Novel Technical Parameters-Based Classification of Harvesters Using Principal Component Analysis and Q-Type Cluster Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Date Source
2.2. Principal Component Analysis
2.3. Q-Type Cluster Analysis
2.4. Analysis of Functional Component Technical Characteristics
2.5. Data Processing
3. Results
3.1. Principal Component Analysis of Technical Parameters of Harvester Products
3.2. Q-Type Cluster Analysis of Harvester Technical Parameters
3.3. Analysis of Functional Components of Harvester Product Classification
4. Discussion
- Classification Methodology: The study successfully developed a comprehensive classification method for harvesters by integrating principal component analysis (PCA), Q-type cluster analysis, and the qualitative analysis of the functional components. This method effectively reduces data dimensionality while retaining critical information, providing a structured framework for harvester classification.
- Identification of Key Parameters: Eight primary parameters (machine weight, cutting width, feed rate, rated power, overall machine length, width, height, and working efficiency) and nine key functional components (walking mechanism, cutting device, threshing device, separating device, cleaning device, grain collecting device, grain unloading device, cabin, and track size) were identified as essential for classifying harvesters. These parameters were critical in distinguishing different categories of harvesters and understanding their performance characteristics.
- Three-Level Classification: PCA and cluster analysis resulted in a three-level classification of harvesters into micro, small, medium, and large categories. This classification reflects the diversity of harvester designs and their suitability for various operational contexts and scales of farming.
- Implications for Green Mechanization: The classification method provides a quantitative foundation for selecting and using agricultural machinery in a manner that promotes green mechanization. By aligning machinery selection with ecological and efficiency indicators, the findings support sustainable agricultural practices.
- Practical Applications: The study’s results offer practical guidance for policymakers, manufacturers, and farmers. The classification system aids in aligning the tool parameters, sales prices, application contexts, and geographical–social conditions, facilitating informed decision-making in agricultural mechanization.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, M.; Bai, R. Study on development stage of agricultural mechanization in China. Trans. Chin. Soc. Agric. Machi. 2005, 12, 167–170. (In Chinese) [Google Scholar]
- Cao, W.; Yang, M. Efficiency of mechanical production mode in paddy rice-wheat double cropping area of Jiangsu province. Trans. Chin. CSAE 2015, 31, 89–101. (In Chinese) [Google Scholar]
- Wang, F.; Liu, Y.; Li, Y.; Ji, K. Research and experiment on variable-diameter threshing drum with movable radial plates for combine harvester. Agriculture 2022, 13, 1487. [Google Scholar] [CrossRef]
- Cui, M.; Guo, Y.; Chen, J. Influence of transfer plot area and location on chemical input reduction in agricultural production: Evidence from China. Agriculture 2023, 13, 1794. [Google Scholar] [CrossRef]
- Huo, Y.; Ye, S.; Wu, Z.; Zhang, F.; Mi, G. Barriers to the development of agricultural mechanization in the north and northeast China plains: A Farmer Survey. Agriculture 2022, 12, 287. [Google Scholar] [CrossRef]
- Song, W.; Ye, C. Impact of the cultivated-land-management scale on fertilizer reduction—Empirical evidence from the countryside of China. Land 2022, 11, 1184. [Google Scholar] [CrossRef]
- Guo, Y.; Cui, M.; Xu, Z. Spatial characteristics of transfer plots and conservation tillage technology adoption: Evidence from a survey of four provinces in China. Agriculture 2023, 13, 1601. [Google Scholar] [CrossRef]
- Chen, J.; Shi, Q.; Shen, L.; Huang, Y.; Wu, Y. What makes the difference in construction carbon emissions between China and USA. Sustain. Cities Soc. 2019, 44, 604–613. [Google Scholar] [CrossRef]
- Tang, Z.; Li, Y.; Cheng, C. Development of multi-functional combine harvester with grain harvesting and straw baling. Span. J. Agric. Res. 2017, 15, e0202. [Google Scholar] [CrossRef]
- Li, J.; Chen, Z.; Yang, M.; Huang, Y. Mechanized corn production systems based on combination of machinery and agronomy. Trans. Chin. Soc. Agric. Mach. 2012, 43, 83–88. (In Chinese) [Google Scholar]
- Peng, J.; Zhao, Z.; Liu, D. Impact of agricultural mechanization on agricultural production, income, and mechanism: Evidence from Hubei province, China. Front. Environ. Sci. 2022, 10, 838686. [Google Scholar] [CrossRef]
- Sui, B.; Dong, S.; Meng, H.; Wang, J.; Shen, Y.; Ding, J.; Zhou, H.; Feng, J. Innovation in agricultural engineering and technology to accelerate green development of agriculture. Trans. Chin. CSAE 2020, 36, 1–6. (In Chinese) [Google Scholar]
- Zhu, Y.; Zhang, Y.; Piao, H. Does agricultural mechanization improve the green total factor productivity of China’s planting industry? Energies 2022, 15, 940. [Google Scholar] [CrossRef]
- Qiao, J.; Han, Z.; Hong, K.; Chen, H.; Hao, Y.; Zhang, X. Variation of technology productivity of harvesting outfit along with site condition. Trans. Chin. CSAE 2016, 32, 43–50. (In Chinese) [Google Scholar]
- He, P.; Zhang, J.; Li, W. The role of agricultural green production technologies in improving low-carbon efficiency in China: Necessary but not effective. J. Environ. Manag. 2021, 293, 112837. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Hu, X.; Chunga, J.; Lin, Z.; Fei, R. Does the popularisation of agricultural mechanization mechanization improve energy-environment performance in China’s agricultural sector? J. Clean. Prod. 2021, 293, 112837. [Google Scholar]
- Li, H.; Luo, L.; Zhang, X.; Zhang, J. Dynamic change of agricultural energy efficiency and its influencing factors in China. Chin. J. Popul. Resour. 2021, 293, 112837. [Google Scholar] [CrossRef]
- Benz, J.P.; Chen, S.; Dang, S.; Dieter, M.; Labelle, E.R.; Liu, G.; Hou, L.; Mosandl, R.M.; Pretzsch, H.; Pukall, K.; et al. Multifunctionality of forests: A white paper on challenges and opportunities in China and Germany. Forests 2020, 11, 266. [Google Scholar] [CrossRef]
- Zhuang, X.; Li, Y. Segmentation and angle calculation of rice lodging during harvesting by a combine harvester. Agriculture 2023, 13, 1425. [Google Scholar] [CrossRef]
- Hu, J.; Xu, L.; Yu, Y.; Lu, J.; Han, D.; Chai, X.; Wu, Q.; Zhu, L. Design and experiment of bionic straw-cutting blades based on Locusta migratoria manilensis. Agriculture 2023, 13, 2231. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, X. Carbon reduction effect of agricultural green production technology: A new evidence from China. Sci. Total Environ. 2023, 874, 162483. [Google Scholar] [CrossRef] [PubMed]
- Hafezalkotob, A.; Hami-Dindar, A.; Rabie, N.; Hafezalkotob, A. A decision support system for agricultural machines and equipment selection: A case study on olive harvester machines. Comput. Electron. Agric. 2018, 148, 207–216. [Google Scholar] [CrossRef]
- Liao, W.; Zeng, F.; Chanieabate, M. Mechanization of small-scale agriculture in China: Lessons for enhancing smallholder access to agricultural machinery. Sustainability 2022, 14, 7964. [Google Scholar] [CrossRef]
- Mason, N.; Flores, H.; Villalobos, J.R.; Ahumada, O. Planning the planting, harvest, and distribution of fresh horticultural products. Sustainability 2015, 14, 7964. [Google Scholar]
- Sokhansanj, S.; Anthony, T.; Mani, S.; Kumar, A.; Laser, M. Large-scale production, harvest and logistics of switchgrass (Panicum virgatum L.)—Current technology and envisioning a mature technology. Biofuels Bioprod. Biorefining 2009, 3, 124–141. [Google Scholar] [CrossRef]
- Li, S. Market prospect analysis of small rice combine harvester. Farm Mach. 2012, 16, 104–105. (In Chinese) [Google Scholar]
- Xia, Q.; Xu, Y.; Yue, G. Development status, problems and Countermeasures of small rice harvesters in Chongqing. S. China Agric. 2017, 11, 29–31. (In Chinese) [Google Scholar]
- Doungpueng, K.; Saengprachatanarug, K.; Posom, J.; Chuan-Udom, S. Selection of proper combine harvesters to field conditions by an effective field capacity prediction model. Int. J. Agric. Biol. Eng. 2020, 13, 125–134. [Google Scholar] [CrossRef]
- Trcolea, C.; Paris, A.S.; Voicu, P. Principal Component Analysis Applied to Agricultural Equipments. J. Agric. Mach. Sci. 2011, 7, 305–308. [Google Scholar]
- Chai, L.; Zhang, Q.; Xie, J.; Liu, J.; Jiang, R. Dynamic evaluation mode for ecological environment in irrigation based on theme classify and component technology. Trans. Chin. CSAE 2017, 33, 174–181. (In Chinese) [Google Scholar]
- Mathanker, S.K.; Hansen, A.C. Harvesting system design and performance. In Engineering and Science of Biomass Feedstock Production and Provision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 85–139. [Google Scholar]
- Dhillon, R.; Moncur, Q. Small-scale farming: A review of challenges and potential opportunities offered by technological advancements. Sustainability 2023, 15, 15478. [Google Scholar] [CrossRef]
- Hao, C.; Jiao, C.; Hou, J.; Li, T.; Liu, H.; Wang, Y.; Zhang, X. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Mol. Plant 2020, 13, 1733–1751. [Google Scholar] [CrossRef] [PubMed]
- Ağızan, S.; Oguz, C.; Ağızan, K.; Bayramoğlu, Z. Evaluation of the Utilization of Mechanization in the Agricultural Enterprises in Terms of Productivity. Yuz. Yıl Univ. J. Agric. Sci. 2021, 30, 898–907. [Google Scholar] [CrossRef]
- Kaya, E.; Örs, A. Evaluation of agricultural mechanization level of Karaman province. Turk. J. Agric. Food Sci. Technol. 2020, 8, 260–265. [Google Scholar] [CrossRef]
- Lu, B.; Han, W.; Zhu, M. Comparision of evaluation method for agricultural mechanization development level. Trans. Chin. Soc. Agric. Eng. 2015, 31, 46–49. [Google Scholar]
- Rasooli Sharabiani, V.; Ranjbar, I. Determination of the degree, level and capacity indices for agricultural mechanization in Sarab Region. J. Agric. Sci. Technol. 2008, 10, 215–223. [Google Scholar]
- Chi, Y.; Zhou, W.; Wang, Z.; Hu, Y.; Han, X. The influence paths of agricultural mechanization on green agricultural development. Sustainability 2021, 13, 12984. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, J.; Wang, D.; You, X. Can Mechanization Promote Green Agricultural Production? An Empirical Analysis of Maize Production in China. Sustainability 2022, 15, 1. [Google Scholar] [CrossRef]
- Guo, X.; Huang, S.; Wang, Y. Influence of agricultural mechanization development on agricultural green transformation in Western China, based on the ML index and spatial panel model. Math. Probl. Eng. 2020, 2020, 6351802. [Google Scholar] [CrossRef]
- Daum, T. Mechanization and sustainable agri-food system transformation in the Global South. A review. Agron. Sustain. Dev. 2023, 43, 16. [Google Scholar] [CrossRef]
- Yin, S.; Wang, Y.; Xu, J. Developing a conceptual partner matching framework for digital green innovation of agricultural high-end equipment manufacturing system toward agriculture 5.0: A Novel Niche Field Model Combined with Fuzzy VIKOR. Front. Psychol. 2022, 13, 924109. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Liu, G.; Lu, Z.; Xiao, Y.; Nie, J.; Yang, L.; Wang, H. A new framework for delineating farmland consolidation priority areas for promoting agricultural mechanization in hilly and mountainous areas. Comput. Electron. Agric. 2024, 148, 207–216. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhao, H.; Liu, Z.; He, J.; Liu, W. Research progress and development of mechanized potato planters: A review. Agriculture 2021, 11, 521. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, B.; Huang, W.; Wang, L.; Fang, X.; Xu, S.; Cui, S. Producing more potatoes with lower inputs and greenhouse gases emissions by regionalized cooperation in China. J. Clean. Prod. 2021, 299, 126883. [Google Scholar] [CrossRef]
- Zang, L.; Wang, Y.; Ke, J.; Su, Y. What drives smallholders to utilize socialized agricultural services for farmland scale management? Insights from the perspective of collective action. Land 2022, 11, 930. [Google Scholar] [CrossRef]
- Aryal, J.P.; Thapa, G.; Simtowe, F. Mechanisation of small-scale farms in South Asia: Empirical evidence derived from farm households survey. Technol. Soc. 2021, 65, 101591. [Google Scholar] [CrossRef]
- Li, X.; Guan, R. How does agricultural mechanization service affect agricultural green transformation in China. Int. J. Environ. Res. Public Health 2023, 20, 1655. [Google Scholar] [CrossRef]
- Gavioli, G. A sustainable mechanization for the future: First contribution. In Proceedings of the A Sustainable Mechanization for the Future: First Contribution, Bologna, Italy, 22–23 October 2021. [Google Scholar]
Serial Number | Harvester Brand | Harvester Producers |
---|---|---|
1 | Kubota | Kubota Agricultural Machinery (Suzhou, China) Co., Ltd. |
2 | John deere | John Deere (Tianjin, China) Investment Co., Ltd. |
3 | Revo Ceres | Lovol Heavy Industry (Weifang, China) Co., Ltd. |
4 | World Agricultural Machinery | Jiangsu World Electromechanical Group (Danyang, China) Co., Ltd. |
5 | Tani Wang | Zoomlion Heavy Industry Science & Technology (Changsha, China) Co., Ltd. |
6 | China Harvest | Luoyang Zhongshou Machinery & Equipment (Luoyang, China) Co., Ltd. |
7 | Yanmar | Yanmar Agricultural Machinery (Beijing, China) Co., Ltd. |
8 | Xingguang | Xingguang Agricultural Machinery (Hefei, China) Co., Ltd. |
9 | Chunyu | Kele Harvest Agricultural Machinery Trade (Beijing, China) |
10 | Nonghaha | Hebei Nonghaha Machinery Group (Shijiazhuang, China) Co., Ltd. |
11 | Jialian | Jiamusi Changfa Jialian Agricultural Equipment (Jianusi, China) Co., Ltd. |
12 | Bilang | Southern Machinery (Beijing, China) Co., Ltd. of China National Machinery Industry |
13 | Jingguan | Dongfeng Jingguan Agricultural Machinery (Shiyang, China) Co., Ltd. |
14 | Xinjiang Zhongmu | Xinjiang Zhongshou Agric & Animal Husbandry (Urumqi, China) |
15 | Ninglian | Shandong Ninglian Machinery Manufacturing (Ningjin, China) Co., Ltd. |
16 | Gangyi | Sichuan Gangyi Technology Group (Chengdu, China) Co., Ltd. |
17 | Zhonglian | Zhengzhou Zhonglian Harvest Machinery (Zhengzhou, China) Co., Ltd. |
18 | Xinyuan | Chongqing Xinyuan Agricultural Machinery (Chongqing, China) Co., Ltd. |
Product Parameters | Description | |
---|---|---|
Functional parameters | Overall Machine Weight | Tool Weight (kg) |
Cutting Width | Working width (mm) | |
Feed Capacity | Maximum Material Feed Rate for Crop Harvesting (kg/s) | |
Overall Machine Size | Length, wide, Height of the Tool (mm) | |
power | Matching power (kW) | |
Working Efficiency | Area Worked Per Hour (hm2/h) | |
Track size | Number of track sections, pitch, width (mm) | |
Grain Bin Capacity | Size of grain storage volume (L) | |
Operating Speed | Harvesting speed of the harvester (m/s) | |
Fuel Tank Capacity | Size of the fuel tank volume (L) |
Brand | Rated Power | Overall Machine Weight | Length | Width | Height | Cutting Width | Working Efficiency |
---|---|---|---|---|---|---|---|
Xinyuan 4LZ-0.3LA | −1.19 | −1.17 | −1.62 | −1.41 | −1.50 | −0.96 | −1.00 |
Nongguang 4LZ-0.8 | −1.12 | −1.02 | −1.25 | −1.08 | −0.71 | −0.72 | −0.93 |
Fupai 4LZ-0.6-C | −1.16 | −1.05 | −1.03 | −0.75 | −1.12 | −0.72 | −0.97 |
Nongyou 4LZ-1.2 | −0.88 | −0.75 | −0.82 | −0.70 | −1.22 | −0.51 | −0.66 |
Bilang 4LZ-1.0 | −0.50 | −0.30 | −0.27 | −0.30 | 0.17 | −0.06 | −0.66 |
Dafeng Wang 4LZ-2.0 | −0.24 | −0.09 | 0.59 | −0.70 | 0.59 | −0.06 | −0.15 |
Yangma 4LZ-3.0A | 0.10 | 0.11 | 0.17 | 0.01 | 0.31 | −0.01 | 0.33 |
Longzhou 4LZ-2.3 | −0.31 | −0.31 | 0.06 | 0.03 | −0.04 | −0.23 | −0.47 |
Wode 4LB-150A | −0.28 | −0.24 | −0.31 | 0.37 | −0.43 | −0.49 | −0.19 |
Yangma 4LZ-3.5A | 0.14 | 0.21 | 0.23 | −0.12 | 0.34 | −0.01 | 0.33 |
Kubota 4LZ-4A8 | 0.34 | 0.38 | 0.32 | 0.12 | 0.24 | −0.06 | −0.11 |
Liulin 4LZ-5.0B | 0.36 | 0.02 | 0.34 | 0.19 | 0.56 | 0.02 | −0.11 |
Jumping 4LZ-3 | −0.24 | 0.00 | 0.10 | 0.34 | 0.59 | 0.25 | −0.21 |
Liangtian 4LZ-4.0 | 0.15 | −0.01 | 0.11 | 0.19 | 0.34 | −0.06 | −0.21 |
Xinguang 4LZ-4.2Z | 0.15 | −0.01 | 0.15 | 0.23 | 0.18 | 0.10 | 0.03 |
Levo Gu Shen GF40 | 0.35 | 1.39 | 1.38 | 1.32 | 1.29 | 0.65 | 0.57 |
Zhongshou 4LZ-7 | 0.92 | 0.96 | 1.16 | 0.78 | 0.87 | 0.55 | 0.56 |
Shifeng 4LZ-7 | 0.78 | 1.10 | 1.27 | 0.92 | 0.95 | 0.55 | −0.11 |
Zhonglian Gu Wang TE90 | 1.63 | 1.70 | 1.31 | 1.00 | 1.18 | 0.67 | 1.53 |
John Deere W230 | 2.92 | 1.82 | 1.40 | 0.95 | 1.76 | 2.04 | 2.21 |
Dongfanghong 4LZ-7B | 1.38 | 1.13 | 1.37 | 0.64 | 1.09 | 0.44 | 0.53 |
Changfa Jialian CF809 | 1.72 | 2.39 | 2.00 | 2.74 | 1.43 | 1.98 | 4.26 |
Levo Gu Shen GE70 | 1.03 | 1.11 | 1.20 | 0.62 | 1.20 | 0.40 | 0.98 |
Component | Initial Eigenvalue | Sum of Squared Loadings Extracted | ||||
---|---|---|---|---|---|---|
Eigenvalue | Percentage of Variance | Cumulative Contribution Rate% | Eigenvalue | Percentage of Variance % | Cumulative Contribution Rate % | |
1 | 3.329 | 41.610 | 41.610 | 3.329 | 41.610 | 41.610 |
2 | 2.286 | 28.579 | 70.189 | 2.286 | 28.579 | 70.189 |
3 | 1.211 | 15.134 | 85.323 | 1.211 | 15.134 | 85.323 |
4 | 0.605 | 7.563 | 92.886 | |||
5 | 0.499 | 6.232 | 99.118 | |||
6 | 0.034 | 0.419 | 99.537 | |||
7 | 0.022 | 0.278 | 99.815 | |||
8 | 0.015 | 0.185 | 100.000 |
Technical Parameters | Principal Component | ||
---|---|---|---|
1 | 2 | 3 | |
Rated power | 0.134 | 1.771 | 0.419 |
Overall Machine Weight | 0.133 | −0.079 | −0.026 |
Length | 0.133 | −0.131 | −0.777 |
Width | 0.124 | −0.454 | 0.166 |
Height | 0.129 | −0.547 | −1.269 |
Cutting Width | 0.133 | 0.254 | −0.511 |
Working Efficiency | 0.127 | −0.827 | 1.037 |
Feed Capacity | 0.131 | 0.086 | 0.996 |
Primary Principal Component Analysis | Secondary Cluster Analysis | Three-Level Technical Characteristics Analysis | Remark |
---|---|---|---|
Walking Mechanism | Wheeled, Semi-tracked, Tracked | ||
Cutting Device | Reciprocating cutting, Disc Cutting | ||
Threshing Device | Spike-tooth type, Nail-tooth type, Double drum type, Axial flow type | ||
Separating Device | Key type separator, Platform type separator | ||
Cleaning Device | Airflow cleaning device, Fan sieve cleaning device, Airflow cleaning cylinder | ||
Grain Collecting | With grain bin, Without grain bin | ||
Grain Unloading Device | Manual unloading, Automatic unloading | ||
Cabin | Open type, Enclosed type |
Functional Component | Type | Mini Harvester | Small Harvester | Medium Harvester | Large Harvester |
---|---|---|---|---|---|
Functional components | Walking Mechanism | ● | ● | ● | ● |
Cutting Device | ● | ● | ● | ● | |
Threshing Device | ● | ● | ● | ● | |
Separation and Cleaning Device | ● | ● | ● | ● | |
Grain Collecting Device | — | ● | ● | ● | |
Manual Unloading Device | ● | ● | ● | ● | |
Automatic Unloading Device | — | — | ● | ● | |
Open Cabin | — | ● | ● | ● | |
Enclosed Cabin | — | — | ● | ● |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yusuf, K.A.; Amisi, E.O.; Ding, Q.; Chen, X.; Xu, G.; Jibril, A.N.; Gedeon, M.G.; Abdulhamid, Z.M. Novel Technical Parameters-Based Classification of Harvesters Using Principal Component Analysis and Q-Type Cluster Model. Agriculture 2024, 14, 941. https://doi.org/10.3390/agriculture14060941
Yusuf KA, Amisi EO, Ding Q, Chen X, Xu G, Jibril AN, Gedeon MG, Abdulhamid ZM. Novel Technical Parameters-Based Classification of Harvesters Using Principal Component Analysis and Q-Type Cluster Model. Agriculture. 2024; 14(6):941. https://doi.org/10.3390/agriculture14060941
Chicago/Turabian StyleYusuf, Kibiya Abubakar, Edwin O. Amisi, Qishuo Ding, Xinxin Chen, Gaoming Xu, Abdulaziz Nuhu Jibril, Moussita G. Gedeon, and Zakariya M. Abdulhamid. 2024. "Novel Technical Parameters-Based Classification of Harvesters Using Principal Component Analysis and Q-Type Cluster Model" Agriculture 14, no. 6: 941. https://doi.org/10.3390/agriculture14060941
APA StyleYusuf, K. A., Amisi, E. O., Ding, Q., Chen, X., Xu, G., Jibril, A. N., Gedeon, M. G., & Abdulhamid, Z. M. (2024). Novel Technical Parameters-Based Classification of Harvesters Using Principal Component Analysis and Q-Type Cluster Model. Agriculture, 14(6), 941. https://doi.org/10.3390/agriculture14060941