lepida by Land Transformation in Guangxi. Agric. Res. Appl. 2016, 30–33. (In Chinese) [Google Scholar]
- Zeng, G.; Li, K.; Liang, W. Effect of Different Reforms of Forest Environments on Russula lepida Fruit Body Yields. Acta Edulis Fungi 2016, 23, 23–26. (In Chinese) [Google Scholar]
- Wang, Y.; Man, J.; Lian, C. Diversity and Network Structure Analysis of Culturable Bacteria in Sporophore Site Soil of Russula griseocarnosa. Fujian J. Agric. Sci. 2022, 37, 529–537. (In Chinese) [Google Scholar] [CrossRef]
- Zeng, G.-Y.; Zhao, Z.-H.; Gao, Z.-H.; Li, B.-C. Effect of woodland environmental regulation on yield of Russula griseocarnosa. Acta Edulis Fungi 2021, 28, 108–112. (In Chinese) [Google Scholar] [CrossRef]
- Xu, M.; Fu, W.-Q.; Dai, C.-C.; Jia, Y. Ecological function of promoting microorganisms associated with ectomycorrhizal fungi. Chin. J. Ecol. 2018, 37, 1246–1256. (In Chinese) [Google Scholar]
- Muhlmann, O.; Bacher, M.; Peintner, U. Polygonum viviparum mycobionts on an alpine primary successional glacier forefront. Mycorrhiza 2008, 18, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Muehlmann, O.; Peintner, U. Mycobionts of Salix herbacea on a glacier forefront in the Austrian Alps. Mycorrhiza 2008, 18, 171–180. [Google Scholar] [CrossRef]
- Muehlmann, O.; Peintner, U. Ectomycorrhiza of Kobresia myosuroides at a primary successional glacier forefront. Mycorrhiza 2008, 18, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Zhang, Q.; Miao, R.; Lin, J.; Feng, R.; Ni, Y.; Li, W.; Yang, D.; Zhao, X. Application of omics technology in the research on edible fungi. Curr. Res. Food Sci. 2023, 6, 100430. [Google Scholar] [CrossRef] [PubMed]
- Adamčík, S.; Looney, B.; Caboň, M.; Jančovičová, S.; Adamčíková, K.; Avis, P.G.; Barajas, M.; Bhatt, R.P.; Corrales, A.; Das, K. The quest for a globally comprehensible Russula language. Fungal Divers. 2019, 99, 369–449. [Google Scholar] [CrossRef]
- Buyck, B.; Zoller, S.; Hofstetter, V. Walking the thin line… ten years later: The dilemma of above-versus below-ground features to support phylogenies in the Russulaceae (Basidiomycota). Fungal Divers. 2018, 89, 267–292. [Google Scholar] [CrossRef]
- Xiao, D.-L.; Chen, Y.-H.; Yang, J. Phylogenetic Diversity of Russula griseocarnosa from Fujian. Fujian J. Agric. Sci. 2013, 28, 902–905. (In Chinese) [Google Scholar] [CrossRef]
- Feng, Y.L.; Fang, Y.; Yu, J.F.; Ma, M.; Lui, C.L.; Yang, Z.F.; Zhang, J.B.; Guo, X. Genetic Diversity and Population Genetic Differentiation of Russula Griseocarnosa. Acta Edulis Fungi 2020, 27, 7–15. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Y.H.; Chen, P.D.; Chen, L.Y.; Ma, L.Z. Phylogeographic Messages Encoded in the rDNA of the Commercial Mushroom Zhenghonggu@ From Fujian, China. Korean Soc. Mycol. 2014, S5, 45. [Google Scholar]
- Fei, Y.; Liang, J. Data on the genome analysis of the wild edible mushroom, Russula griseocarnosa. Data Brief 2019, 25, 104295. [Google Scholar]
- Yu, F.; Song, J.; Liang, J.; Wang, S.; Lu, J. Whole genome sequencing and genome annotation of the wild edible mushroom, Russula griseocarnosa. Genomics 2020, 112, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, W.; Endo, N.; Takeda, Y.; Kodaira, M.; Fukuda, M.; Yamada, A. Efficient establishment of pure cultures of yellow chanterelle Cantharellus anzutake from ectomycorrhizal root tips, and morphological characteristics of ectomycorrhizae and cultured mycelium. Mycoscience 2019, 60, 45–53. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, H.-W.; Sha, T. Advances Research on Ectomycorrhizal Fungi. Edible Fungi China 2016, 35, 1–7. (In Chinese) [Google Scholar]
- Jiang, Q.B.; Zhong, C.L.; Chen, Y.; Zhang, Y.; Chen, Z. Study on inoculating Russula fungi with Pinus massoniana seedling. J. Cent. South Univ. For. Technol. 2016, 36, 6–9+38. (In Chinese) [Google Scholar]
- Jiang, Y.; Wang, W.; Xie, Q.; Liu, N.A.; Liu, L.; Wang, D.; Zhang, X.; Yang, C.; Chen, X.; Tang, D.; et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 2017, 356, 1172–1175. [Google Scholar] [CrossRef]
- Lareen, A.; Burton, F.; Schäfer, P. Plant root-microbe communication in shaping root microbiomes. Plant Mol. Biol. 2016, 90, 575–587. [Google Scholar] [CrossRef]
- Salme, T.; Lawrence, B.; Julia, M.; Anthony, M.; Anne-Charlotte, A. Perspectives and Challenges of Microbial Application for Crop Improvement. Front. Plant Sci. 2017, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, X.-L.; Huang, W.-L.; Xiong, C.; Yang, Y.; Yang, Z.-R.; Zheng, L.-Y. Community structure and diversity of entophytic bacteria in Tricholoma matsutake in Sichuan Province, Southwest China. Chin. J. Appl. Ecol. 2014, 25, 3316–3322. (In Chinese) [Google Scholar] [CrossRef]
- Miguel, A.M.D.; Águeda, B.; Sánchez, S.; Parladé, J. Ectomycorrhizal fungus diversity and community structure with natural and cultivated truffle hosts: Applying lessons learned to future truffle culture. Mycorrhiza 2014, 24, S5–S18. [Google Scholar] [CrossRef] [PubMed]
- Lian, C.L. Research Progress on Cultivating Russula in Harvested Forest Lands. Fujian For. 2023, 22–23. (In Chinese) [Google Scholar]
- Ying, G.-H.; Lv, M.-L.; Li, L.-L.; Wang, Y.; Xue, Z.-W. Study on the Artificial Cultivation of Suillus luteus. Edible Fungi China 2009, 28, 14–15. (In Chinese) [Google Scholar]
- Cao, Y.; Ji, K.; Liu, J.; Zhang, C.; He, M.; Wang, W. Effect of Casing on Fruiting of Phlebopus portentosus in Bottle Culture. Acta Edulis Fungi 2010, 17, 29–32+91. (In Chinese) [Google Scholar]
- Cao, Y.; Ji, K.; Liu, J.; Zhang, C.; He, M.; Wang, W. Effect of Different Casing Soils on the Fruiting of Phlebopus portentosus. Acta Edulis Fungi 2011, 18, 25–27. (In Chinese) [Google Scholar]
- Sanmee, R.; Lumyong, P.; Dell, B.; Lumyong, S. In vitro cultivation and fruit body formation of the black bolete, Phlebopus portentosus, a popular edible ectomycorrhizal fungus in Thailand. Mycoscience 2010, 51, 15–22. [Google Scholar] [CrossRef]
- Buscot, F.; Kottke, I. The association of Morchella rotunda (Pers.) Boudier with roots of Picea abies (L.) Parst. New Phytol. 1990, 116, 425–430. [Google Scholar] [CrossRef]
- Buscot, F. Synthesis of two types of association between Morchella esculenta and Picea abies under controlled culture conditions. J. Plant Physiol. 1993, 141, 12–17. [Google Scholar] [CrossRef]
- Dahlstrom, J.L.; Smith, J.E.; Weber, N.S. Mycorrhiza-like interaction by Morchella with species of the Pinaceae in pure culture synthesis. Mycorrhiza 2000, 9, 279–285. [Google Scholar] [CrossRef]
- Stark, C.; Babik, W.; Durka, W. Fungi from the roots of the common terrestrial orchid Gymnadenia conopsea. Mycol. Res. 2009, 113, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.L.; Ding, C.; Fan, L. Trophic manner of morels analyzed by using stable carbon isotopes. Mycosystema 2013, 32, 213–223. (In Chinese) [Google Scholar]
- Hobbie, E.A.; Weber, N.S.; Trappe, J.M. Mycorrhizal vs. saprotrophic status of fungi: The isotopic evidence. New Phytol. 2001, 150, 601–610. [Google Scholar] [CrossRef]
- Hao, H.; Zhang, J.; Wang, H.; Wang, Q.; Chen, M.; Juan, J.; Feng, Z.; Chen, H. Comparative transcriptome analysis reveals potential fruiting body formation mechanisms in Morchella importuna. AMB Express 2019, 9, 103. [Google Scholar] [CrossRef]
Fatty Acids a | Pileus | Stipe | Egg | Chicken | Deep-Sea Fish Oil |
---|---|---|---|---|---|
C16:0 | 19.30 ± 1.11 | 30.87 ± 4.42 | 25.56 ± 1.20 | 29.37 ± 1.58 | 19.10 |
C16:1 | 0.42 ± 0.04 | 0.90 ± 0.11 | 3.58 ± 0.56 | 0.20 ± 0.05c | 5.68 |
C16:3 | 0.38 ± 0.09 | 2.04 ± 0.23 | - | - | - |
C18:l | 47.92 ± 6.47 | 14.20 ± 2.06 | 42.81 ± 1.47 | 19.80 ± 2.37 | 17.18 |
C18:2 | 28.40 ± 5.79 | 50.22 ± 8.07 | 18.79 ± 0.63 | 21.29 ± 1.05 | 11.88 |
C18:3 | 1.02 ± 0.11a | 1.29 ± 0.16 | 0.32 ± 0.30 | 0.19 ± 0.10 | 4.28 |
C20:4 | 2.55 ± 0.10 | 0.48 ± 0.07 | 1.87 ± 0.10 | - | 2.2 |
total saturates | 19.30 | 30.87 | 34.34 ± 1.20 | 55.94 ± 3.85 | - |
total unsaturates | 80.69 | 69.13 | 15.1 ± 0.79 | 23.34 ± 3.56 | - |
Compound | Name | Structure | Biological Activity | Target | Species | Source |
---|---|---|---|---|---|---|
1 | ergosterol | antioxidant | DPPH | R. griseocarnosa | [30] | |
2 | β-carotene | antioxidant | DPPH | as above | [30] | |
3 | quercetin | antioxidant | DPPH | as above | [30] | |
4 | caffeic acid | antioxidant | DPPH | as above | [30] | |
5 | protocatechuicacid | antioxidative, antibacterial, and antimutagenic activities | DPPH | as above | [30] | |
6 | vinosane | inhibiting NO production | - | R. vinosa | [47] | |
7 | rulepidadione C | - | - | as above | [47] | |
8 | 7α,8α,13-trihydroxy-marasm-5-oic acid-lactone | inhibiting NO production | - | as above | [47] | |
9 | aristolone | inhibiting NO production | - | as above | [47] | |
10 | (24E)-3,4-seco-cucurbita-4,24-diene-26,29-dioic acid-3-methyl ester | inhibiting NO production | - | as above | [47] | |
11 | (24E)-3,4-seco-cucurbita-4,24-diene-26-oic acid-3-ethyl ester | inhibiting NO production | - | as above | [47] | |
12 | (24E)-3β-hydroxycucurbita-5,24-diene-26,29-dioic acid | - | - | as above | [47] | |
13 | (24E)-3,4-secocucurbita-4,24-diene-3,26,29-trioic acid | inhibiting NO production | - | as above | [47] | |
14 | (24E)-3,4-secocucurbita-4,24-diene-3,26-dioic acid | - | - | as above | [47] | |
15 | (24E)-3β-hydroxycucurbita-5,24-diene-26-oic acid | - | - | as above | [47] | |
16 | rosacea acid B | - | - | as above | [47] | |
17 | rosacea acid A | - | - | as above | [47] | |
18 | (2S,3S,4R,20R)-2-(20-hydroxydocosanoylamino)eicosane-1,3,4-triol | - | - | as above | [47] | |
19 | 7,8-dimethylalloxazine | - | - | as above | [47] | |
20 | L-pyroglutamic acid | - | - | as above | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yong, T.; Cai, M.; Wu, X.; Guo, H.; Xie, Y.; Hu, H.; Wu, Q. Exploring the Potential of Russula griseocarnosa: A Molecular Ecology Perspective. Agriculture 2024, 14, 879. https://doi.org/10.3390/agriculture14060879
Liu Y, Yong T, Cai M, Wu X, Guo H, Xie Y, Hu H, Wu Q. Exploring the Potential of Russula griseocarnosa: A Molecular Ecology Perspective. Agriculture. 2024; 14(6):879. https://doi.org/10.3390/agriculture14060879
Chicago/Turabian StyleLiu, Yuanchao, Tianqiao Yong, Manjun Cai, Xiaoxian Wu, Huiyang Guo, Yizhen Xie, Huiping Hu, and Qingping Wu. 2024. "Exploring the Potential of Russula griseocarnosa: A Molecular Ecology Perspective" Agriculture 14, no. 6: 879. https://doi.org/10.3390/agriculture14060879
APA StyleLiu, Y., Yong, T., Cai, M., Wu, X., Guo, H., Xie, Y., Hu, H., & Wu, Q. (2024). Exploring the Potential of Russula griseocarnosa: A Molecular Ecology Perspective. Agriculture, 14(6), 879. https://doi.org/10.3390/agriculture14060879