Research Progress in the Establishment of Sterile Hosts and Their Usage in Conservation of Poultry Genetic Resources
Abstract
:1. Introduction
2. Preparation Strategy for Sterile Host
2.1. Ovariectomy and Testectomy
2.2. Busulfan
2.3. Irradiation
2.4. Genetically Engineered (GE) Sterile Chickens
3. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Wang, M.S.; Thakur, M.; Peng, M.S.; Jiang, Y.; Frantz, L.A.F.; Li, M.; Zhang, J.J.; Wang, S.; Peters, J.; Otecko, N.O.; et al. 863 genomes reveal the origin and domestication of chicken. Cell Res. 2020, 30, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Restoux, G.; Rognon, X.; Vieaud, A.; Guemene, D.; Petitjean, F.; Rouger, R.; Brard-Fudulea, S.; Lubac-Paye, S.; Chiron, G.; Tixier-Boichard, M. Managing genetic diversity in breeding programs of small populations: The case of French local chicken breeds. Genet. Sel. Evol. 2022, 54, 56. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, Y.; Zong, Y.; Mehaisen, G.M.K.; Chen, J. Poultry genetic heritage cryopreservation and reconstruction: Advancement and future challenges. J. Anim. Sci. Biotechnol. 2022, 13, 115. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Taylor, L.; Sherman, A.; Keambou, T.C.; Kemp, S.J.; Whitelaw, B.; Hawken, R.J.; Djikeng, A.; McGrew, M.J. A low-tech, cost-effective and efficient method for safeguarding genetic diversity by direct cryopreservation of poultry embryonic reproductive cells. Elife 2022, 11, e74036. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Silversides, F.G. Production of offspring from cryopreserved chicken testicular tissue. Poult. Sci. 2007, 86, 1390–1396. [Google Scholar] [CrossRef] [PubMed]
- Collarini, E.J.; Leighton, P.A.; Van de Lavoir, M.C. Production of Transgenic Chickens Using Cultured Primordial Germ Cells and Gonocytes. Methods Mol. Biol. 2019, 1874, 403–430. [Google Scholar] [PubMed]
- Nakamura, Y.; Usui, F.; Miyahara, D.; Mori, T.; Ono, T.; Kagami, H.; Takeda, K.; Nirasawa, K.; Tagami, T. X-irradiation removes endogenous primordial germ cells (PGCs) and increases germline transmission of donor PGCs in chimeric chickens. J. Reprod. Dev. 2012, 58, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Blank, M.H.; Kawaoku, A.J.T.; Rui, B.R.; Carreira, A.C.O.; Hamilton, T.; Goissis, M.D.; Pereira, R.J.G. Successful xenotransplantation of testicular cells following fractionated chemotherapy of recipient birds. Sci. Rep. 2024, 14, 3085. [Google Scholar] [CrossRef] [PubMed]
- Park, K.E.; Kaucher, A.V.; Powell, A.; Waqas, M.S.; Sandmaier, S.E.; Oatley, M.J.; Park, C.H.; Tibary, A.; Donovan, D.M.; Blomberg, L.A.; et al. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Sci. Rep. 2017, 7, 40176. [Google Scholar] [CrossRef]
- Trefil, P.; Aumann, D.; Koslova, A.; Mucksova, J.; Benesova, B.; Kalina, J.; Wurmser, C.; Fries, R.; Elleder, D.; Schusser, B.; et al. Male fertility restored by transplanting primordial germ cells into testes: A new way towards efficient transgenesis in chicken. Sci. Rep. 2017, 7, 14246. [Google Scholar] [CrossRef]
- Han, J.Y.; Park, Y.H. Primordial germ cell-mediated transgenesis and genome editing in birds. J. Anim. Sci. Biotechnol. 2018, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Idoko-Akoh, A.; Goldhill, D.H.; Sheppard, C.M.; Bialy, D.; Quantrill, J.L.; Sukhova, K.; Brown, J.C.; Richardson, S.; Campbell, C.; Taylor, L.; et al. Creating resistance to avian influenza infection through genome editing of the ANP32 gene family. Nat. Commun. 2023, 14, 6136. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Silversides, F.G. Long-term production of donor-derived offspring from chicken ovarian transplants. Poult. Sci. 2008, 87, 1818–1822. [Google Scholar] [CrossRef] [PubMed]
- Devi, L.; Goel, S. Fertility preservation through gonadal cryopreservation. Reprod. Med. Biol. 2016, 15, 235–251. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Silversides, F.G. The technique of orthotopic ovarian transplantation in the chicken. Poult. Sci. 2006, 85, 1104–1106. [Google Scholar] [CrossRef] [PubMed]
- Liptoi, K.; Buda, K.; Rohn, E.; Drobnyak, A.; Meleg, E.E.; Palinkas-Bodzsar, N.; Vegi, B.; Barna, J. Improvement of the application of gonadal tissue allotransplantation in the in vitro conservation of chicken genetic lines. Anim. Reprod. Sci. 2020, 213, 106280. [Google Scholar] [CrossRef] [PubMed]
- Hall, G.B.; Long, J.A.; Susta, L.; Wood, B.J.; Bedecarrats, G.Y. Turkey ovarian tissue transplantation: Effects of surgical technique on graft attachment and immunological status of the grafts, 6 days post-surgery. Poult. Sci. 2022, 101, 101648. [Google Scholar] [CrossRef] [PubMed]
- Hall, G.B.; Beeler-Marfisi, J.; Long, J.A.; Wood, B.J.; Bedecarrats, G.Y. Cyclosporin A Prevents Ovarian Graft Rejection, and Permits Normal Germ Cell Maturation Within the First 5 Weeks Post-transplantation, in the Domestic Turkey (Meleagris gallopavo). Front. Vet. Sci. 2022, 9, 855164. [Google Scholar] [CrossRef]
- Heller, R.H.; Jones, H.W., Jr. Production of ovarian dysgenesis in the rat and human by busulphan. Am. J. Obstet. Gynecol. 1964, 89, 414–420. [Google Scholar] [CrossRef]
- Nakamura, Y.; Usui, F.; Ono, T.; Takeda, K.; Nirasawa, K.; Kagami, H.; Tagami, T. Germline replacement by transfer of primordial germ cells into partially sterilized embryos in the chicken. Biol. Reprod. 2010, 83, 130–137. [Google Scholar] [CrossRef]
- Bresler, M.; Behnam, J.; Luke, G.; Simkiss, K. Manipulations of germ-cell populations in the gonad of the fowl. Br. Poult. Sci. 1994, 35, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; D’Costa, S.; Pardue, S.L.; Petitte, J.N. Production of germline chimeric chickens following the administration of a busulfan emulsion. Mol. Reprod. Dev. 2005, 70, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Yamamoto, Y.; Usui, F.; Atsumi, Y.; Ito, Y.; Ono, T.; Takeda, K.; Nirasawa, K.; Kagami, H.; Tagami, T. Increased proportion of donor primordial germ cells in chimeric gonads by sterilisation of recipient embryos using busulfan sustained-release emulsion in chickens. Reprod. Fertil. Dev. 2008, 20, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Ghadimi, F.; Shakeri, M.; Zhandi, M.; Zaghari, M.; Piryaei, A.; Moslehifar, P.; Rajabinejad, A. Different approaches to establish infertile rooster. Anim. Reprod. Sci. 2017, 186, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Tagirov, M.; Golovan, S. The effect of busulfan treatment on endogenous spermatogonial stem cells in immature roosters. Poult. Sci. 2012, 91, 1680–1685. [Google Scholar] [CrossRef] [PubMed]
- Harkey, M.A.; Czerwinski, M.; Slattery, J.; Kiem, H.P. Overexpression of glutathione-S-transferase, MGSTII, confers resistance to busulfan and melphalan. Cancer Investig. 2005, 23, 19–25. [Google Scholar] [CrossRef]
- Kim, Y.M.; Park, K.J.; Park, J.S.; Jung, K.M.; Han, J.Y. In vivo enrichment of busulfan-resistant germ cells for efficient production of transgenic avian models. Sci. Rep. 2021, 11, 9127. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.M.; Kim, Y.M.; Han, J.Y. Transplantation and enrichment of busulfan-resistant primordial germ cells into adult testes for efficient production of germline chimeras in songbirdsdagger. Biol. Reprod. 2023, 108, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Li, H.C.; Kagami, H.; Matsui, K.; Ono, T. Restriction of proliferation of primordial germ cells by the irradiation of Japanese quail embryos with soft X-rays. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2001, 130, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.M.; Kwon, H.M.; Kim, D.K.; Kim, J.N.; Park, T.S.; Ono, T.; Han, J.Y. Selective decrease of chick embryonic primordial germ cells in vivo and in vitro by soft X-ray irradiation. Anim. Reprod. Sci. 2006, 95, 67–74. [Google Scholar] [CrossRef]
- Park, K.J.; Kang, S.J.; Kim, T.M.; Lee, Y.M.; Lee, H.C.; Song, G.; Han, J.Y. Gamma-irradiation depletes endogenous germ cells and increases donor cell distribution in chimeric chickens. In Vitro Cell. Dev. Biol. Anim. 2010, 46, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Fraser, R.A.; Carsience, R.S.; Clark, M.E.; Etches, R.J.; Gibbins, A.M. Efficient incorporation of transfected blastodermal cells into chimeric chicken embryos. Int. J. Dev. Biol. 1993, 37, 381–385. [Google Scholar] [PubMed]
- Etches, R.J.; Clark, M.E.; Toner, A.; Liu, G.; Gibbins, A.M. Contributions to somatic and germline lineages of chicken blastodermal cells maintained in culture. Mol. Reprod. Dev. 1996, 45, 291–298. [Google Scholar] [CrossRef]
- Macdonald, J.; Glover, J.D.; Taylor, L.; Sang, H.M.; McGrew, M.J. Characterisation and germline transmission of cultured avian primordial germ cells. PLoS ONE 2010, 5, e15518. [Google Scholar] [CrossRef] [PubMed]
- Trefil, P.; Polak, J.; Poplstein, M.; Mikus, T.; Kotrbova, A.; Rozinek, J. Preparation of fowl testes as recipient organs to germ-line chimeras by means of gamma-radiation. Br. Poult. Sci. 2003, 44, 643–650. [Google Scholar] [CrossRef]
- Herrid, M.; McFarlane, J.R. Application of testis germ cell transplantation in breeding systems of food producing species: A review. Anim. Biotechnol. 2013, 24, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.M.; Han, J.Y. The early development of germ cells in chicken. Int. J. Dev. Biol. 2018, 62, 145–152. [Google Scholar] [CrossRef] [PubMed]
- van de Lavoir, M.C.; Diamond, J.H.; Leighton, P.A.; Mather-Love, C.; Heyer, B.S.; Bradshaw, R.; Kerchner, A.; Hooi, L.T.; Gessaro, T.M.; Swanberg, S.E.; et al. Germline transmission of genetically modified primordial germ cells. Nature 2006, 441, 766–769. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, D.H.; Lee, K. Current Approaches and Applications in Avian Genome Editing. Int. J. Mol. Sci. 2020, 21, 3937. [Google Scholar] [CrossRef]
- Tsunekawa, N.; Naito, M.; Sakai, Y.; Nishida, T.; Noce, T. Isolation of chicken vasa homolog gene and tracing the origin of primordial germ cells. Development 2000, 127, 2741–2750. [Google Scholar] [CrossRef]
- Taylor, L.; Carlson, D.F.; Nandi, S.; Sherman, A.; Fahrenkrug, S.C.; McGrew, M.J. Efficient TALEN-mediated gene targeting of chicken primordial germ cells. Development 2017, 144, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Aduma, N.; Izumi, H.; Mizushima, S.; Kuroiwa, A. Knockdown of DEAD-box helicase 4 (DDX4) decreases the number of germ cells in male and female chicken embryonic gonads. Reprod. Fertil. Dev. 2019, 31, 847–854. [Google Scholar] [CrossRef]
- Woodcock, M.E.; Gheyas, A.A.; Mason, A.S.; Nandi, S.; Taylor, L.; Sherman, A.; Smith, J.; Burt, D.W.; Hawken, R.; McGrew, M.J. Reviving rare chicken breeds using genetically engineered sterility in surrogate host birds. Proc. Natl. Acad. Sci. USA 2019, 116, 20930–20937. [Google Scholar] [CrossRef]
- Ballantyne, M.; Woodcock, M.; Doddamani, D.; Hu, T.; Taylor, L.; Hawken, R.J.; McGrew, M.J. Direct allele introgression into pure chicken breeds using Sire Dam Surrogate (SDS) mating. Nat. Commun. 2021, 12, 659. [Google Scholar] [CrossRef]
- Lin, Y.; Page, D.C. Dazl deficiency leads to embryonic arrest of germ cell development in XY C57BL/6 mice. Dev. Biol. 2005, 288, 309–316. [Google Scholar] [CrossRef]
- Lee, H.C.; Choi, H.J.; Lee, H.G.; Lim, J.M.; Ono, T.; Han, J.Y. DAZL Expression Explains Origin and Central Formation of Primordial Germ Cells in Chickens. Stem Cells Dev. 2016, 25, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Molnar, M.; Lazar, B.; Sztan, N.; Vegi, B.; Drobnyak, A.; Toth, R.; Liptoi, K.; Marosan, M.; Gocza, E.; Nandi, S.; et al. Investigation of the Guinea fowl and domestic fowl hybrids as potential surrogate hosts for avian cryopreservation programmes. Sci. Rep. 2019, 9, 14284. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, D.H.; Karolak, M.C.; Shin, S.; Lee, K. Generation of genome-edited chicken and duck lines by adenovirus-mediated in vivo genome editing. Proc. Natl. Acad. Sci. USA 2022, 119, e2214344119. [Google Scholar] [CrossRef] [PubMed]
- Hamburger, V.; Hamilton, H.L. A series of normal stages in the development of the chick embryo. J. Morphol. 1951, 88, 49–92. [Google Scholar] [CrossRef]
Method | Materials | Operation Difficulty | Cost | Application | |
---|---|---|---|---|---|
Ovariectomy and testectomy | Day-old chicks | ↑ | ↓ |
| |
Busulfan | Stage HH 1–4 embryos | ↓ | ↓ |
| |
Mature roosters | ↓ | ↓ |
| ||
Irradiation | Stage X and stage HH 14 embryos | ↓ | ↓ |
| |
Mature roosters | ↓ | ↓ |
| ||
Gene editing | DDX4 | Cultured PGCs | ↑ | ↑ |
|
iCaspase9 | Cultured PGCs | ↑ | ↑ |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, H.; Li, Y.; Ni, A.; Liu, S.; Chen, J.; Sun, Y. Research Progress in the Establishment of Sterile Hosts and Their Usage in Conservation of Poultry Genetic Resources. Agriculture 2024, 14, 1111. https://doi.org/10.3390/agriculture14071111
Du H, Li Y, Ni A, Liu S, Chen J, Sun Y. Research Progress in the Establishment of Sterile Hosts and Their Usage in Conservation of Poultry Genetic Resources. Agriculture. 2024; 14(7):1111. https://doi.org/10.3390/agriculture14071111
Chicago/Turabian StyleDu, Hongfeng, Yunlei Li, Aixin Ni, Shengjun Liu, Jilan Chen, and Yanyan Sun. 2024. "Research Progress in the Establishment of Sterile Hosts and Their Usage in Conservation of Poultry Genetic Resources" Agriculture 14, no. 7: 1111. https://doi.org/10.3390/agriculture14071111
APA StyleDu, H., Li, Y., Ni, A., Liu, S., Chen, J., & Sun, Y. (2024). Research Progress in the Establishment of Sterile Hosts and Their Usage in Conservation of Poultry Genetic Resources. Agriculture, 14(7), 1111. https://doi.org/10.3390/agriculture14071111