Spatial and Temporal Variations of Soil pH in Farmland in Xinjiang, China over the Past Decade
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.3. Data Analysis
2.4. Methods
2.4.1. Semivariogram
2.4.2. Spatial Autocorrelation
3. Results
3.1. Descriptive Statistical Analysis of Farmland Soil pH
3.2. Analysis of the Spatiotemporal Distribution Characteristics of Farmland Soil pH
3.2.1. Spatial Autocorrelation Analysis
3.2.2. Semivariogram Analysis
3.2.3. Analysis of the Spatiotemporal Distribution of Farmland Soil pH
3.3. Analysis of Factors Affecting Farmland Soil pH
3.3.1. Topographic Factors
3.3.2. Soil Nutrients Factors
3.3.3. Irrigation Methods
4. Discussion
4.1. Spatiotemporal Variability Characteristics of Farmland Soil pH in Xinjiang
4.2. Impact of Different Factors on Farmland Soil pH
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Liu, M.; Tian, H.; Zhuang, D.; Zhang, Z.; Zhang, W.; Tang, X.; Deng, X. Spatial and temporal patterns of China’s cropland during 1990-2000: An analysis based on Landsat TM data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Long, H. Spatio-temporal analysis of land-use conversion in the eastern coastal China during 1996–2005. J. Geogr. Sci. 2008, 18, 274–282. [Google Scholar] [CrossRef]
- Huang, L.; Liu, X.; Wang, Z.; Liang, Z.; Wang, M.; Liu, M.; Suarez, D.L. Interactive effects of pH, EC and nitrogen on yields and nutrient absorption of rice (Oryza sativa L.). Agric. Water Manag. 2017, 194, 48–57. [Google Scholar] [CrossRef]
- España, J.S.; Pamo, E.L.; Pastor, E.S.; Andrés, J.R.; Rubí, J.A.M. The removal of dissolved metals by hydroxysulphate precipitates during oxidation and neutralization of acid mine waters, Iberian Pyrite Belt. Aquat. Geochem. 2006, 12, 269–298. [Google Scholar] [CrossRef]
- Turner, A.J.; Arzola, C.I.; Nunez, G.H. High pH stress affects root morphology and nutritional status of hydroponically grown rhododendron (Rhododendron spp.). Plants 2020, 9, 1019. [Google Scholar] [CrossRef]
- Kamble, P.N.; Gaikwad, V.B.; Kuchekar, S.R.; Bååth, E. Microbial growth, biomass, community structure and nutrient limitation in high pH and salinity soils from Pravaranagar (India). Eur. J. Soil Biol. 2014, 65, 87–95. [Google Scholar] [CrossRef]
- Le, V.S.; Herrmann, L.; Hudek, L.; Nguyen, T.B.; Bräu, L.; Lesueur, D. How application of agricultural waste can enhance soil health in soils acidified by tea cultivation: A review. Environ. Chem. Lett. 2022, 20, 813–839. [Google Scholar] [CrossRef]
- Wu, S.; Sun, T.; Chen, D.; Yang, G.; Ye, X. Study on the physical and chemical changes in paddy soil and cadmium pollution risk assessment based on long term localization monitoring. Chin. J. Inorg. Anal. Chem. 2023, 13, 1342–1353. [Google Scholar] [CrossRef]
- Yescas-Coronado, P.; Segura-Castruita, M.Á.; Chávez-Rodríguez, A.M.; Gómez-Leyva, J.F.; Martínez-Sifuentes, A.R.; Amador-Camacho, O.; González-Medina, R. Covariables of soil-forming factors and their influence on pH distribution and spatial variability. Agriculture 2022, 12, 2132. [Google Scholar] [CrossRef]
- Wu, Y.; Hung, M.; Patton, J. Assessment and visualization of spatial interpolation of soil pH values in farmland. Precis. Agric. 2013, 14, 565–585. [Google Scholar] [CrossRef]
- Yang, F.; Jia, W.; Yang, N.; Li, W.; Duan, Y.; Hu, Y.; Cui, Y. Spatio-temporal variation of surface soil pH of farmland in different regions of China in the past 30 years. J. Plant Nutr. Fertil. 2023, 29, 1213–1227. [Google Scholar] [CrossRef]
- Liu, X.; Shi, H.; Bai, Z.; Liu, X.; Yang, B.; Yan, D. Assessing soil acidification of croplands in the Poyang Lake Basin of China from 2012 to 2018. Sustainability 2020, 12, 3072. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Xie, Y.; Yi, K.; Liu, J.; Cheng, C.; Wang, J.; Zhang, Y. Study on soil pH distribution characteristics and its influencing factors of tobacco growing areas in Qujing. J. Nucl. Agric. Sci. 2020, 34, 887–895. [Google Scholar] [CrossRef]
- Han, Y.; Yi, D.; Ye, Y.; Guo, X.; Liu, S. Response of spatiotemporal variability in soil pH and associated influencing factors to land use change in a red soil hilly region in southern China. Catena 2022, 212, 106074. [Google Scholar] [CrossRef]
- Chen, X.; Yang, J.; Liu, C.; Hu, S. Soil salinization under integrated agriculture and its countermeasures in Xinjiang. Soils 2007, 39, 347–353. [Google Scholar] [CrossRef]
- Ma, J.; Li, L.H.; Guo, L.P.; Bai, L.; Zhang, J.R.; Chen, Z.H.; Ahmad, S. Variation in soil nutrients in grasslands along the Kunes River in Xinjiang, China. Chem. Ecol. 2015, 31, 111–122. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, A.; Lv, T.; Deng, X.; Wang, Y.; Pang, N.; Lai, X.; Gu, X. Trends, cycles, and spatial distribution of the precipitation, potential evapotranspiration and aridity index in Xinjiang, China. Water 2023, 15, 62. [Google Scholar] [CrossRef]
- Wang, G.; Mao, J.; Fan, L.; Ma, X.; Li, Y. Effects of climate and grazing on the soil organic carbon dynamics of the grasslands in Northern Xinjiang during the past twenty years. Glob. Ecol. Conserv. 2022, 34, E02039. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Y.; Shen, Y.; Li, X.; Xu, J. Spatial and temporal trends of climate change in Xinjiang, China. J. Geogr. Sci. 2011, 21, 1007–1018. [Google Scholar] [CrossRef]
- Sheng, Y. Spatio-Temporal Evolution and Zoning Control of Sustainable Use of Cultivated Land in Xinjiang. Ph.D. Dissertation, Xinjiang Agricultural University, Xinjiang, China, 2023. [Google Scholar]
- Bogunovic, I.; Pereira, P.; Brevik, E.C. Spatial distribution of soil chemical properties in an organic farm in Croatia. Sci. Total Environ. 2017, 584, 535–545. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.E.; Zakarya, Y.M.; Metwaly, M.M.; Koubouris, G. Deciphering soil spatial variability through geostatistics and interpolation techniques. Sustainability 2021, 13, 194. [Google Scholar] [CrossRef]
- Yan, P.; Peng, H.; Yan, L.; Zhang, S.; Chen, A.; Lin, K. Spatial variability in soil pH and land use as the main influential factor in the red beds of the Nanxiong Basin, China. Peerj 2019, 7, E6342. [Google Scholar] [CrossRef] [PubMed]
- Tziachris, P.; Metaxa, E.; Papadopoulos, F.; Papadopoulou, M. Spatial modelling and prediction assessment of soil iron using Kriging interpolation with pH as auxiliary information. ISPRS Int. J. Geo-Inf. 2017, 6, 283. [Google Scholar] [CrossRef]
- Chen, Y. An analytical process of spatial autocorrelation functions based on Moran’s index. PLoS ONE 2021, 16, E0249589. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, Q.; Deng, M. Spatial hotspot detection in the presence of global spatial autocorrelation. Int. J. Geogr. Inf. Sci. 2023, 37, 1787–1817. [Google Scholar] [CrossRef]
- Uwiragiye, Y.; Khalaf, Q.A.W.; Ali, H.M.; Ngaba, M.J.Y.; Yang, M.X.; Elrys, A.S.; Chen, Z.J.; Zhou, J.B. Spatio-temporal variations in soil pH and aluminum toxicity in sub-saharan African croplands (1980–2050). Remote Sens. 2023, 15, 1338. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopka, A.E. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Li, Q.; Yan, C.; Tian, M.; Xiang, D.; Pu, W.; Li, J. Spatio temporal variability of soil pH and main impact factors in tobacco-planting soils in Xiangxi area. J. Plant Nutr. Fertil. 2019, 25, 1743–1751. [Google Scholar] [CrossRef]
- Ochoa-Hueso, R.; Stevens, C.J.; Ortiz-Llorente, M.J.; Manrique, E. Soil chemistry and fertility alterations in response to N application in a semiarid Mediterranean shrubland. Sci. Total Environ. 2013, 452, 78–86. [Google Scholar] [CrossRef]
- Wang, J.; Xu, X.; Ning, Y.; Zhang, H.; Ma, H.; Zhang, Y. Progresses in agricultural driving factors on accelerated acidification of soils. Soils 2015, 47, 627–633. [Google Scholar] [CrossRef]
- Teffera, Z.L.; Li, J.; Astatkie, T.; Gebru, Z.M. Effects of irrigation systems on physicochemical properties of soil at different depths: A case study at a farm near Ziway Lake, Ethiopia. Irrig. Drain. 2019, 68, 165–175. [Google Scholar] [CrossRef]
- LI, Q. Development and prospect of soil science in China. Acta Pedol. Sin. 1989, 26, 207–216. [Google Scholar]
- Kim, D.; Shin, Y.H. Spatial autocorrelation potentially indicates the degree of changes in the predictive power of environmental factors for plant diversity. Ecol. Indic. 2016, 60, 1130–1141. [Google Scholar] [CrossRef]
- Wang, H.; Cao, J.; Wu, j.; Chen, Y. Spatial and temporal variability in soil pH of Shaanxi Province over the last 40 years. Chin. J. Eco-Agric. 2021, 29, 1117–1126. [Google Scholar] [CrossRef]
- Zheng, Z.; Ma, Z.; Li, M.; Xia, J. Regional water budgets and hydroclimatic trend variations in Xinjiang from 1951 to 2000. Clim. Chang. 2017, 144, 447–460. [Google Scholar] [CrossRef]
- Pu, Z.; Zhang, S.; Wang, S.; Zhou, X.; Feng, Z. The spatial-temporal variation characteristic of dry-wet climate in recent 48 Years in Xinjiang, China. J. Desert Res. 2011, 31, 1563–1572. [Google Scholar]
- Liu, D.F.; Feng, Z.Y.; Zhu, H.D.; Yu, L.H.; Yang, K.J.; Yu, S.; Zhang, Y.F.; Guo, W. Effects of Corn Straw Biochar Application on Soybean Growth and Alkaline Soil Properties. Bioresources 2020, 15, 1463–1481. [Google Scholar] [CrossRef]
- Wei, W.L.; Zhang, S.R.; Wu, L.P.; Cui, D.J.; Ding, X.D. Biochar and phosphorus fertilization improved soil quality and inorganic phosphorus fractions in saline-alkaline soils. Arch. Agron. Soil Sci. 2021, 67, 1177–1190. [Google Scholar] [CrossRef]
- Jing, Z.W.; Chen, R.R.; Wei, S.P.; Lin, X.G. Biochar Functions as Phosphorous Fertilizers in an Alkaline Alluvial Soil. Commun. Soil Sci. Plant Anal. 2017, 48, 2455–2463. [Google Scholar] [CrossRef]
- Chen, M.M.; Zhang, S.R.; Wu, L.P.; Fei, C.; Ding, X.D. Organic Fertilization Improves the Availability and Adsorptive Capacity of Phosphorus in Saline-Alkaline Soils. J. Soil Sci. Plant Nutr. 2021, 21, 487–496. [Google Scholar] [CrossRef]
- Huang, J.; Kong, Y.; Xu, Q.; Zhu, C.; Zhu, L.; Cao, X.; Hong, X.; Zhang, J. Progresses for Characteristics and Amelioration Measures of Saline Soil. Soils 2022, 54, 18–23. [Google Scholar] [CrossRef]
- Fei, Z. Evaluation and Investigation of Soil Nutrients and Farmland Fertility in Wenquan County of Bozhou. Master’s Thesis, Shihezi University, Xinjiang, China, 2017. [Google Scholar]
- Xie, X.; Qiu, J.; Feng, X.; Hou, Y.; Wang, S.; Jia, S.; Liu, S.; Hou, X.; Dou, S. Spatial distribution and estimation model of soil pH in coastal eastern China. Int. J. Environ. Res. Public Health 2022, 19, 16855. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Chen, X.; Xu, S.; Qiu, S.; Wang, S. Spatial prediction modeling for soil pH based on multiscale geographical weighted regression (MGWR) and its influencing factors. Environ. Sci. 2023, 44, 6909–6920. [Google Scholar] [CrossRef]
- Zuo, L.; Chen, J.; Zhang, H.; Liu, Y.; Sheng, K.; Zhang, K.; Cheng, J. Patterns and drivers of soil pH on the Xinjiang temperate steppe. Pratacultural Sci. 2022, 39, 1341–1353. [Google Scholar] [CrossRef]
- Dai, W.; Huang, Y.; Wu, L.; Yu, J. Relationships between soil organic matter content (SOM) and pH in topsoil of zonal soils in China. Acta Pedol. Sin. 2009, 46, 851–860. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhou, J.; Zhou, Y.; Sun, Y.; Zhang, J. Causes of groundwater salinization in the plain area of Kashgar River Basin in Xinjiang, China. Environ. Earth Sci. 2021, 80, 801. [Google Scholar] [CrossRef]
- Yan, H.; Hui, X.; Li, M.; Xu, Y. Development in sprinkler irrigation technology in China. Irrig. Drain. 2020, 69, 75–87. [Google Scholar] [CrossRef]
- Liu, H.; Li, M.; Zheng, X.; Wang, Y.; Anwar, S. Surface salinization of soil under mulched drip irrigation. Water 2020, 12, 3031. [Google Scholar] [CrossRef]
- Li, W.; Wang, Z.; Deng, X.; Zhang, J. Soil salinity variation characteristics of cotton field under long-term mulched drip irrigation. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2016, 32, 67–74. [Google Scholar] [CrossRef]
- Ji, C.; Yang, Y.; Han, W.; He, Y.; Smith, J.; Smith, P. Climatic and edaphic controls on soil pH in alpine grasslands on the Tibetan Plateau, China: A quantitative analysis. Pedosphere 2014, 24, 39–44. [Google Scholar] [CrossRef]
- Slama, F.; Gargouri-Ellouze, E.; Bouhlila, R. Impact of rainfall structure and climate change on soil and groundwater salinization. Clim. Chang. 2020, 163, 395–413. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, W.; Liu, H. Factors affecting variations of soil pH in different horizons in hilly regions. PLoS ONE 2019, 14, e0218563. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Xu, M. Study on soil salinization and countermeasures of its prevention in Xinjiang. Earth Environ. 2005, 33, 593–597. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Shi, X.; Yu, D.; Öborn, I.; Blombäck, K.; Pagella, T.F.; Wang, H.; Sun, W.; Sinclair, F.L. Environmental assessment of small-scale vegetable farming systems in peri-urban areas of the Yangtze River Delta Region, China. Agric. Ecosyst. Environ. 2006, 112, 391–402. [Google Scholar] [CrossRef]
Soil Nutrients | Grade | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
SOM (g/kg) | ≥40 | 30~40 | 20~30 | 10~20 | 6~10 | <6 |
AN (mg/kg) | ≥150 | 120~150 | 90~120 | 60~90 | 30~60 | <30 |
AP (mg/kg) | ≥40 | 20~40 | 10~20 | 5~10 | 3~5 | <3 |
AK (mg/kg) | ≥200 | 150~200 | 100~150 | 50~100 | 30~50 | <30 |
Area | Cities | 2008~2010 | 2019~2021 | ||||
---|---|---|---|---|---|---|---|
Sample Size | Mean | CV (%) | Sample Size | Mean | CV (%) | ||
N-XJ | Altay | 1695 | 7.84 ± 0.37l | 4.74 | 1329 | 8.06 ± 0.37fg | 4.52 |
Bortala | 951 | 8.38 ± 0.26b | 3.11 | 792 | 7.79 ± 0.29h | 3.78 | |
Changji | 2784 | 7.97 ± 0.31k | 3.85 | 3067 | 8.01 ± 0.33g | 4.07 | |
Urumqi | 303 | 8.02 ± 0.22j | 2.76 | 369 | 8.05 ± 0.27fg | 3.40 | |
Karamay | / | / | / | 185 | 8.25 ± 0.32ab | 3.86 | |
Ili | 2917 | 8.13 ± 0.32efg | 3.90 | 2988 | 8.13 ± 0.26cde | 3.20 | |
Tacheng | 1795 | 8.06 ± 0.25hi | 3.10 | 3493 | 8.22 ± 0.23b | 2.85 | |
Hami N-XJ | 463 | 8.10 ± 0.28gh | 3.46 | 198 | 8.10 ± 0.25ef | 3.21 | |
Total N-XJ | 10908 | 8.05 ± 0.34ij | 4.18 | 12421 | 8.10 ± 0.31ef | 3.82 | |
S-XJ | Aksu | 2199 | 8.14 ± 0.32ef | 3.92 | 3223 | 8.17 ± 0.31c | 3.83 |
Turpan | 287 | 8.46 ± 0.35a | 4.14 | 320 | 8.17 ± 0.27cd | 3.27 | |
Bayingolin | 2395 | 8.11 ± 0.35fg | 4.29 | 1633 | 8.14 ± 0.35cde | 3.27 | |
Hotan | 1788 | 8.30 ± 0.26c | 3.16 | 992 | 8.28 ± 0.27a | 3.30 | |
Kashgar | 5058 | 8.10 ± 0.22fg | 2.73 | 3213 | 8.16 ± 0.30cd | 3.67 | |
Kizilsu | 362 | 8.25 ± 0.30d | 3.57 | 265 | 8.11 ± 0.36de | 4.38 | |
Hami S-XJ | 365 | 8.33 ± 0.30c | 3.55 | 253 | 8.01 ± 0.26g | 3.25 | |
Total S-XJ | 12454 | 8.16 ± 0.29e | 3.61 | 9899 | 8.17 ± 0.31c | 3.84 | |
XJ | Total | 23362 | 8.11 ± 0.32fg | 3.94 | 22320 | 8.13 ± 0.31cde | 3.85 |
Area | Cities | Significance (2-Tailed) | |
---|---|---|---|
N-XJ | Altay | 0.22 | 0.000 ** |
Bortala | −0.59 | 0.000 ** | |
Changji | 0.04 | 0.000 ** | |
Urumqi | 0.03 | 0.137 | |
Karamay | / | / | |
Ili | 0.00 | 0.818 | |
Tacheng | 0.16 | 0.000 ** | |
Hami N-XJ | 0.00 | 0.951 | |
Total N-XJ | 0.05 | 0.000 ** | |
S-XJ | Aksu | 0.03 | 0.000 ** |
Turpan | −0.29 | 0.000 ** | |
Bayingolin | 0.03 | 0.011 * | |
Hotan | −0.02 | 0.041 * | |
Kashgar | 0.06 | 0.000 ** | |
Kizilsu | −0.14 | 0.000 ** | |
Hami S-XJ | −0.32 | 0.000 ** | |
Total S-XJ | 0.01 | 0.011 * | |
XJ | Total | 0.02 | 0.000 ** |
Periods | Moran’s I | Variance | p | ||
---|---|---|---|---|---|
2008~2010 | 0.568 | −4.30 × 10−5 | 1.34 × 10−4 | 49.138 | <0.001 |
2019~2021 | 0.152 | −4.50 × 10−5 | 9.70 × 10−5 | 15.422 | <0.001 |
Periods | Area | Optimal Model | Nugget Variance (C0) | Sill (C0 + C) | Structural Variance [C0/(C0 + C)], % | Range (A0) km | R² | RSS |
---|---|---|---|---|---|---|---|---|
2008~ 2010 | XJ | Exponential | 0.0260 | 0.0849 | 30.62 | 26.70 | 0.93 | 8.50 × 10−5 |
N-XJ | Exponential | 0.0305 | 0.1060 | 28.77 | 24.00 | 0.94 | 1.65 × 10−4 | |
S-XJ | Exponential | 0.0211 | 0.0711 | 29.68 | 22.30 | 0.87 | 2.33 × 10−4 | |
2019~ 2021 | XJ | Exponential | 0.0367 | 0.0878 | 41.80 | 23.60 | 0.85 | 4.16 × 10−5 |
N-XJ | Exponential | 0.0361 | 0.0896 | 40.29 | 21.20 | 0.82 | 2.90 × 10−5 | |
S-XJ | Gaussian | 0.0277 | 0.0858 | 32.28 | 19.30 | 0.87 | 5.01 × 10−6 |
Elevation (m) | Sample Size | Min | Max | Mean | CV (%) |
---|---|---|---|---|---|
≤0 | 322 | 7.57 | 8.90 | 8.34 ± 0.34a | 4.04 |
0–1000 | 21,522 | 7.26 | 9.00 | 8.10 ± 0.33d | 3.17 |
1000–2000 | 22,040 | 7.26 | 9.00 | 8.13 ± 0.30cd | 3.17 |
2000–3000 | 860 | 7.30 | 8.90 | 8.14 ± 0.26bc | 3.21 |
>3000 | 617 | 7.30 | 8.90 | 8.16 ± 0.26b | 3.17 |
Grade | SOM | AN | AP | AK | ||||
---|---|---|---|---|---|---|---|---|
Mean pH | CV (%) | Mean pH | CV (%) | Mean pH | CV (%) | Mean pH | CV (%) | |
6 | 8.23 ± 0.36a | 4.17 | 8.23 ± 0.34a | 4.17 | 8.20 ± 0.32a | 3.91 | 8.28 ± 0.44a | 5.31 |
5 | 8.14 ± 0.35b | 3.96 | 8.18 ± 0.32b | 3.96 | 8.19 ± 0.35ab | 4.25 | 8.26 ± 0.33a | 3.96 |
4 | 8.13 ± 0.30bc | 3.69 | 8.11 ± 0.30c | 3.69 | 8.18 ± 0.31ab | 3.73 | 8.21 ± 0.31ab | 3.82 |
3 | 8.11 ± 0.29c | 3.61 | 8.09 ± 0.29d | 3.61 | 8.15 ± 0.30bc | 3.73 | 8.15 ± 0.31bc | 3.79 |
2 | 8.06 ± 0.35d | 3.58 | 8.04 ± 0.29e | 3.58 | 8.10 ± 0.32cd | 3.95 | 8.13 ± 0.30bc | 3.73 |
1 | 8.05 ± 0.28d | 3.62 | 8.02 ± 0.29e | 3.62 | 8.08 ± 0.31d | 3.86 | 8.08 ± 0.31c | 3.85 |
Pearson’s correlation coefficient | −0.108 ** | −0.197 ** | −0.126 ** | −0.248 ** |
Irrigation Methods | Sample Size | Min | Max | Mean | CV (%) |
---|---|---|---|---|---|
Drip and flood irrigation | 161 | 7.72 | 8.98 | 8.39 ± 0.18a | 2.18 |
Flood irrigation | 9229 | 7.30 | 9.00 | 8.20 ± 0.28bc | 3.41 |
Drip irrigation | 6602 | 7.27 | 9.00 | 8.15 ± 0.32cd | 3.88 |
Border irrigation | 1749 | 7.36 | 8.98 | 8.13 ± 0.23cd | 2.89 |
Furrow irrigation | 5575 | 7.29 | 8.98 | 8.13 ± 0.35cd | 4.37 |
Flood and border irrigation | 3364 | 7.30 | 8.90 | 8.09 ± 0.30d | 3.77 |
No irrigation | 517 | 7.28 | 8.99 | 7.98 ± 0.32e | 4.01 |
Sprinkler irrigation | 24 | 7.40 | 8.98 | 7.97 ± 0.40e | 4.98 |
ET | Pre | LST | |
---|---|---|---|
pH | 0.082 ** | −0.201 ** | 0.121 ** |
Periods | Regions | Fertilizer Application (× 107 kg) | N Fertilizer Application (× 107 kg) | P Fertilizer Application (× 107 kg) | K Fertilizer Application (× 107 kg) |
---|---|---|---|---|---|
2008 | N-XJ | 51.10 | 23.58 | 11.94 | 2.57 |
S-XJ | 61.62 | 31.34 | 19.93 | 3.02 | |
XJ | 112.72 | 54.93 | 31.87 | 5.59 | |
2012 | N-XJ | 66.27 | 30.09 | 15.51 | 3.84 |
S-XJ | 82.90 | 39.22 | 26.59 | 5.06 | |
XJ | 149.17 | 69.31 | 42.10 | 8.90 | |
2020 | N-XJ | 65.74 | 27.41 | 16.49 | 6.49 |
S-XJ | 105.27 | 43.59 | 32.22 | 7.86 | |
XJ | 171.01 | 71.00 | 48.71 | 14.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Ye, H.; Liu, R.; Tang, M.; Nie, C.; Han, X.; Zhao, X.; Wei, P.; Wen, F. Spatial and Temporal Variations of Soil pH in Farmland in Xinjiang, China over the Past Decade. Agriculture 2024, 14, 1048. https://doi.org/10.3390/agriculture14071048
Zhang Y, Ye H, Liu R, Tang M, Nie C, Han X, Zhao X, Wei P, Wen F. Spatial and Temporal Variations of Soil pH in Farmland in Xinjiang, China over the Past Decade. Agriculture. 2024; 14(7):1048. https://doi.org/10.3390/agriculture14071048
Chicago/Turabian StyleZhang, Yue, Huichun Ye, Ronghao Liu, Mingyao Tang, Chaojia Nie, Xuemei Han, Xiaoshu Zhao, Peng Wei, and Fu Wen. 2024. "Spatial and Temporal Variations of Soil pH in Farmland in Xinjiang, China over the Past Decade" Agriculture 14, no. 7: 1048. https://doi.org/10.3390/agriculture14071048
APA StyleZhang, Y., Ye, H., Liu, R., Tang, M., Nie, C., Han, X., Zhao, X., Wei, P., & Wen, F. (2024). Spatial and Temporal Variations of Soil pH in Farmland in Xinjiang, China over the Past Decade. Agriculture, 14(7), 1048. https://doi.org/10.3390/agriculture14071048