Experimental Warming Reduces the Grain Yield and Nitrogen Utilization Efficiency of Double-Cropping indica Rice in South China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experiment Design and Crop Management
2.3. Plant Sampling and Measurement
2.4. Statistical Analysis
3. Results
3.1. Grain Yield and Yield Components
3.2. Aboveground Biomass, DMT, and HI
3.3. N Concentration, N Uptake, NTE, and NUtE
4. Discussions
4.1. Warming Reduced the Grain Yield of ER and LR in South China
4.2. Effects of Warming on the N Uptake, NTE, and NUtE of ER and LR in South China
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Chen, Y.; Zhang, Z.; Tao, F.L. Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0 °C. Earth Syst. Dynam. 2018, 9, 543–562. [Google Scholar] [CrossRef]
- Liu, Y.J.; Tang, L.; Qiu, X.L.; Liu, B.; Chang, X.N.; Liu, L.L.; Zhang, X.H.; Cao, W.X.; Zhu, Y. Impacts of 1.5 and 2.0 °C global warming on rice production across China. Agr. For. Meteorol. 2020, 284, 107900. [Google Scholar] [CrossRef]
- He, W.J.; Liu, Y.Y.; Sun, H.P.; Taghizadeh-Hesary, F. How does climate change affect rice yield in China? Agriculture 2020, 10, 441. [Google Scholar] [CrossRef]
- Bunce, J.A. Responses of soybeans and wheat to elevated CO2 in free-air and open top chamber systems. Field Crop. Res. 2016, 186, 78–85. [Google Scholar] [CrossRef]
- Wang, B.; Li, J.L.; Wan, Y.F.; Li, Y.E.; Qin, X.B.; Gao, Q.Z.; Waqas, M.A.; Wilkes, A.; Cai, W.W.; You, S.C.; et al. Responses of yield, CH4 and N2O emissions to elevated atmospheric temperature and CO2 concentration in a double rice cropping system. Eur. J. Agron. 2018, 96, 60–69. [Google Scholar] [CrossRef]
- Rehmani, M.I.A.; Zhang, J.Q.; Li, G.H.; Ata-Ul-Karim, S.T.; Wang, S.H.; Kimball, B.A.; Yan, C.; Liu, Z.H.; Ding, Y.F. Simulation of future global warming scenarios in rice paddies with an open-field warming facility. Plant Methods 2011, 7, 41. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.J.; Chen, J.; Zhang, B.; Tian, Y.L.; Zhang, W.J. Responses of biomass growth and grain yield of midseason rice to the anticipated warming with FATI facility in East China. Field Crop. Res. 2011, 123, 259–265. [Google Scholar] [CrossRef]
- Rehmani, M.I.A.; Wei, G.B.; Hussain, N.; Ding, C.Q.; Li, G.H.; Liu, Z.H.; Wang, S.H.; Ding, Y.F. Yield and quality responses of two indica rice hybrids to post-anthesis asymmetric day and night open-field warming in lower reaches of Yangtze River delta. Field Crop. Res. 2014, 156, 231–241. [Google Scholar] [CrossRef]
- Dou, Z.; Tang, S.; Li, G.H.; Liu, Z.H.; Ding, C.Q.; Chen, L.; Wang, S.H.; Ding, Y.F. Application of nitrogen fertilizer at heading stage improves rice quality under elevated temperature during grain-filling stage. Crop Sci. 2017, 57, 2183–2192. [Google Scholar] [CrossRef]
- Cai, C.; Yin, X.Y.; He, S.Q.; Jiang, W.Y.; Si, C.F.; Struik, P.C.; Luo, W.H.; Li, G.; Xie, Y.T.; Xiong, Y.; et al. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Glob. Change Biol. 2016, 22, 856–874. [Google Scholar] [CrossRef]
- Wang, J.Q.; Liu, X.Y.; Zhang, X.H.; Smith, P.; Li, L.Q.; Filley, T.R.; Cheng, K.; Shen, M.X.; He, Y.B.; Pan, G.X. Size and variability of crop productivity both impacted by CO2 enrichment and warming—A case study of 4 year field experiment in a Chinese paddy. Agr. Ecosyst. Environ. 2016, 221, 40–49. [Google Scholar] [CrossRef]
- Wang, J.Q.; Li, L.Q.; Lam, S.K.; Zhang, X.H.; Liu, X.Y.; Pan, G.X. Changes in nutrient uptake and utilization by rice under simulated climate change conditions: A 2-year experiment in a paddy field. Agr. Forest Meteorol. 2018, 250–251, 202–208. [Google Scholar] [CrossRef]
- Wang, W.L.; Cai, C.; Lam, S.K.; Liu, G.; Zhu, J.G. Elevated CO2 cannot compensate for japonica grain yield losses under increasing air temperature because of the decrease in spikelet density. Eur. J. Agron. 2018, 99, 21–29. [Google Scholar] [CrossRef]
- NBS. China Rural Statistical Yearbook; China Statistics Press: Beijing, China, 2021; pp. 109–157. (In Chinese) [Google Scholar]
- Chen, C.Q.; van Groenigen, K.J.; Yang, H.Y.; Hungate, B.A.; Yang, B.; Tian, Y.L.; Chen, J.; Dong, W.J.; Huang, S.; Deng, A.X.; et al. Global warming and shifts in cropping systems together reduce China’s rice production. Glob. Food Secur. 2020, 24, 100359. [Google Scholar] [CrossRef]
- Wang, H.Y.; Yang, T.T.; Chen, J.; Bell, S.F.; Wu, S.P.; Jiang, Y.; Sun, Y.N.; Zeng, Y.H.; Zeng, Y.J.; Pan, X.H.; et al. Effects of free-air temperature increase on grain yield and greenhouse gas emissions in a double rice cropping system. Field Crop. Res. 2022, 281, 108489. [Google Scholar] [CrossRef]
- Yang, T.T.; Xiong, R.Y.; Tan, X.M.; Huang, S.; Pan, X.H.; Guo, L.; Zeng, Y.J.; Zhang, J.; Zeng, Y.H. The impacts of post-anthesis warming on grain yield and quality of double-cropping high-quality indica rice in Jiangxi Province, China. Eur. J. Agron. 2022, 139, 126551. [Google Scholar] [CrossRef]
- Wang, E.L.; He, D.; Wang, J.; Lilley, J.M.; Christy, B.; Hoffmann, M.P.; O’Leary, G.; Hatfield, J.L.; Ledda, L.; Deligios, P.L.; et al. How reliable are current crop models for simulating growth and seed yield of canola across global sites and under future climate change? Clim. Change 2022, 172, 20. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Long, S.P. 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 2021, 27, 27–49. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.M.; Yu, M.J.; Chen, H.H.; Zhao, H.C.; Huang, Y.L.; Su, W.Q.; Xia, F.; Chang, S.X.; Brookes, P.C.; Dahlgren, R.A.; et al. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Glob. Change Biol. 2020, 26, 5267–5276. [Google Scholar] [CrossRef]
- Chen, X.P.; Cui, Z.L.; Fan, M.S.; Vitousek, P.; Zhao, M.; Ma, W.Q.; Wang, Z.L.; Zhang, W.J.; Yan, X.Y.; Yang, J.C.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Bai, E.; Li, S.L.; Xu, W.H.; Li, W.; Dai, W.W.; Jiang, P. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol. 2013, 199, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Guo, C.; Wan, Y.F.; Li, J.L.; Ju, X.T.; Cai, W.W.; You, S.C.; Qin, X.B.; Wilkes, A.; Li, Y.E. Air warming and CO2 enrichment increase N use efficiency and decrease N surplus in a Chinese double rice cropping system. Sci. Total Environ. 2020, 706, 136063. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Zhu, J.; Wassmann, R. Responses of rice yields to recent climate change in China: An empirical assessment based on long-term observations at different spatial scales (1981–2005). Agr. For. Meteorol. 2010, 150, 1128–1137. [Google Scholar] [CrossRef]
- Espe, M.B.; Hill, J.E.; Hijmans, R.J.; McKenzie, K.; Mutters, R.; Espino, L.A.; Leinfelder-Miles, M.; van Kessel, C.; Linquist, B.A. Point stresses during reproductive stage rather than warming seasonal temperature determine yield in temperate rice. Glob. Change Biol. 2017, 23, 4386–4395. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, B.; Rasmussen, A.; Porter, J.R. Temperatures and the growth and development of maize and rice: A review. Glob. Change Biol. 2014, 20, 408–417. [Google Scholar] [CrossRef]
- Impa, S.M.; Raju, B.; Hein, N.T.; Sandhu, J.; Prasad, P.V.V.; Walia, H.; Jagadish, S.V.K. High night temperature effects on wheat and rice: Current status and way forward. Plant Cell Environ. 2021, 44, 2049–2065. [Google Scholar] [CrossRef]
- Xu, J.M.; Misra, G.; Sreenivasulu, N.; Henry, A. What happens at night? Physiological mechanisms related to maintaining grain yield under high night temperature in rice. Plant Cell Environ. 2021, 44, 2245–2261. [Google Scholar] [CrossRef]
- Chen, J.; Chen, C.Q.; Tian, Y.L.; Zhang, X.; Dong, W.J.; Zhang, B.; Zhang, J.; Zheng, C.Y.; Deng, A.X.; Song, Z.W.; et al. Differences in the impacts of nighttime warming on crop growth of rice-based cropping systems under field conditions. Eur. J. Agron. 2017, 82, 80–92. [Google Scholar] [CrossRef]
- Xing, Z.P.; Huang, Z.C.; Yao, Y.; Fu, D.H.; Cheng, S.; Tian, J.Y.; Zhang, H.C. Nitrogen use traits of different rice for three planting modes in a rice-wheat rotation system. Agriculture 2023, 13, 77. [Google Scholar] [CrossRef]
- Wang, B.; Li, J.L.; Wan, Y.F.; Cai, W.W.; Guo, C.; You, S.C.; Li, R.; Qin, X.B.; Gao, Q.Z.; Zhou, S.H.; et al. Variable effects of 2 °C air warming on yield formation under elevated [CO2] in a Chinese double rice cropping system. Agr. For. Meteorol. 2019, 278, 107662. [Google Scholar] [CrossRef]
- Tang, S.; Chen, W.Z.; Liu, W.Z.; Zhou, Q.Y.; Zhang, H.X.; Wang, S.H.; Ding, Y.F. Open-field warming regulates the morphological structure, protein synthesis of grain and affects the appearance quality of rice. J. Cereal Sci. 2018, 84, 20–29. [Google Scholar] [CrossRef]
- Yang, T.T.; Zeng, Y.H.; Sun, Y.N.; Zhang, J.; Tan, X.M.; Zeng, Y.J.; Huang, S.; Pan, X.H. Experimental warming reduces fertilizer nitrogen use efficiency in a double rice cropping system. Plant Soil Environ. 2019, 65, 483–489. [Google Scholar] [CrossRef]
- Chun, A.; Lee, H.J.; Hamaker, B.R.; Janaswamy, S. Effects of ripening temperature on starch structure and gelatinization, pasting, and cooking properties in rice (Oryza sativa). J. Agric. Food Chem. 2015, 63, 3085–3093. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Wang, K.W.; Yin, T.Y.; Zhao, Y.F.; Liu, W.Z.; Shen, Y.Y.; Ding, Y.F.; Tang, S. Nitrogen fertilizer regulated grain storage protein synthesis and reduced chalkiness of rice under actual field warming. Front. Plant Sci. 2021, 12, 715436. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhu, X.C.; Xie, J.; Deng, G.Q.; Tu, T.H.; Guan, X.J.; Yang, Z.; Huang, S.; Chen, X.M.; Qiu, C.F.; et al. Reducing nitrogen application with dense planting increases nitrogen use efficiency by maintaining root growth in a double-rice cropping system. Crop J. 2021, 9, 805–815. [Google Scholar] [CrossRef]
- Xu, Y.F.; Chu, C.C.; Yao, S.G. The impact of high-temperature stress on rice: Challenges and solutions. Crop J. 2021, 9, 963–976. [Google Scholar] [CrossRef]
- Shi, W.J.; Muthurajan, R.; Rahman, H.; Selvam, J.; Peng, S.B.; Zou, Y.B.; Jagadish, K.S.V. Source-sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality. New Phytol. 2013, 197, 825–837. [Google Scholar] [CrossRef]
Season | Year/Cultivar | Treatment | Grain Yield (g m−2) | Panicle Number (m−2) | Spikelet Number (panicle−1) | Filled Grain Percentage (%) | Grain Weight (mg) |
---|---|---|---|---|---|---|---|
ER | 2020 (HFSM) | Control | 661.3 c | 211.2 b | 156.2 b | 86.8 a | 26.23 a |
Warming | 628.9 d | 215.3 b | 166.9 ab | 80.6 b | 25.17 b | ||
2021 (YHSM) | Control | 750.2 a | 255.1 a | 174.2 a | 91.4 a | 23.56 c | |
Warming | 709.4 b | 249.0 a | 174.7 a | 89.7 a | 22.02 d | ||
LR | 2020 (YHSM) | Control | 766.3 a | 232.6 b | 180.9 a | 92.2 a | 23.16 ab |
Warming | 711.7 bc | 271.4 a | 144.2 b | 91.6 a | 23.56 a | ||
2021 (YHSM) | Control | 729.3 ab | 236.7 b | 179.4 a | 80.6 b | 22.95 b | |
Warming | 688.7 c | 244.9 ab | 152.3 b | 80.5 b | 23.34 ab | ||
Analysis of variance | |||||||
ER | Year (Y) | ** | ** | * | ** | ** | |
Treatment (T) | ** | ns | ns | ns | ** | ||
Y × T | ns | ns | ns | ns | ns | ||
LR | Year (Y) | * | ns | ns | ** | ns | |
Treatment (T) | ** | * | ** | ns | ns | ||
Y × T | ns | ns | ns | ns | ns |
Season | Year/Cultivar | Treatment | Aboveground Biomass (g m−2) | DMT (%) | HI (%) | ||
---|---|---|---|---|---|---|---|
Tillering | Heading | Maturity | |||||
ER | 2020 (HFSM) | Control | 151.0 d | 1045.1 a | 1375.2 bc | 31.0 a | 41.6 a |
Warming | 198.2 a | 1017.7 a | 1361.9 c | 28.9 a | 40.0 a | ||
2021 (YHSM) | Control | 166.3 c | 944.7 b | 1574.2 a | 13.7 b | 41.2 a | |
Warming | 179.6 b | 864.3 c | 1450.5 b | 14.0 b | 42.4 a | ||
LR | 2020 (YHSM) | Control | 230.0 a | 1051.8 a | 1361.4 a | 26.9 a | 48.7 a |
Warming | 206.2 ab | 982.3 bc | 1432.3 a | 12.8 bc | 43.0 b | ||
2021 (YHSM) | Control | 214.6 ab | 1036.9 ab | 1375.8 a | 20.2 ab | 45.9 ab | |
Warming | 193.4 b | 971.3 c | 1379.3 a | 7.3 c | 43.2 b | ||
Analysis of variance | |||||||
ER | Year (Y) | ns | ** | ** | ** | ns | |
Treatment (T) | ** | * | * | ns | ns | ||
Y × T | ** | ns | ns | ns | ns | ||
LR | Year (Y) | ns | ns | ns | * | ns | |
Treatment (T) | * | ** | ns | ** | * | ||
Y × T | ns | ns | ns | ns | ns |
Season | Year/Cultivar | Treatment | Tillering | Heading | Maturity | ||
---|---|---|---|---|---|---|---|
Straw | Straw | Panicle | Straw | Panicle | |||
ER | 2020 (HFSM) | Control | 25.4 a | 13.8 a | 14.4 a | 9.9 a | 11.8 b |
Warming | 24.7 a | 14.8 a | 13.9 a | 9.9 a | 12.2 b | ||
2021 (YHSM) | Control | 27.0 a | 14.4 a | 14.7 a | 10.1 a | 12.8 b | |
Warming | 25.3 a | 15.0 a | 14.3 a | 10.2 a | 15.1 a | ||
LR | 2020 (YHSM) | Control | 23.7 b | 14.2 bc | 12.0 b | 9.7 b | 12.3 a |
Warming | 25.2 a | 16.3 a | 12.9 a | 10.3 ab | 12.9 a | ||
2021 (YHSM) | Control | 23.7 b | 13.7 c | 12.0 b | 9.4 b | 11.4 b | |
Warming | 25.8 a | 14.6 b | 12.6 ab | 11.0 a | 12.3 a | ||
Analysis of variance | |||||||
ER | Year (Y) | ns | ns | ns | ns | ** | |
Treatment (T) | ns | ns | ns | ns | * | ||
Y × T | ns | ns | ns | ns | ns | ||
LR | Year (Y) | ns | ** | ns | ns | * | |
Treatment (T) | ** | ** | ** | ** | * | ||
Y × T | ns | * | ns | ns | ns |
Season | Year/Cultivar | Treatment | N Uptake (g m−2) | NTE (%) | NUtE (g g−1) | ||
---|---|---|---|---|---|---|---|
Tillering | Heading | Maturity | |||||
ER | 2020 (HFSM) | Control | 3.83 b | 14.50 ab | 15.03 b | 50.7 a | 44.0 a |
Warming | 4.89 a | 14.95 a | 15.20 b | 52.2 a | 41.4 b | ||
2021 (YHSM) | Control | 4.48 a | 13.61 bc | 18.25 a | 39.3 b | 41.1 b | |
Warming | 4.54 a | 12.89 c | 18.72 a | 41.6 ab | 37.9 c | ||
LR | 2020 (YHSM) | Control | 5.46 a | 14.60 ab | 15.08 bc | 50.1 a | 50.9 a |
Warming | 5.19 a | 15.53 a | 16.56 a | 44.7 a | 43.0 b | ||
2021 (YHSM) | Control | 5.08 a | 13.98 b | 14.23 c | 45.4 a | 51.3 a | |
Warming | 4.98 a | 13.95 b | 15.97 ab | 30.1 b | 43.2 b | ||
Analysis of variance | |||||||
ER | Year (Y) | ns | ** | ** | * | ** | |
Treatment (T) | ** | ns | ns | ns | ** | ||
Y × T | ** | ns | ns | ns | ns | ||
LR | Year (Y) | ns | * | * | ** | ns | |
Treatment (T) | ns | ns | ** | ** | ** | ||
Y × T | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Zou, J.; Wu, L.; Bao, X.; Jiang, Y.; Zhang, N.; Zhang, B. Experimental Warming Reduces the Grain Yield and Nitrogen Utilization Efficiency of Double-Cropping indica Rice in South China. Agriculture 2024, 14, 921. https://doi.org/10.3390/agriculture14060921
Yang T, Zou J, Wu L, Bao X, Jiang Y, Zhang N, Zhang B. Experimental Warming Reduces the Grain Yield and Nitrogen Utilization Efficiency of Double-Cropping indica Rice in South China. Agriculture. 2024; 14(6):921. https://doi.org/10.3390/agriculture14060921
Chicago/Turabian StyleYang, Taotao, Jixiang Zou, Longmei Wu, Xiaozhe Bao, Yu Jiang, Nan Zhang, and Bin Zhang. 2024. "Experimental Warming Reduces the Grain Yield and Nitrogen Utilization Efficiency of Double-Cropping indica Rice in South China" Agriculture 14, no. 6: 921. https://doi.org/10.3390/agriculture14060921
APA StyleYang, T., Zou, J., Wu, L., Bao, X., Jiang, Y., Zhang, N., & Zhang, B. (2024). Experimental Warming Reduces the Grain Yield and Nitrogen Utilization Efficiency of Double-Cropping indica Rice in South China. Agriculture, 14(6), 921. https://doi.org/10.3390/agriculture14060921