Prevention of Cadmium Contamination by Microbial Inoculant and Its Potential Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Tested Microbial Agent
2.3. Experimental Design
2.4. Experimental Methods
2.5. Data Processing
3. Results
3.1. Assessment of Cd Pollution in Major Peanut-Producing Provinces
3.2. Impact of the ARC-BBBE Microbial Inoculant on Cd Content in Various Components of the Peanut Plant
3.3. Influence of the ARC-BBBE Microbial Inoculant on Cd Content and pH Value in Peanut Planting Soil
3.4. Influence of the ARC-BBBE Microbial Inoculant on the Available State and Morphological Distribution of Cd in Peanut Planting Soil
3.5. Influence of the ARC-BBBE Microbial Inoculant on Soil Enzyme Activities
3.6. Effects of ARC Microbial Agent on Cd Enrichment and Transfer in Peanut
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ministry of Environmental Protection and Ministry of Land and Resources. Report on the national general survey of soil contamination. Chin. Environ. Prot. Ind. 2014, 5, 10–11. (In Chinese) [Google Scholar]
- Khan, Z.; Elahi, A.; Bukhari, D.; Rehman, A. Cadmium sources, toxicity, resistance and removal by microorganisms-A potential strategy for cadmium eradication. J. Saudi Chem. Soc. 2022, 26, 101569. [Google Scholar] [CrossRef]
- Chen, L.; Ma, J.J.; Xiang, S.; Jiang, L.H.; Wang, Y.; Li, Z.H.; Liu, X.J.; Duan, S.Y.; Luo, Y.; Xiao, Y.H. Promotion of rice seedlings growth and enhancement of cadmium immobilization under cadmium stress with two types of organic fertilizer. Environ. Pollut. 2024, 346, 123619. [Google Scholar] [CrossRef]
- Prapagdee, B.; Wankumpha, J. Phytoremediation of cadmium-polluted soil by Chlorophytum laxum combined with chitosan-immobilized cadmium-resistant bacteria. Environ. Sci. Pollut. Res. 2017, 2423, 19249–19258. [Google Scholar] [CrossRef]
- Qiu, G.Y. Effects of Amendments on the Morphology and Availability of Cadmium in Paddy Soil. Master’s Dissertation, Zhejiang University, Hangzhou, China, 2016. (In Chinese). [Google Scholar]
- Li, J.T.; Qiu, J.W.; Wang, X.W.; Zhong, Y.; Lan, C.Y.; Shu, W.S. Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China. Environ. Pollut. 2006, 1431, 159–165. [Google Scholar] [CrossRef]
- Haider, F.U.; Liqun, C.; Coulter, J.; Cheema, S.A.; Wu, J.; Zhang, R.Z.; Ma, W.J.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111877–111887. [Google Scholar] [CrossRef]
- Puppala, N.; Nayak, S.; Sanz-saez, A.; Chen, C.; Devi, M.J.; Nivedita, N.; Bao, Y.; He, G.H.; Traore, S.; Wright, D.A.; et al. Sustaining yield and nutritional quality of peanuts in harsh environments: Physiological and molecular basis of drought and heat stress tolerance. Front. Genet. 2023, 14, 1121462. [Google Scholar] [CrossRef]
- Jiang, H.W.; Cheng, Y.; Wang, Z.W.; He, J.Q.; Li, Z.Y.; Tu, S.X.; Ran, Y.; Hu, Y.F. Effect of Iron Modified Conditions on the Cd/As Stressed Antioxidant Capability of Peanuts. J. NBC Agric. Sci. 2023, 37, 1651–1659. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Wu, X.G.; Wu, W.Y.; Tao, Y.; Zeng, Y.Y.; Liao, K.J.; Chen, L.Z. Remediation of Cd pulluted soil by Lelliottia + sp.Kz9 and nanoscale zerovalent iron assisted by Brassia juncea to Cd-polluted soil. Saf. Environ. Eng. 2023, 30, 244–251. [Google Scholar] [CrossRef]
- Jin, J.Y.; Mi, R.D.; Li, Q.; Lang, J.; Lan, Y.S.; Huang, N.; Yang, G. Bacillus Thuringiensis Enhances the Ability of Ryegrass to Remediate Cadmium-Contaminated Soil. Sustainability 2023, 15, 5177. [Google Scholar] [CrossRef]
- Cui, J.X.; Li, P.; Qi, X.B.; Guo, W.; Rahman, S.U. Assessing the Effect of Irrigation Using Different Water Resources on Characteristics of Mild Cadmium-Contaminated Soil and Tomato Quality. Agron. J. 2022, 12, 2721. [Google Scholar] [CrossRef]
- Chen, X.; He, H.Z.; Chen, G.K.; Li, H.S. Effects of biochar and crop straws on the bioavailability of cadmium in contaminated soil. Sci. Rep. 2020, 101, 9528. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Min, X.B.; Zhang, J.Q.; Wang, M.; Fei, J.C.; Li, Y.C. Enhanced Cadmium Extraction from Zinc Neutral Leaching Residue Using Sulfur Dioxide. Sep. Sci. Technol. 2015, 50, 2688–2696. [Google Scholar] [CrossRef]
- Yuan, B.X.; Huang, L.H.; Liu, X.D.; Bai, L.Y.; Liu, H.W.; Jiang, H.D.; Zhu, P.; Xiao, Y.H.; Geng, J.B.; Liu, Q.J.; et al. Application of mixotrophic acidophiles for the bioremediation of cadmium-contaminated soils elevates cadmium removal, soil nutrient availability, and rice growth. Ecotoxicol. Environ. Safe 2022, 236, 113499. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.F.; Li, W.L.; Ahmad, I.; He, B.Y.; Wang, L.L.; He, T.; Wang, F.P.; Xu, Z.M.; Li, Q.S. Biomineralization of Cd2+ and inhibition on rhizobacterial Cd mobilization function by Bacillus Cereus to improve safety of maize grains. Chemosphere 2021, 283, 131095. [Google Scholar] [CrossRef] [PubMed]
- Arce-Inga, M.; González-Pérez, A.R.; Hernandez-Diaz, E.; Chuquibala-Checan, E.; Chavez-Jalk, A.; Llanos-Gomez, K.J.; Leiva-Espinoza, S.T.; Oliva-Cruz, S.M.; Cumpa-Velasquez, L.M. Bioremediation Potential of Native Bacillus sp. Strains as a Sustainable Strategy for Cadmium Accumulation of Theobroma cacao in Amazonas Region. Microorganisms 2022, 10, 2108. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Liu, J.; Jia, S.B. The Design of a Remediation Device for Heavy Metal Contaminated Soil Under Digital Economy. Front. Energy Res. 2022, 10, 893335. [Google Scholar] [CrossRef]
- Zhuravlev, I.Z.; Kovtun, M.F.; Botsman, A.V. Simply synthesized apatites precipitated onto porous rice husk charcoal for the extraction of cadmium (II) and copper (II) ions. Sep. Sci. Technol. 2021, 578, 1198–1210. [Google Scholar] [CrossRef]
- Wang, C.R.; Liu, Z.Q.; Huang, Y.C.; Zhang, Y.N.; Wang, X.H.; Hu, Z.Y. Cadmium-resistant rhizobacterium Bacillus cereus M4 promotes the growth and reduces cadmium accumulation in rice (Oryza sativa L.). Environ. Toxicol. Pharmacol. 2019, 72, 103265–103275. [Google Scholar] [CrossRef]
- Kumar, A.; Vandana, S.R.; Singh, M.; Pandey, K.D. Plant Growth Promoting Rhizobacteria (PGPR) A Promising Approach for Disease Management. In Microbes and Environmental Management; Studium Press: New Delhi, India, 2015; pp. 195–209. [Google Scholar]
- Zhou, Y.; Yue, X.F.; Tang, X.Q.; Yan, H.L.; Li, P.W. A preliminary study on the coupling effect of aflatoxin green control and super-nodulation. Chin. J. Oil Crop Sci. 2021, 43, 947–960. [Google Scholar] [CrossRef]
- GB 5009.15-2014; Determination of Cadmium in Foods. National Standards of People’s Republic of China: Beijing, China, 2014.
- GB/T 23739-2009; Soil Quality—Analysis of Available Lead and Cadmium Contents in Soils—Atomic Absorption Spectrometry. Ministry of Agriculture: Beijing, China, 2009.
- Rizwan, M.S.; Imtiaz, M.; Chhajro, M.A.; Huang, G.Y.; Fu, Q.L.; Zhu, J.; Aziz, O.; Hu, H.Q. Influence of pyrolytic and non-pyrolytic rice and castor straws on the immobilization of Pb and Cu in contaminated soil. Environ. Technol. 2016, 3721, 2679–2686. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.T.; Tian, Y.B.; Huang, D.Y.; Zhang, Q.; Xu, C.; Zhu, H.H.; Zhu, Q.H. Effect of water management on Cadmium accumulation by rice (Oryza sativa L.) growing in typical paddy soil. Environ. Sci. 2021, 42, 2512–2521. [Google Scholar]
- Gao, G.X.; Liu, Y.Q.; Yang, B.; Wang, Y.N.; Guo, X.Y.; Chen, M.; Zhao, B.P.; Liu, J.H. Effects of chemical fertilizer reduction combined with organic fertilizer on soil properties and cadmium forms in saline alkali soil. Soil. Fert. Sci. Chin. 2023, 1, 30–38. [Google Scholar] [CrossRef]
- Qin, Z.Y.; Tang, Z.Z.; Wu, Z.J.; Li, J.; Jiang, Y.H.; Chen, G.L.; Huang, Z.Y.; Liang, J.M. Analysis of lead and cadmium pollution of main agricultural products in Guangxi. Chin. J. Public. Health 2006, 22, 1261. [Google Scholar] [CrossRef]
- Zhu, L.W.; Ren, C.; Li, J.T.; Tian, P.Y.; Xiao, J.H.; Li, P. Passivation Effect of Thiol-Modified Montmorillonite on Cadmium in Medium-Alkaline Farmland Soil in Northern China. J. Rock Miner. Anal. 2024, 43, 124–136. [Google Scholar] [CrossRef]
- Zhang, L.H.; Bai, J.J.; Tian, R.Y.; Wang, G.C.; You, L.Y.; Liang, J.N.; Ci, K.D.; Liu, M.L.; Kou, L.Y.; Zhou, L.L.; et al. Cadmium remediation strategies in alkaline arable soils in Northern China: Current status and challenges. Acta Pedol. Sin. 2024, 61, 348–360. [Google Scholar] [CrossRef]
- Wen, H.J.; Zhou, Z.B.; Zhu, C.W.; Luo, C.G.; Wang, D.Z.; Du, S.J.; Li, X.F.; Chen, M.H.; Li, H.Y. Critical scientific issues of super-enrichment of dispersed metals. Acta Petrol. Sin. 2019, 35, 3271–3291. [Google Scholar] [CrossRef]
- Zhang, J.J.; Zhu, S.G.; Zhu, L.N.; Liu, H.T.; Yang, J.K.; Hua, D.L. Effects of Different Amendments on Fractions and Uptake by Winter Wheat in Slightly Alkaline Soil Contaminated by Cadmium and Nickel. Environ. Sci. 2020, 411, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Lux, A.; Martinka, M.; Vaculı’k, M.; White, P. Root responses to cadmium in the rhizosphere: A review. J. Exp. Bot. 2011, 62, 21–37. [Google Scholar] [CrossRef]
- Gramlich, A.; Tandy, S.; Frossard, E.; Eikenberg, J.; Schulin, R. Diffusion limitation of zinc fluxes into wheat roots, PLM and DGT devices in the presence of organic ligands. Environ. Chem. 2014, 11, 41–50. [Google Scholar] [CrossRef]
- Zhang, C.L. Research Process Oil Trealment of Heavy Metal Contaminated son by Microbial Remediation. J. Anhui AgIi. Sci. 2015, 43, 225–229. (In Chinese) [Google Scholar]
- Różański, S.; Jaworska, H.; Matuszczak, K.; Nowak, J.; Hardy, A. Impact of highway traffic and the acoustic screen on the content and spatial distribution of heavy metals in soils. Environ. Sci. Pollut. Res. 2017, 2414, 12778–12786. [Google Scholar] [CrossRef]
- Bashir, S.; Shaaban, M.; Hussain, Q.; Mehmood, S.; Zhu, J.; Fu, Q.L.; Aziz, O.; Hu, H.Q. Influence of organic and inorganic passivators on Cd and Pb stabilization and microbial biomass in a contaminated paddy soil. J. Soils Sediments 2018, 189, 2948–2959. [Google Scholar] [CrossRef]
- Zhu, H.H.; Chen, C.; Xu, C.; Zhu, Q.H.; Huang, D.Y. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environ. Pollut. 2016, 219, 99–106. [Google Scholar] [CrossRef]
- Khadivinia, E.; Sharafi, H.; Hadi, F.; Zahiri, H.S.; Modiri, S.; Tohidi, A.; Mousavi, A.; Salmanian, A.H.; Noghabi, K.A. Cadmium biosorption by a glyphosate-degrading bacterium, a novel biosorbent isolated from pesticide-contaminated agricultural soils. J. Ind. Eng. Chem. 2014, 206, 4304–4310. [Google Scholar] [CrossRef]
- Yang, J.; Qu, P.; Wang, J.S.; Teng, Y.G.; Zuo, Y. Review on analysis methods of bio-availability of heavy metals in soil and its influence factors. Environ. Pollut. Ctrl. 2017, 39, 217–223. [Google Scholar] [CrossRef]
- Yang, W.H. Research on Remediation Effect of Compound Microbial Inoculum on Cadmium Contaminated Wheat Soil. Master’s Dissertation, Northeast Agricultural University, Heilongjiang, China, 2022. (In Chinese). [Google Scholar]
- Han, H.; Shang, X.F.; Hu, J.W.; He, L.Y.; Wang, Q. Metal-immobilizing Serratia liquefaciens CL-1 and Bacillus thuringiensis X30 increase biomass and reduce heavy metal accumulation of radish under field conditions. Ecotoxicol. Environ. Saf. 2018, 161, 526–533. [Google Scholar] [CrossRef]
- He, J.Q.; Xu, J.L.; Yang, J.R.; Liu, H. Study of the extractents for available Cd, Cu, Zn and Pb in soils. Agro Environ. Prot. 1994, 13, 246–251. (In Chinese) [Google Scholar]
- Akoumianakis, K.A.; Passam, H.C.; Barouchas, P.E.; Moustakas, N.K. Effect of cadmium on yield and cadmium concentration in the edible tissues of endive (Cichorium endivia L.) and rocket (Eruca sativa Mill.). Food Agric. Environ. 2008, 6, 206–209. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Su, Q.P. The Review of the Research for Morphological Analysis of Heavy Metalin the Soil. Guangdong Chem. Ind. 2018, 4522, 84–85. [Google Scholar] [CrossRef]
- Ji, P.P.; Yin, G.C.; Chen, Z.L.; Zhou, B.; Lin, Q.T.; Liu, Q.J.; Liu, D.L. Impacts of two kinds of arbuscular mycorrhizal fungi on rhizospheric bio-available Cd and accumulation of Cd for Pennisetum sp. J. Agro. Environ. Sci. 2016, 35, 2306–2313. [Google Scholar] [CrossRef]
- Li, N.; Xia, Y.; He, X.; Yuan, L.H.; Li, W.J.; Hao, C.J.; Xia, K.Y. Research Progress of Cd Form Transformation and the Effective Environmental Factors in Soil Based on Tessier Analysis. Chin. J. Soil. Sci. 2021, 526, 1505–1512. [Google Scholar] [CrossRef]
- Liu, Y.N.; Guo, Z.H.; Xiao, X.Y.; Wang, S.; Jiang, Z.C.; Zeng, P. Phytostabilisation potential of giant reed for metals contaminated soil modified with complex organic fertiliser and fly ash: A field experiment. Sci. Total Environ. 2017, 576, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Mierzwa-Hersztek, M.; Gondek, K.; Baran, A. Effect of poultry litter biochar on soil enzymatic activity, ecotoxicity and plant growth. Appl. Soil. Ecol. 2016, 105, 144–150. [Google Scholar] [CrossRef]
- Peng, O.; Liu, Y.L.; Tie, B.Q.; Ye, C.C.; Zhang, M.; Li, Y.X.L.; Zhou, J.C.; Xu, M.; Zhang, Y.; Long, Y. Effects of conditioning agents and agronomic measures on cadmium uptake by rice in polluted rice fields. Sci. Agric. Sin. 2020, 53, 574–584. [Google Scholar]
- Dou, W.Q.; An, Y.; Qin, L.; Lin, D.S.; Zeng, Q.N.; Xia, Q. Advances in effect of soil pH on Cadmium form. Soils 2020, 52, 439–444. [Google Scholar] [CrossRef]
- Pei, G.P.; Liu, F.W.; Li, Y.X. Effects of vinegar residue biochar on cadmium speciation transformation in calcareous soil and cadmium accumulation in wheat. J. Shanxi Agric. Univ. Nat. Sci. Ed. 2023, 43, 76–85. [Google Scholar] [CrossRef]
- Wang, Y.M.; Liu, Q.; Li, M.Y.; Xu, Y.; Uchimiya, M.; Wang, S.W.; Zhang, Z.Y.; Ji, T.; Wang, Y.; Zhao, Y.Y. Rhizospheric pore-water content predicts the biochar-attenuated accumulation, translocation, and toxicity of cadmium to lettuce. Ecotoxicol. Environ. Saf. 2021, 208, 111675. [Google Scholar] [CrossRef]
- Fu, Y.C.; Zhu, X.L.; Yuan, C.; Xie, X.L.; Yang, G.H.; Li, P.X.; Liu, C.; Li, D.H. Study on the effect of sulfur materials on immobilization of Cadmium in contaminated alkaline farmland soils. J. Ecol. Rural Environ. 2019, 35, 1353–1360. [Google Scholar] [CrossRef]
Process Control Parameters | |||
---|---|---|---|
Sample pretreatment parameters | Drying | Combustion furnace drying temperature | 450 °C |
Combustion furnace drying time | 70 s | ||
Combustion furnace drying flow (air) | 500 mL/min | ||
Pyrolysis | Combustion furnace pyrolysis temperature | 750 °C | |
Combustion furnace pyrolysis time | 40 s | ||
Combustion furnace pyrolysis flow (air) | 500 mL/min | ||
Detection parameter | Detection | Detection time | 80 s |
Detection flow (air) | 300 mL/min | ||
Detection flow (hydrogen) | 300 mL/min | ||
Catalytic furnace temperature | 750 °C | ||
Peak adjustment time | 0 s | ||
Peak starting time | 2.0 s | ||
Cut-off time | 60.0 s |
District | Provinces | Cadmium Content (mg/kg) |
---|---|---|
Southern production area | Fujian (n = 54) | 0.107 ± 0.027 |
Guangdong (n = 52) | 0.097 ± 0.016 | |
Guangxi (n = 38) | 0.296 ± 0.059 | |
Yunnan (n = 5) | 0.132 ± 0.105 | |
Yangtze River Basin production area | Hubei (n = 34) | 0.167 ± 0.029 |
Hunan (n = 5) | 0.152 ± 0.008 | |
Jiangxi (n = 42) | 0.235 ± 0.020 | |
Jiangsu (n = 10) | 0.072 ± 0.002 | |
Anhui (n = 43) | 0.155 ± 0.034 | |
Sichuan (n = 42) | 0.172 ± 0.040 | |
Yellow River Basin production area | Henan (n = 75) | 0.124 ± 0.027 |
Shandong (n = 42) | 0.103 ± 0.016 | |
Hebei (n = 28) | 0.077 ± 0.005 | |
Northeast production area | Jilin (n = 6) | 0.056 ± 0.007 |
Liaoning (n = 20) | 0.212 ± 0.024 |
Treatments | BCFPeanut seeds | TFStem/Root | TFLeaf/Stem | TFPeanut/Root | TFPeanut/Stem | TFPeanut/Leaf |
---|---|---|---|---|---|---|
Control | 0.329 ± 0.05 | 0.947 ± 0.04 a | 0.668 ± 0.05 | 0.214 ± 0.07 | 0.226 ± 0.20 | 0.339 ± 0.04 |
Treated | 0.335 ± 0.02 | 0.748 ± 0.01 b | 0.704 ± 0.08 | 0.208 ± 0.04 | 0.278 ± 0.13 | 0.395 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Yue, X.; Wang, D.; Fang, M.; Yu, L.; Ma, F.; Yin, N.; Wang, X.; Xu, B.; Zhang, L.; et al. Prevention of Cadmium Contamination by Microbial Inoculant and Its Potential Mechanism. Agriculture 2024, 14, 881. https://doi.org/10.3390/agriculture14060881
Xu X, Yue X, Wang D, Fang M, Yu L, Ma F, Yin N, Wang X, Xu B, Zhang L, et al. Prevention of Cadmium Contamination by Microbial Inoculant and Its Potential Mechanism. Agriculture. 2024; 14(6):881. https://doi.org/10.3390/agriculture14060881
Chicago/Turabian StyleXu, Ximei, Xiaofeng Yue, Du Wang, Mengxue Fang, Li Yu, Fei Ma, Nanri Yin, Xuefang Wang, Baocheng Xu, Liangxiao Zhang, and et al. 2024. "Prevention of Cadmium Contamination by Microbial Inoculant and Its Potential Mechanism" Agriculture 14, no. 6: 881. https://doi.org/10.3390/agriculture14060881
APA StyleXu, X., Yue, X., Wang, D., Fang, M., Yu, L., Ma, F., Yin, N., Wang, X., Xu, B., Zhang, L., & Li, P. (2024). Prevention of Cadmium Contamination by Microbial Inoculant and Its Potential Mechanism. Agriculture, 14(6), 881. https://doi.org/10.3390/agriculture14060881