Milk Yield, Composition, and Fatty Acid Profile in Milk of Dairy Cows Supplemented with Microalgae Schizochytrium sp.: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Calculations, Statistical Analysis, Heterogeneity, and Publication Bias
2.5. Meta-Regression and Subgroup Analysis
3. Results
3.1. Milk Yield and Composition
3.2. Milk Fatty Acid Profile
3.3. Publication Bias and Meta-Regression
3.4. Subgroup Analysis
4. Discussion
4.1. Milk Yield and Composition
4.2. Milk Fatty Acid Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, G.; Yu, X.; Li, S.; Shao, W.; Zhang, N. Effects of Dietary Microalgae (Schizochytrium Spp.) Supplement on milk Performance, Blood Parameters, and Milk Fatty Acid Composition in dairy Cows. Czech J. Anim. Sci. 2020, 65, 162–171. [Google Scholar] [CrossRef]
- Pereira, P.C. Milk nutritional composition and its role in human health. Nutrition 2014, 30, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Plata-Pérez, G.; Angeles-Hernandez, J.C.; Morales-Almaráz, E.; Del Razo-Rodríguez, O.E.; López-González, F.; Peláez-Acero, A.; Campos-Montiel, R.G.; Vargas-Bello-Pérez, E.; Vieyra-Alberto, R. Oilseed Supplementation Improves Milk Composition and Fatty Acid Profile of Cow Milk: A Meta-Analysis and Meta-Regression. Animals 2022, 12, 1642. [Google Scholar] [CrossRef] [PubMed]
- Samková, E.; Kalač, P. Rapeseed supplements affect propitiously fatty acid composition of cow milk fat: A meta-analysis. Livest. Sci. 2021, 244, 104382. [Google Scholar] [CrossRef]
- Gallardo, W.B.; Teixeira, I.A.M.A. Associations between Dietary Fatty Acid Profile and Milk Fat Production and Fatty Acid Composition in Dairy Cows: A Meta-Analysis. Animals 2023, 13, 2063. [Google Scholar] [CrossRef] [PubMed]
- Till, B.E.; Huntington, J.A.; Posri, W.; Early, R.; Taylor-Pickard, J.; Sinclair, L.A. Influence of rate of inclusion of microalgae on the sensory characteristics and fatty acid composition of cheese and performance of dairy cows. J. Dairy Sci. 2019, 102, 10934–10946. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, K.M.; Lovegrove, J.A.; Cockcroft, J.R.; Elwood, P.C.; Pickering, J.E.; Givens, D.I. Does dairy food intake predict arterial stiffness and blood pressure in men? Evidence from the caerphilly prospective study. Hypertension 2013, 61, 42–47. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef]
- Altomonte, I.; Salari, F.; Licitra, R.; Martini, M. Use of Microalgae in Ruminant Nutrition and Implications on Milk Quality—A Review. Livest. Sci. 2018, 214, 25–35. [Google Scholar] [CrossRef]
- Vanbergue, E.; Peyraud, J.L.; Hurtaud, C. Effects of new n-3 fatty acid sources on milk fatty acid profile and milk fat properties in dairy cows. J. Dairy Res. 2018, 85, 265–272. [Google Scholar] [CrossRef]
- Saadaoui, I.; Rasheed, R.; Aguilar, A. Microalgal-based feed: Promising alternative feedstocks for livestock and poultry production. J. Anim. Sci. Biotechnol. 2021, 12, 76. [Google Scholar] [CrossRef] [PubMed]
- Dineshbabu, G.; Goswami, G.; Kumar, R.; Sinha, A.; Das, D. Microalgae–nutritious, sustainable aqua- and animal feed source. J. Funct. Foods 2019, 62, 103545. [Google Scholar] [CrossRef]
- Lamminen, M.; Halmemies-Beauchet-Filleau, A.; Kokkonen, T.; Simpura, I.; Jaakkola, S.; Vanhatalo, A. Comparison of microalgae and rapeseed meal as supplementary protein in the grass silage based nutrition of dairy cows. Anim. Feed Sci. Technol. 2017, 234, 295–311. [Google Scholar] [CrossRef]
- Da Silva, G.G.; de Jesus, E.F.; Takiya, C.S.; del Valle, T.A.; da Silva, T.H.; Vendramini, T.H.A.; Yu, E.J.; Rennó, F.P. Short communication: Partial replacement of ground corn with algae meal in a dairy cow diet: Milk yield and composition, nutrient digestibility, and metabolic profile. J. Dairy Sci. 2016, 99, 8880–8884. [Google Scholar] [CrossRef] [PubMed]
- Lamminen, M.; Halmemies-Beauchet-Filleau, A.; Kokkonen, T.; Jaakkola, S.; Vanhatalo, A. Different Microalgae Species as a Substitutive Protein Feed for Soya Bean Meal in Grass Silage Based Dairy Cow Diets. Anim. Feed Sci. Technol. 2019, 247, 112–126. [Google Scholar] [CrossRef]
- Lamminen, M.; Halmemies-Beauchet-Filleau, A.; Kokkonen, T.; Vanhatalo, A.; Jaakkola, S. The effect of partial substitution of rapeseed meal and faba beans by Spirulina platensis microalgae on milk production, nitrogen utilization, and amino acid metabolism of lactating dairy cows. J. Dairy Sci. 2019, 102, 7102–7117. [Google Scholar] [CrossRef] [PubMed]
- Valente, L.; Cabrita, A.; Maia, M.; Valente, I.; Engrola, S.; Fonseca, A.; Freire, J. Microalgae as Feed Ingredients for Livestock Production and Aquaculture. Microalgae—Cultivation, Recovery of Compounds and Applications; Academic Press: Cambridge, MA, USA, 2021; pp. 239–312. [Google Scholar]
- Costa, D.F.A.; Castro-Montoya, J.M.; Harper, K.; Trevaskis, L.; Jackson, E.L.; Quigley, S. Algae as Feedstuff for Ruminants: A Focus on Single-Cell Species, Opportunistic Use of Algal By-Products and On-Site Production. Microorganisms 2022, 10, 2313. [Google Scholar] [CrossRef] [PubMed]
- Orzuna-Orzuna, J.F.; Chay-Canul, A.J.; Lara-Bueno, A. Performance, milk fatty acid profile and oxidative status of lactating small ruminants supplemented with microalgae: A meta-analysis. Small Rumin. Res. 2023, 226, 107031. [Google Scholar] [CrossRef]
- Glover, E.K.; Budge, S.; Rose, M.; Rupasinghe, H.P.V.; MacLaren, L.; Green-Johnson, J.; Fredeen, A.H. Effect of Feeding Fresh Forage and Marine Algae on the Fatty Acid Composition and Oxidation of Milk and Butter. J. Dairy Sci. 2012, 95, 2797–2809. [Google Scholar] [CrossRef] [PubMed]
- Marques, J.A.; Del Valle, T.A.; Ghizzi, L.G.; Zilio, E.M.C.; Gheller, L.S.; Nunes, A.T.; Silva, T.B.P.; Dias, M.S.d.S.; Grigoletto, N.T.S.; Koontz, A.F.; et al. Increasing dietary levels of docosahexaenoic acid-rich microalgae: Ruminal fermentation, animal performance, and milk fatty acid profile of mid-lactating dairy cows. J. Dairy Sci. 2019, 102, 5054–5065. [Google Scholar] [CrossRef]
- Moran, C.A.; Morlacchini, M.; Keegan, J.D.; Warren, H.; Fusconi, G. Dietary supplementation of dairy cows with a docosahexaenoic acid-rich thraustochytrid, Aurantiochytrium limacinum: Effects on milk quality, fatty acid composition and cheese making properties. J. Anim. Feed Sci. 2019, 28, 3–14. [Google Scholar] [CrossRef]
- Till, B.E.; Huntington, J.A.; Kliem, K.E.; Taylor-Pickard, J.; Sinclair, L.A. Long term dietary supplementation with microalgae increases plasma docosahexaenoic acid in milk and plasma but does not affect plasma 13,14-dihydro-15-keto PGF2α concentration in dairy cows. J. Dairy Res. 2020, 87, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Vahmani, P.; Fredeen, A.H.; Glover, K.E. Effect of supplementation with fish oil or microalgae on fatty acid composition of milk from cows managed in confinement or pasture systems. J. Dairy Sci. 2013, 96, 6660–6670. [Google Scholar] [CrossRef] [PubMed]
- Littell, J.H.; Corcoran, J.; Pillai, V. Systematic Reviews and Meta-Analysis, 1st ed.; Oxford University Press: Oxford, UK, 2008; pp. 111–132. [Google Scholar]
- Nishikawa-Pacher, A. Research questions with PICO: A universal mnemonic. Publications 2022, 10, 21. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Chi, G.; Xu, Y.; Cao, X.; Li, Z.; Cao, M.; Chisti, Y.; He, H. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol. Adv. 2022, 55, 107897. [Google Scholar] [CrossRef]
- Dorantes-Iturbide, G.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Lee-Rangel, H.A. Essential oils as a dietary additive for small ruminants: A meta-analysis on performance, rumen parameters, serum metabolites, and product quality. Vet. Sci. 2022, 9, 475. [Google Scholar] [CrossRef]
- Moate, P.J.; Williams, S.R.O.; Hannah, M.C.; Eckard, R.J.; Auldist, M.J.; Ribaux, B.E.; Jacobs, J.L.; Wales, W.J. Effects of feeding algal meal high in docosahexaenoic acid on feed intake, milk production, and methane emissions in dairy cows. J. Dairy Sci. 2013, 96, 3177–3188. [Google Scholar] [CrossRef]
- Moran, C.A.; Morlacchini, M.; Keegan, J.D.; Fusconi, G. The Effect of Dietary Supplementation with Aurantiochytrium limacinum on Lactating Dairy Cows in Terms of Animal Health, Productivity and Milk Composition. J. Anim. Physiol. Anim. Nutr. 2018, 102, 576–590. [Google Scholar] [CrossRef]
- Vanbergue, E.; Hurtaud, C.; Peyraud, J.L.; Beuvier, E.; Duboz, G.; Buchin, S. Effects of n-3 fatty acid sources on butter and hard cooked cheese; technological properties and sensory quality. Int. Dairy J. 2018, 82, 35–44. [Google Scholar] [CrossRef]
- Schwarzer, G.; Carpenter, J.R.; Rücker, G. Meta-Analysis with R; Springer: Berlin/Heidelberg, Germany, 2015; Volume 4784, ISBN 978-3-319-21415-3. [Google Scholar]
- Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Takeshima, N.; Sozu, T.; Tajika, A.; Ogawa, Y.; Hayasaka, Y.; Furukawa, T.A. Which Is more generalizable, powerful and interpretable in meta-analyses, mean difference or standardized mean difference? BMC Med. Res. Methodol. 2014, 14, 30. [Google Scholar] [CrossRef]
- Der-Simonian, R.; Laird, N. Meta-analysis in clinical trials. Control Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Introduction to Meta-Analysis, 1st ed.; John Wiley and Sons, Ltd.: Chichester, UK, 2009; p. 413. [Google Scholar]
- Borenstein, M.; Higgins, J.P.T.; Hedges, L.V.; Rothstein, H.R. Basics of Meta-Analysis: I2 Is Not an Absolute Measure of Heterogeneity. Res. Synth. Methods 2017, 8, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Hernández-García, P.A.; Chay-Canul, A.J.; Galván, C.D.; Ortiz, P.B.R. Microalgae as a dietary additive for lambs: A meta-analysis on growth performance, meat quality, and meat fatty acid profile. Small Rumin. Res. 2023, 226, 107072. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Skliros, D.; Flemetakis, E.; Tsiplakou, E. Changes in the Rumen Bacteriome Structure and Enzymatic Activities of Goats in Response to Dietary Supplementation with Schizochytrium spp. Microorganisms 2021, 9, 1528. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Sotirakoglou, K.; Skliros, D.; Flemetakis, E.; Tsiplakou, E. Dose and time response of dietary supplementation with Schizochytrium sp. on the abundances of several microorganisms in the rumen liquid of dairy goats. Livest. Sci. 2021, 247, 104489. [Google Scholar] [CrossRef]
- Relling, A.; Reynolds, C. Feeding rumen-inert fats differing in their degree of saturation decreases intake and increases plasma concentrations of gut peptides in lactating dairy cows. J. Dairy Sci. 2007, 90, 1506–1515. [Google Scholar] [CrossRef]
- Zanton, G.I.; Bowman, G.R.; Vázquez-Añón, M.; Rode, L.M. Meta-analysis of lactation performance in dairy cows receiving supplemental dietary methionine sources or postruminal infusion of methionine. J. Dairy Sci. 2014, 97, 7085–7101. [Google Scholar] [CrossRef] [PubMed]
- Moghimi-Kandelousi, M.; Alamouti, A.A.; Imani, M.; Zebeli, Q. A meta-analysis and meta-regression of the effects of vitamin E supplementation on serum enrichment, udder health, milk yield, and reproductive performance of transition cows. J. Dairy Sci. 2020, 103, 6157–6166. [Google Scholar] [CrossRef] [PubMed]
- Duplessis, M.; Lapierre, H.; Sauerwein, H.; Girard, C.L. Combined biotin, folic acid, and vitamin B12 supplementation given during the transition period to dairy cows: Part I. Effects on lactation performance, energy and protein metabolism, and hormones. J. Dairy Sci. 2022, 105, 7079–7096. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, Z.; Lei, X.; Yao, J. Effect of folic acid supplementation on lactation performance of Holstein dairy cows: A meta-analysis. Anim. Feed Sci. Technol. 2023, 296, 115551. [Google Scholar] [CrossRef]
- De Oca-Flores, M.E.; Espinoza-Ortega, A.; Arriaga-Jordán, C.M. Technological and physicochemical properties of milk and physicochemical aspects of traditional Oaxaca cheese. Rev. Mex. Cienc. Pecu. 2019, 10, 367–378. [Google Scholar] [CrossRef]
- Yang, Q.; Lu, T.; Yan, J.; Li, J.; Zhou, H.; Pan, X.; Lu, Y.; He, N.; Ling, X. Regulation of polyunsaturated fatty acids synthesis by enhancing carotenoid-mediated endogenous antioxidant capacity in Schizochytrium sp. Algal Res. 2021, 55, 102238. [Google Scholar] [CrossRef]
- Hussein, M.; Harvatine, K.H.; Weerasinghe, W.M.P.B.; Sinclair, L.A.; Bauman, D.E. Conjugated linoleic acid-induced milk fat depression in lactating ewes is accompanied by reduced expression of mammary genes involved in lipid synthesis. J. Dairy Sci. 2013, 96, 3825–3834. [Google Scholar] [CrossRef] [PubMed]
- Vahmani, P.; Glover, K.E.; Fredeen, A.H. Effects of pasture versus confinement and marine oil supplementation on the expression of genes involved in lipid metabolism in mammary, liver, and adipose tissues of lactating dairy cows. J. Dairy Sci. 2014, 97, 4174–4183. [Google Scholar] [CrossRef] [PubMed]
- Mavrommatis, A.; Tsiplakou, E. The impact of the dietary supplementation level with Schizochytrium sp. on milk chemical composition and fatty acid profile, of both blood plasma and milk of goats. Small Rumin. Res. 2020, 193, 106252. [Google Scholar] [CrossRef]
- Wongpom, B.; Koonawootrittriron, S.; Elzo, M.A.; Suwanasopee, T. Milk yield, fat yield and fat percentage associations in a Thai multibreed dairy population. Agric. Nat. Res. 2017, 51, 218–222. [Google Scholar] [CrossRef]
- Hanuš, O.; Samková, E.; Křížová, L.; Hasoňová, L.; Kala, R. Role of Fatty Acids in Milk Fat and the Influence of Selected Factors on Their Variability—A Review. Molecules 2018, 23, 1636. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, C.; Kotsampasi, B.; Dotas, V.; Simoni, M.; Righi, F.; Tsiplakou, E. The effect of Spirulina supplementation in ewes’ oxidative status and milk quality. Anim. Feed Sci. Technol. 2023, 295, 115544. [Google Scholar] [CrossRef]
- Pećina, M.; Ivanković, A. Candidate genes and fatty acids in beef meat, a review. Ital. J. Anim. Sci. 2021, 20, 1716–1729. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Skliros, D.; Sotirakoglou, K.; Flemetakis, E.; Tsiplakou, E. The effect of forage-to-concentrate ratio on Schizochytrium spp.-supplemented goats: Modifying rumen microbiota. Animals 2021, 11, 2746. [Google Scholar] [CrossRef] [PubMed]
- Dewanckele, L.; Vlaeminck, B.; Hernandez-Sanabria, E.; Ruiz-González, A.; Debruyne, S.; Jeyanathan, J.; Fievez, V. Rumen Biohydrogenation and Microbial Community Changes Upon Early Life Supplementation of 22:6n-3 Enriched Microalgae to Goats. Front. Microbiol. 2018, 9, 573. [Google Scholar] [CrossRef] [PubMed]
- Póti, P.; Pajor, F.; Bodnár, Á.; Penksza, K.; Köles, P. Effect of micro-alga supplementation on goat and cow milk fatty acid composition. Chil. J. Agric. Res. 2015, 75, 259–263. [Google Scholar] [CrossRef]
- Marangoni, F.; Agostoni, C.; Borghi, C.; Catapano, A.L.; Cena, H.; Ghiselli, A.; Poli, A. Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis 2020, 292, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Chen, H.; Stanton, C.; Ross, R.P.; Zhang, H.; Chen, Y.Q.; Chen, W. Review of the roles of conjugated linoleic acid in health and disease. J. Funct. Foods 2015, 15, 314–325. [Google Scholar] [CrossRef]
- Vítor, A.C.; Francisco, A.E.; Silva, J.; Pinho, M.; Huws, S.A.; Santos-Silva, J.; Alves, S.P. Freeze-dried Nannochloropsis oceanica biomass protects eicosapentaenoic acid (EPA) from metabolization in the rumen of lambs. Sci. Rep. 2021, 11, 21878. [Google Scholar] [CrossRef]
- Aldai, N.; Delmonte, P.; Alves, S.P.; Bessa, R.J.; Kramer, J.K. Evidence for the initial steps of DHA biohydrogenation by mixed ruminal microorganisms from sheep involves formation of conjugated fatty acids. J. Agric. Food Chem. 2018, 66, 842–855. [Google Scholar] [CrossRef]
- Moreira, D.K.T.; Santos, P.S.; Gambero, A.; Macedo, G.A. Evaluation of structured lipids with behenic acid in the prevention of obesity. Food Res. Int. 2017, 95, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G. Monounsaturated fatty acids, olive oil and health status: A systematic review and meta-analysis of cohort studies. Lipids Health Dis. 2014, 13, 154. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.C.; Eren, F.; Cassens, M.E.; Dicklin, M.R.; Davidson, M.H. ω-6 polyunsaturated fatty acids and cardiometabolic health: Current evidence, controversies, and research gaps. Adv. Nutr. 2018, 9, 688–700. [Google Scholar] [CrossRef]
- Patterson, E.; Wall, R.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. Health implications of high dietary omega-6 polyunsaturated fatty acids. J. Nutr. Metab. 2012, 2012, 539426. [Google Scholar] [CrossRef] [PubMed]
Reference | Breed | Days in Milk | Supplementation Period, d | Dose (g/kg DM) | Forage, g/kg DM |
---|---|---|---|---|---|
Glover et al. [20] | Holstein | NR | 112 | 9.8 | 557 |
Liu et al. [1] | Holstein | NR | 60 | 6.8, 10.6 | 523 |
Marques et al. [21] | Holstein | 130 | 84 | 2, 4, 6 | 480 |
Moate et al. [30] | Holstein | 163 | 80 | 6, 12, 18 | 700, 710, 730 |
Moran et al. [31] | Holstein | 133 | 84 | 4.1 | 710 |
Moran et al. [22] | Holstein | 164 | 84 | 6.6, 6.6 | 707 |
Till et al. [6] | Holstein | 77 | 112 | 2.1, 4.3, 6.4 | 554 |
Till et al. [23] | Holstein | 25 | 98 | 4.5 | 543 |
Vahmani et al. [24] | Holstein | 0 | 195 | 9.4 | 51 |
Vanbergue et al. [10] | Holstein | 100 | 70 | 7.3, 18 | 75.5, 76.1 |
Vanbergue et al. [32] | Holstein | 100 | 70 | 7.3, 18 | 75.5, 76.1 |
Item | N (NC) | Heterogeneity | Egger Test 1 | Begg Test 2 | ||||
---|---|---|---|---|---|---|---|---|
Control Means (SD) | WMD (95% CI) | p-Value | p-Value | I2 (%) | p-Value | p-Value | ||
DMI, kg/d | 10 (19) | 22.845 (1.341) | −0.341 (−0.541; −0.141) | <0.001 | <0.001 | 68.64 | 0.209 | 0.859 |
MY, kg/d | 10 (19) | 32.06 (5.37) | 0.458 (0.048; 0.868) | 0.029 | 0.967 | 0.00 | 0.455 | 0.646 |
MFY, kg/d | 9 (18) | 1.251 (0.167) | −0.128 (−0.182; −0.075) | <0.001 | <0.001 | 73.09 | 0.282 | 0.467 |
MPY, kg/d | 9 (18) | 1.048 (0.173) | 0.005 (−0.01; 1 0.021) | 0.523 | 0.948 | 0.00 | 0.341 | 0.502 |
MLY, kg/d | 7 (15) | 1.537 (0.266) | 0.015 (−0.006; 0.036) | 0.163 | 0.953 | 0.00 | 0.082 | 0.130 |
MFC, g/kg | 10 (19) | 35.21 (5.86) | −5.095 (−6.730; −3.461) | <0.001 | <0.001 | 72.03 | 0.398 | 0.242 |
MPC, g/kg | 10 (19) | 32.68 (1.65) | −0.248 (−0.929; 0.432) | 0.474 | <0.001 | 91.49 | 0.325 | 0.413 |
MLC, g/kg | 10 (19) | 49.12 (1.99) | −0.054 (−0.359; 0.251) | 0.727 | <0.001 | 68.39 | 0.210 | 0.136 |
SCC, ×103 cell/mL | 7 (12) | 1.907 (0.709) | 0.208 (−0.102; 0.519) | 0.189 | <0.001 | 95.46 | 0.948 | 0.329 |
Item | N (NC) | Heterogeneity | Egger Test 1 | Begg Test 2 | ||||
---|---|---|---|---|---|---|---|---|
Control Means (SD) | WMD (95% CI) | p-Value | p-Value | I2 (%) | p-Value | p-Value | ||
Butyric (C4:0) | 7 (13) | 2.703 (1.545) | −0.025 (−0.047; −0.002) | 0.029 | 0.772 | 0.00 | 0.139 | 0.217 |
Caproic (C6:0) | 7 (14) | 2.454 (1.518) | −0.060 (−0.097; −0.023) | 0.002 | 0.063 | 43.09 | 0.209 | 0.749 |
Caprylic (C8:0) | 7 (14) | 1.224 (0.326) | −0.059 (−0.090; −0.029) | <0.001 | 0.086 | 36.25 | 0.636 | 0.855 |
Capric (C10:0) | 8 (15) | 2.846 (0.522) | −0.217 (−0.293; −0.140) | <0.001 | 0.061 | 39.95 | 0.367 | 0.588 |
Undecanoic (C11:0) | 5 (11) | 0.665 (0.166) | −0.183 (−0.228; −0.137) | <0.001 | <0.001 | 99.45 | 0.757 | 0.465 |
Lauric (C12:0) | 7 (14) | 3.537 (0.352) | −0.229 (−0.316; −0.142) | <0.001 | 0.077 | 44.45 | 0.270 | 0.966 |
Myristic (C14:0) | 8 (15) | 11.640 (0.910) | −0.135 (−0.279; 0.010) | 0.068 | 0.222 | 21.36 | 0.344 | 0.429 |
Myristoleic (C14:1) | 8 (15) | 1.189 (0.471) | 0.018 (−0.033; 0.069) | 0.494 | 0.088 | 42.77 | 0.489 | 0.478 |
Pentadecanoic (C15:0) | 7 (13) | 1.291 (0.470) | −0.038 (−0.056; −0.019) | <0.001 | 0.219 | 22.23 | 0.141 | 0.189 |
Palmitic (C16:0) | 8 (16) | 34.119 (3.957) | −0.728 (−1.276; −0.181) | 0.009 | 0.063 | 41.31 | 0.144 | 0.646 |
Palmitoleic (C16:1) | 5 (11) | 1.979 (0.538) | 0.031 (−0.084; 0.146) | 0.602 | 0.076 | 40.91 | 0.230 | 0.384 |
Heptadecanoic (C17:0) | 8 (16) | 0.601 (0.185) | −0.009 (−0.014; −0.003) | 0.002 | 0.312 | 12.33 | 0.610 | 0.615 |
Margoleic (C17:1) | 5 (10) | 0.439 (0.342) | 0.002 (−0.003; 0.007) | 0.501 | 0.128 | 34.95 | 0.313 | 0.117 |
Stearic (C18:0) | 8 (16) | 9.083 (2.046) | −2.026 (−2.911; −1.142) | <0.001 | <0.001 | 96.05 | 0.974 | 0.646 |
Oleic (C18:1 n-9 cis) | 7 (13) | 19.424 (2.830) | −0.725 (−1.461; 0.012) | 0.049 | <0.001 | 96.90 | 0.830 | 0.228 |
Linoleic (C18:2 n-6 cis) | 6 (10) | 2.057 (0.718) | 0.173 (0.107; 0.238) | <0.001 | 0.501 | 0.00 | 0.362 | 0.428 |
Conjugated linoleic (C18:2 cis-9, trans-11) | 8 (16) | 0.489 (0.244) | 0.503 (0.350; 0.657) | <0.001 | <0.001 | 95.92 | 0.099 | 0.128 |
α-linolenic (C18:3 n-3) | 9 (14) | 0.432 (0.201) | −0.005 (−0.030; 0.020) | 0.722 | 0.064 | 39.47 | 0.153 | 0.086 |
γ-linolenic (C18:3 n-6) | 4 (8) | 0.038 (0.019) | 0.028 (−0.020; 0.076) | 0.252 | <0.001 | 99.55 | 0.692 | 0.406 |
Arachidic (C20:0) | 7 (15) | 0.165 (0.042) | −0.018 (−0.031; −0.005) | 0.006 | <0.001 | 98.18 | 0.174 | 0.129 |
Eicosapentaenoic (C20:5 n-3) | 9 (16) | 0.061 (0.032) | 0.022 (0.010; 0.034) | <0.001 | <0.001 | 98.65 | 0.275 | 0.867 |
Behenic (C22:0) | 6 (12) | 0.079 (0.043) | 0.015 (0.003; 0.026) | 0.014 | <0.001 | 92.25 | 0.196 | 0.087 |
Docosahexaenoic (C22:6 n-3) | 19(16) | 0.042 (0.031) | 0.226 (0.187; 0.264) | <0.001 | <0.001 | 95.44 | 0.062 | 0.321 |
Total SFA | 11 (21) | 69.345 (4.216) | −2.419 (−3.225; −1.613) | <0.001 | <0.001 | 74.67 | 0.082 | 0.305 |
Total MUFA | 11 (21) | 24.452 (3.395) | 0.842 (0.260; 1.424) | 0.005 | <0.001 | 65.25 | 0.125 | 0.087 |
Total PUFA | 11 (21) | 6.490 (9.110) | 2.001 (1.412; 2.591) | <0.001 | <0.001 | 98.83 | 0.386 | 0.333 |
Total omega-3 (ω-3) | 8 (16) | 0.614 (0.274) | 0.183 (0.133; 0.233) | <0.001 | <0.001 | 97.47 | 0.173 | 0.478 |
Total omega 6 (ω-6) | 8 (16) | 3.123 (1.270) | 0.253 (0.074; 0.431) | 0.006 | <0.001 | 95.78 | 0.068 | 0.227 |
ω-6/ω-3 ratio | 6 (12) | 6.35 (4.42) | −0.611 (−0.820; −0.402) | <0.001 | <0.001 | 86.36 | 0.993 | 0.998 |
Parameter | Days in Milk | Supplementation Period | Microalgae Dose | Forage Level | |
---|---|---|---|---|---|
Dry matter intake (DMI) | QM | 0.778 | 0.150 | 0.085 | 12.656 |
df | 1 | 1 | 1 | 1 | |
p-Value | 0.378 | 0.699 | 0.770 | <0.001 | |
R2 (%) | 0.00 | 0.00 | 0.00 | 43.62 | |
Milk fat content (MFC) | QM | 0.220 | 0.221 | 2.996 | 0.444 |
df | 1 | 1 | 1 | 1 | |
p-Value | 0.136 | 0.638 | 0.083 | 0.505 | |
R2 (%) | 0.27 | 0.00 | 9.22 | 0.00 | |
Milk protein content (MPC) | QM | 0.497 | 0.069 | 0.372 | 2.240 |
df | 1 | 1 | 1 | 1 | |
p-Value | 0.481 | 0.792 | 0.542 | 0.134 | |
R2 (%) | 4.44 | 0.00 | 0.00 | 3.89 | |
Milk lactose content (MLC) | QM | 1.382 | 0.397 | 24.533 | 3.387 |
df | 1 | 1 | 1 | 1 | |
p-Value | 0.240 | 0.529 | <0.001 | 0.046 | |
R2 (%) | 0.00 | 1.02 | 68.72 | 12.39 | |
Total SFAs | QM | 0.054 | 2.349 | 3.425 | 0.880 |
df | 1 | 1 | 1 | 1 | |
p-Value | 0.816 | 0.125 | 0.044 | 0.127 | |
R2 (%) | 0.00 | 0.00 | 18.32 | 0.00 | |
Total MUFAs | QM | 1.620 | 1.303 | 0.292 | 2.546 |
df | 1 | 1 | 1 | 1 | |
p-Value | 0.203 | 0.254 | 0.589 | 0.111 | |
R2 (%) | 1.70 | 7.96 | 0.00 | 0.00 | |
Total PUFAs | QM | 0.684 | 0.079 | 3.020 | 1.352 |
df | 1 | 1 | 1 | 1 | |
p-Value | 0.408 | 0.779 | 0.082 | 0.301 | |
R2 (%) | 3.97 | 3.10 | 2.74 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orzuna-Orzuna, J.F.; Godina-Rodríguez, J.E.; Garay-Martínez, J.R.; Reséndiz-González, G.; Joaquín-Cancino, S.; Lara-Bueno, A. Milk Yield, Composition, and Fatty Acid Profile in Milk of Dairy Cows Supplemented with Microalgae Schizochytrium sp.: A Meta-Analysis. Agriculture 2024, 14, 1119. https://doi.org/10.3390/agriculture14071119
Orzuna-Orzuna JF, Godina-Rodríguez JE, Garay-Martínez JR, Reséndiz-González G, Joaquín-Cancino S, Lara-Bueno A. Milk Yield, Composition, and Fatty Acid Profile in Milk of Dairy Cows Supplemented with Microalgae Schizochytrium sp.: A Meta-Analysis. Agriculture. 2024; 14(7):1119. https://doi.org/10.3390/agriculture14071119
Chicago/Turabian StyleOrzuna-Orzuna, José Felipe, Juan Eduardo Godina-Rodríguez, Jonathan Raúl Garay-Martínez, Guillermo Reséndiz-González, Santiago Joaquín-Cancino, and Alejandro Lara-Bueno. 2024. "Milk Yield, Composition, and Fatty Acid Profile in Milk of Dairy Cows Supplemented with Microalgae Schizochytrium sp.: A Meta-Analysis" Agriculture 14, no. 7: 1119. https://doi.org/10.3390/agriculture14071119
APA StyleOrzuna-Orzuna, J. F., Godina-Rodríguez, J. E., Garay-Martínez, J. R., Reséndiz-González, G., Joaquín-Cancino, S., & Lara-Bueno, A. (2024). Milk Yield, Composition, and Fatty Acid Profile in Milk of Dairy Cows Supplemented with Microalgae Schizochytrium sp.: A Meta-Analysis. Agriculture, 14(7), 1119. https://doi.org/10.3390/agriculture14071119