Rapid and High-Performance Analysis of Total Nitrogen in Coco-Peat Substrate by Coupling Laser-Induced Breakdown Spectroscopy with Multi-Chemometrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Samples
2.2. Sample Spectral Data Acquisition
2.3. Determination of Sample TN Reference Value
2.4. Selection of Spectral Features
2.5. Establishment and Evaluation of Model
3. Results and Discussion
3.1. Statistics of Reference Value of TN in Coco-Peat Substrate Samples
3.2. Analysis of Coco-Peat Substrate LIBS Spectral Characteristics
3.3. Calibration Curve Analysis of TN in Coco-Peat Substrate Based on Univariate LIBS Characteristics
3.4. Detection of TN in Coco-Peat Substrate Based on Full Variables LIBS Data
3.5. Detection of TN Content in Coco-Peat Substrate Based on LIBS Data of Screening Characteristic Variables
3.5.1. Modeling of Characteristic Variables for Si-PLS Screening
3.5.2. Modeling of Spectral Features for UVE Screening
3.6. Performance Comparison of LIBS Detection Models for TN in Coco-Peat Substrate Based on Full Variables and Selected Characteristic Variables
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.; Zhang, X.L.; Xu, K.; Su, X.Q.; Sun, J. Compensation methods for pH direct measurement in soilless culture substrates using the all-solid-stated pH sensor. IEEE Sens. J. 2021, 21, 26856–26867. [Google Scholar] [CrossRef]
- Khater, E.S.; Bahnasawy, A.; Abass, W.; Morsy, O.; EI-Ghobashy, H.; Shaban, Y.; Egela, M. Production of basil (Ocimum basilicum L.) under different soilless cultures. Sci. Rep. 2021, 11, 12754. [Google Scholar] [CrossRef] [PubMed]
- Fussy, A.; Papenbrock, J. An overview of soil and soilless cultivation techniques-chances, challenges and the neglected question of sustainability. Plants 2022, 11, 1153. [Google Scholar] [CrossRef]
- Ghoreishy, F.; Ghehsareh, A.M.; Fallahzade, J. Using composted wheat residue as a growth medium in culture of tomato. J. Plant Nutr. 2018, 41, 766–773. [Google Scholar] [CrossRef]
- Li, B.; Gu, S.; Chu, Q.; Yang, Y.L.; Xie, Z.J.; Fan, K.J.; Liu, X.G. Development of transplanting manipulator for hydroponic leafy vegetables. Int. J. Agric. Biol. Eng. 2019, 12, 38–44. [Google Scholar] [CrossRef]
- Ahmad, U.; Alvino, A.; Marino, S. Solar fertigation: A sustainable and smart loT-based irrigation and fertilization system for efficient water and nutrient management. Agronomy 2022, 12, 1012. [Google Scholar] [CrossRef]
- Ferrón-Carrillo, F.; Cunha-Chiamolera, T.P.L.; Urrestarazu, M. Effect of ammonium nitrogen on pepper grown under soilless culture. J. Plant Nutr. 2021, 45, 113–122. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, J.E.; Back, I.; Lim, K.J.; Mo, C. Estimation of total nitrogen content in topsoil based on machine and deep learning using hyperspectral imaging. Agriculture 2023, 13, 1975. [Google Scholar] [CrossRef]
- Wang, Y.T.; Li, M.Z.; Ji, R.H.; Wang, M.J.; Zhang, Y.; Zheng, L.H. Construction of complex features for predicting soil total nitrogen content based on convolution operations. Soil Tillage Res. 2021, 213, 105109. [Google Scholar] [CrossRef]
- Zhao, P.F.; Xing, J.F.; Hu, C.; Guo, W.S.; Wang, L.; He, X.W.; Xu, Z.X.; Wang, X.F. Feasibility of near-infrared spectroscopy for rapid detection of available nitrogen in vermiculite substrates in desert facility agriculture. Agriculture 2022, 12, 411. [Google Scholar] [CrossRef]
- Recena, R.; Fernández-Cabanás, V.M.; Delgado, A. Soil fertility assessment by Vis-NIR spectroscopy: Predicting soil functioning rather than availability indices. Geoderma 2019, 337, 368–374. [Google Scholar] [CrossRef]
- Coutinho, M.A.N.; Alari, F.O.; Ferreira, M.M.C.; do Amaral, L.R. Influence of soil sample preparation on the quantification of NPK content via spectroscopy. Geoderma 2019, 338, 401–409. [Google Scholar] [CrossRef]
- Zhang, B.H.; Sha, W.; Jiang, Y.C.; Cui, Z.F. Quantitative analysis of nitrogen in ammonium phosphate fertilizers using laser-induced breakdown spectroscopy. Appl. Optics 2019, 58, 3277–3281. [Google Scholar] [CrossRef]
- Zhong, J.; Jiang, X.M.; Lin, M.; Dai, H.L.; Zhu, F.L.; Qiao, X.; Zhao, Z.F.; Peng, J.Y. Fast quantification of matcha adulterants with laser-induced breakdown spectroscopy spectrum and image. Comput. Electron. Agric. 2023, 209, 107813. [Google Scholar] [CrossRef]
- Xu, X.B.; Du, C.W.; Ma, F.; Shen, Y.Z.; Wu, K.; Liang, D.; Zhou, J.M. Detection of soil organic matter from laser-induced breakdown spectroscopy (LIBS) and mid-infrared spectroscopy (FTIR-ATR) coupled with multivariate techniques. Geoderma 2019, 355, 113905. [Google Scholar] [CrossRef]
- Lin, Z.J.; Zhang, N.; Xu, Z.Y.; Liao, J.P.; Yuan, H.; Chenshen, E.F.; Liu, J.M.; Li, J.M.; Zhao, N.; Zhang, Q.M. Modified iterative wavelets for background removal in laser-induced breakdown spectroscopy based on fiber laser ablation. J. Anal. At. Spectrom. 2022, 37, 2082–2088. [Google Scholar] [CrossRef]
- Xu, F.H.; Hao, Z.Q.; Huang, L.; Liu, M.H.; Chen, T.B.; Chen, J.Y.; Zhang, L.Y.; Zhou, H.M.; Yao, M.Y. Comparative identification of citrus huanglongbing by analyzing leaves using laser-induced breakdown spectroscopy and near-infrared spectroscopy. Appl. Phys. B-Lasers Opt. 2020, 126, 43. [Google Scholar] [CrossRef]
- Lin, P.; Wen, X.L.; Ma, S.X.; Liu, X.C.; Xiao, R.H.; Gu, Y.F.; Chen, G.H.; Han, Y.X.; Dong, D.M. Rapid identification of the geographical origins of crops using laser-induced breakdown spectroscopy combined with transfer learning. Spectroc. Acta Pt. B-Atom. Spectr. 2023, 206, 106729. [Google Scholar] [CrossRef]
- Sun, J.X.; Li, H.L.; Yao, Y.H.; Yan, Q.Y.; Dong, F. Angelica dahurica using LIBS technology combined with machine learning algorithms. Optoelectron. Lett. 2024, 20, 171–176. [Google Scholar] [CrossRef]
- Borduchi, L.C.L.; Milori, D.M.B.P.; Meyer, M.C.; Villas-Boas, P.R. Reducing matrix effects on the quantification of Ca, Mg, and Fe in soybean leaf samples using calibration-free LIBS and one-point calibration. Spectroc. Acta Pt. B-Atom. Spectr. 2022, 198, 106561. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, Z.F.; Zhang, S.Y.; Chen, F.; Sheng, Z.Q.; Deng, F.; Zeng, Q.D.; Guo, L.B. Accurate identification of soluble solid content in citrus by indirect laser-induced breakdown spectroscopy with its leaves. Microchem. J. 2021, 169, 106530. [Google Scholar] [CrossRef]
- Li, X.L.; He, Z.N.; Liu, F.; Chen, R.Q. Fast identification of soybean seed varieties using laser-induced breakdown spectroscopy combined with convolutional neural network. Front. Plant Sci. 2021, 12, 714557. [Google Scholar] [CrossRef] [PubMed]
- Tavares, T.R.; Mouazen, A.M.; Nunes, L.C.; dos Santos, F.R.; Melquiades, F.L.; da Silva, T.R.; Krug, F.J.; Molin, J.P. Laser-Induced Breakdown Spectroscopy (LIBS) for tropical soil fertility analysis. Soil Tillage Res. 2022, 216, 105250. [Google Scholar] [CrossRef]
- Hossen, M.A.; Diwakar, P.K.; Ragi, S. Total nitrogen estimation in agricultural soils via aerial multispectral imaging and LIBS. Sci. Rep. 2021, 11, 12693. [Google Scholar] [CrossRef]
- Khoso, M.A.; Shaikh, N.M.; Kalhoro, M.S.; Jamali, S.; Ujan, Z.A.; Raheel, A. Comparative elemental analysis of soil of wheat, corn, rice, and okra cropped field using CF-LIBS. Optik 2022, 261, 169247. [Google Scholar] [CrossRef]
- Erler, A.; Riebe, D.; Beitz, T.; Löhmannsröben, H.G.; Gebbers, R. Soil nutrient detection for precision agriculture using handheld laser-induced breakdown spectroscopy (LIBS) and multivariate regression methods (PLSR, Lasso and GPR). Sensors 2020, 20, 418. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Xia, G.Y.; Ji, H.W.; Xiong, X. Accurate quantitative determination of heavy metals in oily soil by laser induced breakdown spectroscopy (LIBS) combined with interval partial least squares (IPLS). Anal. Methods 2019, 11, 3657–3664. [Google Scholar] [CrossRef]
- Sun, C.; Tian, Y.; Gao, L.; Niu, Y.S.; Zhang, T.L.; Li, H.; Zhang, Y.Q.; Yue, Z.Q.; Delepine-Gilon, N.; Yu, J. Machine learning allows calibration models to predict trace element concentration in soils with generalized LIBS spectra. Sci. Rep. 2019, 9, 11363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Huang, W.Q.; Wang, Q.Y.; Wu, J.Z.; Li, J.B. Detection of pears with moldy core using online full-transmittance spectroscopy combined with supervised classifier comparison and variable optimization. Comput. Electron. Agric. 2022, 200, 107231. [Google Scholar] [CrossRef]
- Yang, R.Z.; Bi, L.Q. Spectral enhancement mechanism and analysis of defocused collinear DP-LIBS technology. Optik 2021, 243, 167025. [Google Scholar] [CrossRef]
- Zhu, A.F.; Xu, Y.; Ali, S.; Ouyang, Q.; Chen, Q.S. Au@Ag nanoflowers based SERS coupled chemometric algorithms for determination of organochlorine pesticides in milk. LWT-Food Sci. Technol. 2021, 150, 111978. [Google Scholar] [CrossRef]
- Xu, W.J.; Sun, C.; Tan, Y.Q.; Gao, L.; Zhang, Y.Q.; Yue, Z.Q.; Shabbir, S.; Wu, M.T.; Zou, L.; Chen, F.Y.; et al. Total alkali silica classification of rocks with LIBS: Influences of the chemical and physical matrix effects. J. Anal. At. Spectrom. 2020, 35, 1641. [Google Scholar] [CrossRef]
- Shabbir, S.; Xu, W.J.; Zhang, Y.Q.; Sun, C.; Yue, Z.Q.; Zou, L.; Chen, F.Y.; Yu, J. Machine learning and transfer learning for correction of the chemical and physical matrix effects in the determination of alkali and alkaline earth metals with LIBS in rocks. Spectroc. Acta Pt. B-Atom. Spectr. 2022, 194, 106478. [Google Scholar] [CrossRef]
- Chen, F.; Lu, W.J.; Chu, Y.W.; Zhang, D.; Guo, C.; Zhao, Z.F.; Zeng, Q.D.; Li, J.M.; Guo, L.B. High accuracy analysis of fiber-optic laser-induced breakdown spectroscopy by using multivariate regression analytical methods. Spectroc. Acta Pt. B-Atom. Spectr. 2021, 180, 106160. [Google Scholar] [CrossRef]
- Zhou, R.; Tang, Z.Y.; Liu, K.; Zhang, W.; Liu, K.; Li, X.Y.; Yang, P.; Li, G.Q. High sensitivity analysis of soil by laser-induced breakdown spectroscopy with Ag nanoparticles. Opt. Laser Technol. 2022, 155, 108386. [Google Scholar] [CrossRef]
- NY/T 1121.24-2012; Soil Testing. Part 24: Determination of Total Nitrogen in Soil. Automatic Kjeldahl Apparatus Method. Farming Management Division, Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2012.
- He, K.; Sun, Q.M.; Tang, X.Y. Prediction of tenderness of chicken by using viscoelasticity based on airflow and optical technique. J. Texture Stud. 2022, 53, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Yang, L.; Lin, T.Z.; Shi, H.Y.; Qiao, P.; He, Y.; Liu, Y.D. Research on a LIBS-based detection method of medium-and-low alloy steel hardness. J. Anal. At. Spectrom. 2022, 37, 2309. [Google Scholar] [CrossRef]
- Yang, L.; Meng, L.W.; Gao, H.Q.; Wang, J.Y.; Zhao, C.; Guo, M.M.; He, Y.; Huang, L.X. Building a stable and accurate model for heavy metal detection in mulberry leaves based on a proposed analysis framework and laser-induced breakdown spectroscopy. Food Chem. 2021, 338, 127886. [Google Scholar] [CrossRef]
- Pornchaloempong, P.; Sharma, S.; Phanomsophon, T.; Srisawat, K.; Inta, W.; Sirisomboon, P.; Prinyawiwatkul, W.; Nakawajana, N.; Lapcharoensuk, R.; Teerachaichayut, S. Non-destructive quality evaluation of tropical fruit (mango and mangosteen) purée using near-infrared spectroscopy combined with partial least squares regression. Agriculture 2022, 12, 2060. [Google Scholar] [CrossRef]
- Mishra, P.; Xu, J.L.; Liland, K.H.; Tran, T. META-PLS modelling: An integrated approach to automatic model optimization for near-infrared spectra. Anal. Chim. Acta 2022, 122, 340142. [Google Scholar] [CrossRef]
- Qiao, L.; Tang, X.Y.; Dong, J. A feasibility quantification study of total volatile basic nitrogen (TVB-N) content in duck meat for freshness evaluation. Food Chem. 2017, 237, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Yin, L.M.; El-Seedi, H.R.; Zou, X.B.; Guo, Z.M. Green reduction of silver nanoparticles for cadmium detection in food using surface-enhanced Raman spectroscopy coupled multivariate calibration. Food Chem. 2022, 394, 133481. [Google Scholar] [CrossRef]
- Dib, S.R.; Nespeca, M.G.; Junior, A.S.; Ribeiro, C.A.; Crespi, M.S.; Neto, J.A.G.; Ferreira, E.C. CN diatomic emission for N determination by LIBS. Microchem. J. 2020, 157, 105107. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Sun, C.; Yu, X.W.; Chen, F.Y.; Wang, L.; Rao, Y.F.; Sun, T.Y.; Zhao, Y.Y.S.; Yu, J. Sensitive and accurate determination of nitrogen in simulated Martian soil and environment with LIBS spectrum fusion and regression based on neural network. Spectroc. Acta Pt. B-Atom. Spectr. 2023, 206, 106708. [Google Scholar] [CrossRef]
- Dong, D.M.; Zhao, C.J.; Zheng, W.G.; Zhao, X.D.; Jiao, L.Z. Spectral characterization of nitrogen in farmland soil by laser-induced breakdown spectroscopy. Spectr. Lett. 2013, 46, 421–426. [Google Scholar] [CrossRef]
- Harris, R.D.; Cremers, D.A.; Ebinger, M.H.; Bluhm, B.K. Determination of nitrogen in sand using laser-induced breakdown spectroscopy. Appl. Spectrosc. 2004, 58, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Y.; Chen, A.M.; Qi, H.X.; Xu, W.P.; Zhang, D.; Wang, Y.; Li, S.Y.; Jiang, Y.F.; Jin, M.X. Influence of distance between sample surface and geometrical focal point on CN emission intensity from femtosecond laser-induced PMMA plasmas. Phys. Plasmas 2019, 26, 073302. [Google Scholar] [CrossRef]
Sample Number | TN Content (%) | Sample Number | TN Content (%) | Sample Number | TN Content (%) | Sample Number | TN Content (%) |
---|---|---|---|---|---|---|---|
1 | 0.394 | 4 | 0.333 | 7 | 0.354 | 10 | 1.494 |
2 | 0.410 | 5 | 0.382 | 8 | 0.324 | 11 | 1.990 |
3 | 0.361 | 6 | 0.345 | 9 | 0.964 | 12 | 2.404 |
Sample Set | Number of Samples | Range of TN Content (%) | Mean (%) | Standard Deviation (%) |
---|---|---|---|---|
Calibration set | 63 | 0.333–2.404 | 1.042 | 0.519 |
Prediction set | 21 | 0.361–2.197 | 1.028 | 0.516 |
Total samples | 84 | 0.333–2.404 | 1.038 | 0.516 |
Characteristic Spectral Line | R2 | RMSECV |
---|---|---|
742.36 nm | 0.0016 | 18.8751% |
744.23 nm | 0.0126 | 4.7245% |
746.83 nm | 0.0531 | 2.2082% |
Method of Variable Selection | Number of Variables | Number of Latent Variables (LVs) | Proportion of Participating Variables | R2 | RMSE | ||
---|---|---|---|---|---|---|---|
RMSEC | RMSEP | ||||||
Univariate | 1 | / | 0.004% | 0.0531 | 2.2082% | ||
Full variables | 23,614 | 10 | 100% | 0.9932 | 0.9878 | 0.0424% | 0.0609% |
Si-PLS | 4720 | 8 | 19.988% | 0.9922 | 0.9890 | 0.0458% | 0.0655% |
UVE | 796 | 9 | 3.371% | 0.9944 | 0.9902 | 0.0382% | 0.0513% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, B.; Wang, X.; Hu, C.; Li, X. Rapid and High-Performance Analysis of Total Nitrogen in Coco-Peat Substrate by Coupling Laser-Induced Breakdown Spectroscopy with Multi-Chemometrics. Agriculture 2024, 14, 946. https://doi.org/10.3390/agriculture14060946
Lu B, Wang X, Hu C, Li X. Rapid and High-Performance Analysis of Total Nitrogen in Coco-Peat Substrate by Coupling Laser-Induced Breakdown Spectroscopy with Multi-Chemometrics. Agriculture. 2024; 14(6):946. https://doi.org/10.3390/agriculture14060946
Chicago/Turabian StyleLu, Bing, Xufeng Wang, Can Hu, and Xiangyou Li. 2024. "Rapid and High-Performance Analysis of Total Nitrogen in Coco-Peat Substrate by Coupling Laser-Induced Breakdown Spectroscopy with Multi-Chemometrics" Agriculture 14, no. 6: 946. https://doi.org/10.3390/agriculture14060946
APA StyleLu, B., Wang, X., Hu, C., & Li, X. (2024). Rapid and High-Performance Analysis of Total Nitrogen in Coco-Peat Substrate by Coupling Laser-Induced Breakdown Spectroscopy with Multi-Chemometrics. Agriculture, 14(6), 946. https://doi.org/10.3390/agriculture14060946