Preparation of Nanoscale Indoxacarb by Using Star Polymer for Efficiency Pest Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. SPc Synthesis
2.3. Loading Capacity Measurement
2.4. Isothermal Titration Calorimetry (ITC) Assay
2.5. Particle Size Measurement and Complex Morphology Characterization
2.6. Retention Assay
2.7. Bioactivity Assay via Oral Feeding in Laboratory
2.8. Control Efficacy Assay via Spraying in Field
2.9. Data Analysis
3. Results
3.1. SPc Spontaneously Complexed with Indoxacarb
3.2. SPc Decreased the Particle Size of Indoxacarb
3.3. SPc Increased the Retention of Indoxacarb Emulsifiable Concentrate
3.4. SPc Improved the Bioactivity of Indoxacarb Emulsifiable Concentrate in the Laboratory
3.5. SPc Improved the Control Efficacy of Indoxacarb Emulsifiable Concentrate in Field
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef] [PubMed]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Shukla, A.; Attri, K.; Kumar, M.; Kumar, P.; Suttee, A.; Singh, G.; Barnwal, R.P.; Singla, N. Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicol. Environ. Saf. 2020, 201, 110812. [Google Scholar] [CrossRef] [PubMed]
- Shattuck, A.; Werner, M.; Mempel, F.; Dunivin, Z.; Galt, R. Global pesticide use and trade database (GloPUT): New estimates show pesticide use trends in low-income countries substantially underestimated. NATO ASI Ser. Ser. I 2023, 81, 102693. [Google Scholar] [CrossRef]
- Kah, M.; Tufenkji, N.; White, J.C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 2019, 14, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Saleh, N.B.; Byro, A.; Zepp, R.; Sahle-Demessie, E.; Luxton, T.P.; Ho, K.T.; Burgess, R.M.; Flury, M.; White, J.C.; et al. Nano-enabled pesticides for sustainable agriculture and global food security. Nat. Nanotechnol. 2022, 17, 347–360. [Google Scholar] [CrossRef] [PubMed]
- Nuruzzaman, M.; Rahman, M.M.; Liu, Y.; Naidu, R. Nanoencapsulation, nano-guard for pesticides: A new window for safe application. J. Agric. Food Chem. 2016, 64, 1447–1483. [Google Scholar] [CrossRef] [PubMed]
- Mubeen, I.; Fawzi Bani Mfarrej, M.; Razaq, Z.; Iqbal, S.; Naqvi, S.A.H.; Hakim, F.; Mosa, W.F.A.; Moustafa, M.; Fang, Y.; Li, B. Nanopesticides in comparison with agrochemicals: Outlook and future prospects for sustainable agriculture. Plant Physiol. Biochem. 2023, 198, 107670. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W. Global pesticide use: Profile, trend, cost/benefit and more. Proc. Int. Acad. Ecol. Environ. Sci. 2018, 8, 1–27. [Google Scholar]
- Ghormade, V.; Deshpande, M.V.; Paknikar, K.M. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 2011, 29, 792–803. [Google Scholar] [CrossRef]
- Pan, X.; Guo, X.; Zhai, T.; Zhang, D.; Rao, W.; Cao, F.; Guan, X. Nanobiopesticides in sustainable agriculture: Developments, challenges, and perspectives. Environ. Sci. Nano 2023, 10, 41–61. [Google Scholar] [CrossRef]
- Singh, P.M.; Tiwari, A.; Maity, D.; Saha, S. Recent progress of nanomaterials in sustainable agricultural applications. J. Mater. Sci. 2022, 57, 10836–10862. [Google Scholar] [CrossRef]
- Adisa, I.O.; Pullagurala, V.L.R.; Peralta-Videa, J.R.; Dimkpa, C.O.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environ. Sci. Nano 2019, 6, 2002–2030. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Adeleke, B.S.; Akinola, S.A.; Fayose, C.A.; Adeyemi, U.T.; Gbadegesin, L.A.; Omole, R.K.; Johnson, R.M.; Uthman, Q.O.; Babalola, O.O. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front. Microbiol. 2023, 14, 1040901. [Google Scholar] [CrossRef] [PubMed]
- Athanassiou, C.G.; Kavallieratos, N.G.; Benelli, G.; Losic, D.; Usha Rani, P.; Desneux, N. Nanoparticles for pest control: Current status and future perspectives. J. Pest Sci. 2018, 91, 1–15. [Google Scholar] [CrossRef]
- Zhao, X.; Cui, H.; Wang, Y.; Sun, C.; Cui, B.; Zeng, Z. Development strategies and prospects of nano-based smart pesticide formulation. J. Agric. Food Chem. 2018, 66, 6504–6512. [Google Scholar] [CrossRef] [PubMed]
- Avellan, A.; Yun, J.; Zhang, Y.; Spielman-Sun, E.; Unrine, J.M.; Thieme, J.; Li, J.; Lombi, E.; Bland, G.; Lowry, G.V. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 2019, 13, 5291–5305. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Hu, Q.; Li, J.; Chao, Z.; Cai, C.; Yin, M.; Du, X.; Shen, J. A star polycation acts as a drug nanocarrier to improve the toxicity and persistence of botanical pesticides. ACS Sustain. Chem. Eng. 2019, 7, 17406–17413. [Google Scholar] [CrossRef]
- Li, J.; Qian, J.; Xu, Y.; Yan, S.; Shen, J.; Yin, M. A facile-synthesized star polycation constructed as a highly efficient gene vector in pest management. ACS Sustain. Chem. Eng. 2019, 7, 6316–6322. [Google Scholar] [CrossRef]
- Jiang, Q.; Peng, M.; Yin, M.; Shen, J.; Yan, S. Nanocarrier-loaded imidaclothiz promotes plant uptake and decreases pesticide residue. Int. J. Mol. Sci. 2022, 23, 6651. [Google Scholar] [CrossRef]
- Jiang, Q.; Xie, Y.; Peng, M.; Wang, Z.; Li, T.; Yin, M.; Shen, J.; Yan, S. A nanocarrier pesticide delivery system with promising benefits in the case of dinotefuran: Strikingly enhanced bioactivity and reduced pesticide residue. Environ. Sci. Nano 2022, 9, 988–999. [Google Scholar] [CrossRef]
- Yan, S.; Li, M.; Jiang, Q.; Li, M.; Hu, M.; Shi, X.; Liang, P.; Yin, M.; Gao, X.; Shen, J.; et al. Self-assembled co-delivery nanoplatform for increasing the broad-spectrum susceptibility of fall armyworm toward insecticides. J. Adv. Res. 2024; in press. [Google Scholar] [CrossRef]
- Wu, S.; Jiang, Q.; Xia, Z.; Sun, Z.; Mu, Q.; Huang, C.; Song, F.; Yin, M.; Shen, J.; Li, H.; et al. Perfect cooperative pest control via nano-pesticide and natural predator: High predation selectivity and negligible toxicity toward predatory stinkbug. Chemosphere 2024, 355, 141784. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wei, Y.; Yin, M.; Liu, E.; Du, X.; Shen, J.; Dong, M.; Yan, S. Efficient polyamine-based nanodelivery system for proline: Enhanced uptake improves the drought tolerance of tobacco. J. Agric. Food Chem. 2024, 72, 1550–1560. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zheng, K.; Cheng, W.; Li, J.; Liang, X.; Shen, J.; Dou, D.; Yin, M.; Yan, S. Field application of star polymer-delivered chitosan to amplify plant defense against potato late blight. Chem. Eng. J. 2021, 417, 129327. [Google Scholar] [CrossRef]
- Wing, K.D.; Sacher, M.; Kagaya, Y.; Tsurubuchi, Y.; Mulderig, L.; Connair, M.; Schnee, M. Bioactivation and mode of action of the oxadiazine indoxacarb in insects. Crop Prot. 2000, 19, 537–545. [Google Scholar] [CrossRef]
- Lapied, B.; Grolleau, F.; Sattelle, D.B. Indoxacarb, an oxadiazine insecticide, blocks insect neuronal sodium channels. Br. J. Pharmacol. 2001, 132, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Wing, K.D.; Andaloro, J.T.; McCann, S.F.; Salgado, V.L. Indoxacarb and the sodium channel blocker insecticides: Chemistry, physiology, and biology in insects. In Comprehensive Molecular Insect Science; Gilbert, L.I., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 31–53. [Google Scholar] [CrossRef]
- Lin, Q.; Deng, P.; Feng, T.; Ou, G.; Mou, L.; Zhang, Y. Enantioselectivity of indoxacarb enantiomers in Bombyx mori larvae: Toxicity, bioaccumulation and biotransformation. Pest Manag. Sci. 2023, 79, 2353–2364. [Google Scholar] [CrossRef] [PubMed]
- Wing, K.D. It takes a team: Reflections on insecticide discoveries, toxicological problems and enjoying the unexpected. Pest Manag. Sci. 2017, 73, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Dong, F.-S.; Liu, X.; Chen, W.; Li, Y.; Zheng, Y.; Qin, D.; Gong, Y. Determination of indoxacarb enantiomer residues in vegetables, fruits, and soil by high-performance liquid chromatography. J. AOAC Int. 2019, 93, 1007–1012. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, K.; Song, B.; Ling, H.; Li, Z.; Li, M.; Hu, D. Enantiomeric separation of indoxacarb on an amylose-based chiral stationary phase and its application in study of indoxacarb degradation in water. Biomed. Chromatogr. 2014, 28, 1371–1377. [Google Scholar] [CrossRef]
- Sun, D.; Pang, J.; Qiu, J.; Li, L.; Liu, C.; Jiao, B. Enantioselective degradation and enantiomerization of indoxacarb in soil. J. Agric. Food Chem. 2013, 61, 11273–11277. [Google Scholar] [CrossRef] [PubMed]
- Patra, S.; Das, A.; Rakshit, R.; Choudhury, S.R.; Roy, S.; Mondal, T.; Samanta, A.; Ganguly, P.; Alsuhaibani, A.M.; Gaber, A.; et al. Persistence and exposure assessment of insecticide indoxacarb residues in vegetables. Front. Nutr. 2022, 9, 863519. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, N.; Yu, Q.; Xue, C. Sublethal effects of an indoxacarb enantiomer insecticide on Plutella xylostella caterpillar and Chrysoperla sinica predator. Ecotoxicol. Environ. Saf. 2023, 249, 114400. [Google Scholar] [CrossRef]
- Zhong, Q.; Li, H.; Wang, M.; Luo, F.; Wang, X.; Yan, H.; Cang, T.; Zhou, L.; Chen, Z.; Zhang, X. Enantioselectivity of indoxacarb during the growing, processing, and brewing of tea: Degradation, metabolites, and toxicities. Sci. Total Environ. 2022, 823, 153763. [Google Scholar] [CrossRef] [PubMed]
- Batista, C.H.; Plata-Rueda, A.; Zanuncio, J.C.; Serrão, J.E.; Martínez, L.C. Indoxacarb effects on non-target predator, Podisus distinctus (Hemiptera: Pentatomidae). Environ. Sci. Pollut. Res. 2022, 29, 29967–29975. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, H.R.; Pestana, J.L.T.; Novais, S.C.; Soares, A.M.V.M.; Lemos, M.F.L. Toxicity of the insecticides spinosad and indoxacarb to the non-target aquatic midge Chironomus riparius. Sci. Total Environ. 2019, 666, 1283–1291. [Google Scholar] [CrossRef] [PubMed]
- Gould, F.; Brown, Z.S.; Kuzma, J. Wicked evolution: Can we address the sociobiological dilemma of pesticide resistance? Science 2018, 360, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Wang, Q.; Qi, H.; Wang, Q.; Yuan, H.; Rui, C. Resistance selection of indoxacarb in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae): Cross-resistance, biochemical mechanisms and associated fitness costs. Pest Manag. Sci. 2018, 74, 2636–2644. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Shen, J.; Li, D.; Wan, H.; You, H.; Li, J. Cross-resistance and biochemical mechanisms of resistance to indoxacarb in the diamondback moth, Plutella xylostella. Pestic. Biochem. Physiol. 2017, 140, 85–89. [Google Scholar] [CrossRef]
- Sayyed, A.H.; Wright, D.J. Genetics and evidence for an esterase-associated mechanism of resistance to indoxacarb in a field population of diamondback moth (Lepidoptera: Plutellidae). Pest Manag. Sci. 2006, 62, 1045–1051. [Google Scholar] [CrossRef]
- Wang, X.; Su, W.; Zhang, J.; Yang, Y.; Dong, K.; Wu, Y. Two novel sodium channel mutations associated with resistance to indoxacarb and metaflumizone in the diamondback moth, Plutella xylostella. Insect Sci. 2016, 23, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Xu, C.; Cao, L.; Zhao, P.; Cao, C.; Li, F.; Huang, Q. Indoxacarb-loaded fluorescent mesoporous silica nanoparticles for effective control of Plutella xylostella L. with decreased detoxification enzymes activities. Pest Manag. Sci. 2020, 76, 3749–3758. [Google Scholar] [CrossRef]
- Yang, L.; Chen, H.; Zheng, Q.; Luo, P.; Yan, W.; Huang, S.; Cheng, D.; Hong Xu, H.; Zhang, Z. A β-cyclodextrin-functionalized metal–organic framework enhances the insecticidal activity of indoxacarb by affecting amino acid metabolism in red imported fire ants. Chem. Eng. J. 2023, 458, 141417. [Google Scholar] [CrossRef]
- Yang, L.; Kaziem, A.E.; Lin, Y.; Li, C.; Tan, Y.; Huang, S.; Cheng, D.; Xu, H.; Zhang, Z. Carboxylated β-cyclodextrin anchored hollow mesoporous silica enhances insecticidal activity and reduces the toxicity of indoxacarb. Carbohydr. Polym. 2021, 266, 118150. [Google Scholar] [CrossRef]
- TA Instruments Waters. NanoAnalyze Software for Windows; Version 3.12.0; TA Instruments Waters: New Castle, DE, USA, 2021. [Google Scholar]
- Bastos, M.; Abian, O.; Johnson, C.M.; Ferreira-da-Silva, F.; Vega, S.; Jimenez-Alesanco, A.; Ortega-Alarcon, D.; Velazquez-Campoy, A. Isothermal titration calorimetry. Nat. Rev. Methods Prim. 2023, 3, 17. [Google Scholar] [CrossRef]
- Furlong, M.J.; Wright, D.J.; Dosdall, L.M. Diamondback moth ecology and management: Problems, progress, and prospects. Annu. Rev. Entomol. 2013, 58, 517–541. [Google Scholar] [CrossRef]
- Mota-Sanchez, D.; Wise, J.C.; The arthropod Pesticide Resistance Database. East Lansing: Michigan State University. 2023. Available online: https://www.pesticideresistance.org (accessed on 16 May 2024).
- IBM Corp. IBM SPSS Statistics for Windows; Version 27.0; IBM Corp.: Armonk, NY, USA, 2020. [Google Scholar]
- Ma, C.; Li, G.; Xu, W.; Qu, H.; Zhang, H.; Bahojb Noruzi, E.; Li, H. Recent advances in stimulus-responsive nanocarriers for pesticide delivery. J. Agric. Food Chem. 2024, 72, 8906–8927. [Google Scholar] [CrossRef] [PubMed]
- Dalmoro, A.; Bochicchio, S.; Nasibullin, S.F.; Bertoncin, P.; Lamberti, G.; Barba, A.A.; Moustafine, R.I. Polymer-lipid hybrid nanoparticles as enhanced indomethacin delivery systems. Eur. J. Pharm. Sci. 2018, 121, 16–28. [Google Scholar] [CrossRef]
- De Jesus, M.B.; Zuhorn, I.S. Solid lipid nanoparticles as nucleic acid delivery system: Properties and molecular mechanisms. J. Control. Release 2015, 201, 1–13. [Google Scholar] [CrossRef]
- Jiang, Q.; Lin, Z.; Peng, M.; Zhou, B.; Liu, E.; Li, Z.; Wei, Y.; Yang, H.; Song, F.; Yin, M.; et al. A nano-delivery system enhances the stomach toxicity of Methoxyfenozide against Spodoptera litura by suppressing the synthesis of insect cuticle protein. ACS Appl. Nano Mater. 2023, 6, 13524–13532. [Google Scholar] [CrossRef]
- Yan, S.; Cheng, W.; Han, Z.; Wang, D.; Yin, M.; Du, X.; Shen, J. Nanometerization of thiamethoxam by a cationic star polymer nanocarrier efficiently enhances the contact and plant-uptake dependent stomach toxicity against green peach aphids. Pest Manag. Sci. 2021, 77, 1954–1962. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, Y.; Yang, L.; Zhu, Q.; Ma, Q.; Wang, R.; Zhang, C.; Zhang, Z. Indoxacarb-loaded anionic polyurethane blend with sodium alginate improves pH sensitivity and ecological security for potential application in agriculture. Polymers 2020, 12, 1135. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Wang, Y.; Xie, J.; Sun, B.; Zhou, N.; Shen, H.; Shen, J. Carboxymethyl chitosan modified carbon nanoparticle for controlled emamectin benzoate delivery: Improved solubility, pH-responsive release, and sustainable pest control. ACS Appl. Mater. Interfaces 2019, 11, 34258–34267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yan, S.; Li, M.; Wang, Y.; Shi, X.; Liang, P.; Yin, M.; Shen, J.; Gao, X. Nanodelivery system alters an insect growth regulator’s action mode: From oral feeding to topical application. ACS Appl. Mater. Interfaces 2022, 14, 35105–35113. [Google Scholar] [CrossRef] [PubMed]
- Wing, K.D.; Schnee, M.E.; Sacher, M.; Connair, M. A novel oxadiazine insecticide is bioactivated in lepidopteran larvae. Arch. Insect Biochem. Physiol. 1998, 37, 91–103. [Google Scholar] [CrossRef]
- Ma, Z.; Zheng, Y.; Chao, Z.; Chen, H.; Zhang, Y.; Yin, M.; Shen, J.; Yan, S. Visualization of the process of a nanocarrier-mediated gene delivery: Stabilization, endocytosis and endosomal escape of genes for intracellular spreading. J. Nanobiotechnol. 2022, 20, 124. [Google Scholar] [CrossRef]
Sample Number | Weight of Applied IDC (mg) | Weight of Applied SPc (mg) | Weight of IDC-Loaded Complex (mg) | Weight of IDC Loaded in Complex (mg) | Drug-Loading Content (%) | Average Drug-Loading Content (%) |
---|---|---|---|---|---|---|
1 | 70.0 | 62.7 | 76.1 | 13.4 | 17.61 | 18.18 ± 0.38 |
2 | 70.0 | 62.7 | 77.3 | 14.6 | 18.89 | |
3 | 70.0 | 62.7 | 76.5 | 13.8 | 18.04 |
Formulation | Mass Ratio | Sample Number | Polydispersity | Average Polydispersity | Size (nm) | Average Size (nm) |
---|---|---|---|---|---|---|
IDC | - | 1 | 0.230 | 0.211 ± 0.019 a | 911.17 | 922.44 ± 7.41 a |
2 | 0.210 | 919.74 | ||||
3 | 0.193 | 936.41 | ||||
IDC/SPc complex | 1:1 | 1 | 0.065 | 0.065 ± 0.006 b | 442.3 | 444.70 ± 1.89 b |
2 | 0.059 | 443.36 | ||||
3 | 0.070 | 448.43 | ||||
1:4.5 | 1 | 0.233 | 0.247 ± 0.042 a | 363.34 | 373.20 ± 5.18 c | |
2 | 0.214 | 375.39 | ||||
3 | 0.294 | 380.87 | ||||
F2,6 = 39.584, p < 0.001 | F2,6 = 3136.221, p < 0.001 |
Insect Species | Formulation | Day (d) | Toxicity Regression Equation | LC50 (mg/L) (95% Confidence Limits) | χ2 (df) | Efficiency Ratio |
---|---|---|---|---|---|---|
P. xylostella | IDC EC | 1 | y = −0.249 + 0.788x | 2.069 (1.158–6.005) | 0.148 (4) | 6.784 |
IDC EC + SPc | 1 | y = 0.303 + 0.588x | 0.305 (0.034–0.658) | 0.166 (4) | ||
IDC EC | 2 | y = 0.247 + 0.837x | 0.507 (0.209–0.887) | 0.232 (4) | 4.261 | |
IDC EC + SPc | 2 | y = 0.847 + 0.917x | 0.119 (0.018–0.249) | 0.260 (4) | ||
P. rapae | IDC EC | 1 | y = −0.156 + 1.547x | 1.261 (0.913–1.795) | 1.602 (4) | 1.931 |
IDC EC + SPc | 1 | y = 0.250 + 1.349x | 0.653 (0.435–0.928) | 1.197 (4) | ||
IDC EC | 2 | y = 0.368 + 1.177x | 0.486 (0.273–0.737) | 1.243 (4) | 1.583 | |
IDC EC + SPc | 2 | y = 0.664 + 1.295x | 0.307 (0.160–0.465) | 0.601 (4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Zhang, J.; Wang, H.; Li, L.; Yin, M.; Shen, J.; Yan, S.; Liu, B. Preparation of Nanoscale Indoxacarb by Using Star Polymer for Efficiency Pest Management. Agriculture 2024, 14, 1006. https://doi.org/10.3390/agriculture14071006
Chen M, Zhang J, Wang H, Li L, Yin M, Shen J, Yan S, Liu B. Preparation of Nanoscale Indoxacarb by Using Star Polymer for Efficiency Pest Management. Agriculture. 2024; 14(7):1006. https://doi.org/10.3390/agriculture14071006
Chicago/Turabian StyleChen, Min, Jie Zhang, Hongtao Wang, Lingyun Li, Meizhen Yin, Jie Shen, Shuo Yan, and Baoyou Liu. 2024. "Preparation of Nanoscale Indoxacarb by Using Star Polymer for Efficiency Pest Management" Agriculture 14, no. 7: 1006. https://doi.org/10.3390/agriculture14071006
APA StyleChen, M., Zhang, J., Wang, H., Li, L., Yin, M., Shen, J., Yan, S., & Liu, B. (2024). Preparation of Nanoscale Indoxacarb by Using Star Polymer for Efficiency Pest Management. Agriculture, 14(7), 1006. https://doi.org/10.3390/agriculture14071006