Ammonia Emissions and Building-Related Mitigation Strategies in Dairy Barns: A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Investigation of Potential Factors Influencing Emissions, Examination of Concentrations within the Barn, and Estimation of Ammonia Dispersals
- temperature: higher temperatures observed in late spring and summer, accelerate the release of NH3 from manure, due to the increased volatilization rate of NH3 at higher temperatures;
- ventilation rate: during warmer periods there is generally a higher ventilation rate to maintain indoor climate conditions, which can enhance the release of NH3;
- animal activity: higher temperatures can lead to increased emissions due to increased urination frequency and animal movement, which can disturb manure and enhance NH3 release [26].
3.2. Mitigation Strategy Analysis
4. Discussion and Future Directions
5. Conclusions
- -
- NH3 emissions from livestock production are influenced by various factors, including livestock management, housing structures, facility maintenance, and environmental conditions. Studies have shown that factors such as ventilation, flooring type, and manure management strategies can have substantial effects on emission levels. Understanding these factors is essential for developing effective mitigation strategies. In detail, manure management is a fundamental element in reducing emissions by using practices such as acidification and solid-liquid separation. The introduction of innovative technologies, e.g., the use of artificial intelligence, has emerged as a potential driver of sustainability. In addition, recent advances in sensor technology for real-time monitoring and feedback systems offer promising ways to improve emissions management.
- -
- Methodological shortcomings depend on the diversity of estimation methods used in research studies, which poses a challenge to comparing results and drawing robust conclusions. The lack of standardised measurement methods contributes to variability and uncertainty in emission estimates. Moreover, shared databases, properly designed and maintained, are essential to guarantee the comparability of results across various studies. Efforts should also focus on developing standardised protocols and quality control measures to improve methodological consistency across research and development activities.
- -
- A significant gap in research geographical coverage was registered by this review, particularly in regions such as South America, Africa, Australia, North Asia, and the Pacific Islands. Studies in climatically extreme areas are particularly lacking, hindering a comprehensive understanding of NH3 emissions globally. A research perspective that covers different regions and climatic conditions is necessary to develop mitigation strategies adapted to specific local needs and climate variables.
- -
- Various mitigation strategies have been explored, including diet management, manure management practices, and animal behaviour control. However, research suggests that a combination of multiple strategies may be necessary to achieve significant emissions reductions. Moreover, while mitigation strategies can reduce emissions, their long-term sustainability and economic viability need further investigation. Sustainable water management, the environmental impact of acidification, and the economic feasibility of mitigation practices require careful evaluation. Integrating circular economy principles and life cycle assessment frameworks can provide a holistic approach to assessing the environmental and economic impacts of mitigation strategies.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gürlük, S.; Uzel, G.; Turan, O. Impacts of Cattle and Sheep Husbandry on Global Greenhouse Gas Emissions: A Time Series Analysis for Central European Countries. Pol. J. Environ. Stud. 2015, 24, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Donham, K.J.; Wing, S.; Osterberg, D.; Flora, J.L.; Hodne, C.; Thu, K.M.; Thorne, P.S. Community health and socioeconomic issues surrounding concentrated animal feeding operations. Environ. Health Perspect. 2007, 115, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.B.; Vengosh, A.; Darrah, T.H.; Warner, N.R.; Down, A.; Poreda, R.J.; Osborn, S.G.; Zhao, K.; Karr, J.D. Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction. Proc. Natl. Acad. Sci. USA 2011, 108, 8172–8176. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Feng, H.; Liu, Y.; Lai, C.-Y.; Zhuge, Y.; Zhang, Q.; Tang, C.; Di, H.; Jia, Z.; Gubry-Rangin, C.; et al. Grazing weakens competitive interactions between active methanotrophs and nitrifiers modulating greenhouse-gas emissions in grassland soils. ISME Commun. 2021, 1, 74. [Google Scholar] [CrossRef]
- D’Urso, P.R.; Arcidiacono, C.; Cascone, G. Analysis of the Horizontal Distribution of Sampling Points for Gas Concentrations Monitoring in an Open-Sided Dairy Barn. Animals 2022, 12, 3258. [Google Scholar] [CrossRef]
- Ferraz, P.F.P.; Ferraz, G.A.e.S.; Ferreira, J.C.; Aguiar, J.V.; Santana, L.S.; Norton, T. Assessment of Ammonia Emissions and Greenhouse Gases in Dairy Cattle Facilities: A Bibliometric Analysis. Animals 2024, 14, 1721. [Google Scholar] [CrossRef] [PubMed]
- Malherbe, L.; German, R.; Couvidat, F.; Zanatta, L.; Blannin, L.; James, A.; Lètinois, L.; Schucht, S.; Berthelot, B.; Raoult, J. Emissions of Ammonia and Methane from the Agricultural Sector. Emissions from Livestock Farming (Eionet Report—ETC HE 2022/21). European Topic Centre on Human Health and the Environment. 2022. Available online: https://www.eionet.europa.eu/etcs/all-etc-reports (accessed on 3 July 2024).
- Bougouin, A.; Leytem, A.; Dijkstra, J.; Dungan, R.S.; Kebreab, E. Nutritional and Environmental Effects on Ammonia Emissions from Dairy Cattle Housing: A Meta-Analysis. J. Environ. Qual. 2016, 45, 1123–1132. [Google Scholar] [CrossRef]
- Qu, Q.; Groot, J.C.J.; Zhang, K.; Schulte, R.P.O. Effects of housing system, measurement methods and environmental factors on estimating ammonia and methane emission rates in dairy barns: A meta-analysis. Biosyst. Eng. 2021, 205, 64–75. [Google Scholar] [CrossRef]
- Rzeźnik, W.; Mielcarek, P. Greenhouse Gases and Ammonia Emission Factors from Livestock Buildings for Pigs and Dairy Cows. Pol. J. Environ. Stud. 2016, 25, 1813–1821. [Google Scholar] [CrossRef]
- Sanchis, E.; Calvet, S.; Del Prado, A.; Estellés, F. A meta-analysis of environmental factor effects on ammonia emissions from dairy cattle houses. Biosyst. Eng. 2019, 178, 176–183. [Google Scholar] [CrossRef]
- Sommer, S.G.; Webb, J.; Hutchings, N.D. New Emission Factors for Calculation of Ammonia Volatilization From European Livestock Manure Management Systems. Front. Sustain. Food Syst. 2019, 3, 101. [Google Scholar] [CrossRef]
- Poteko, J.; Zähner, M.; Schrade, S. Effects of housing system, floor type and temperature on ammonia and methane emissions from dairy farming: A meta-analysis. Biosyst. Eng. 2019, 182, 16–28. [Google Scholar] [CrossRef]
- Tullo, E.; Finzi, A.; Guarino, M. Review: Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy. Sci. Total Environ. 2019, 650, 2751–2760. [Google Scholar] [CrossRef] [PubMed]
- Fangueiro, D.; Hjorth, M.; Gioelli, F. Acidification of animal slurry—A review. J. Environ. Manag. 2015, 149, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Velthof, G.L.; Oenema, O. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: A meta-analysis and integrated assessment. Glob. Change Biol. 2015, 2, 1293–1312. [Google Scholar] [CrossRef]
- Loyon, L.; Burton, C.H.; Misselbrook, T.; Webb, J.; Philippe, F.X.; Aguilar, M.; Doreau, M.; Hassouna, M.; Veldkamp, T.; Dourmad, J.Y.; et al. Best available technology for European livestock farms: Availability, effectiveness and uptake. J. Environ. Manag. 2016, 166, 1–11. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Sustainable Development Knowledge Platform. 2015. Available online: https://sdgs.un.org/sites/default/files/publications/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 6 March 2024).
- Maraolo, A.E. Una Bussola per le Revisioni Sistematiche: La Versione Italiana Della Nuova Edizione del PRISMA Statement. Medici Oggi. 2021. Available online: https://medicioggi.it/contributi-scientifici/una-bussola-per-le-revisioni-sistematiche-la-versione-italiana-della-nuova-edizione-del-prisma-statement/ (accessed on 13 December 2023).
- Baldini, C.; Borgonovo, F.; Gardoni, D.; Guarino, M. Comparison among NH3 and GHGs emissive patterns from different housing solutions of dairy farms. Atmos. Environ. 2016, 141, 60–66. [Google Scholar] [CrossRef]
- Mendes, L.B.; Pieters, J.G.; Snoek, D.; Ogink, N.W.M.; Brusselmane, E.; Demeyer, P. Reduction of ammonia emissions from dairy cattle cubicle houses via improved management- or design-based strategies: A modeling approach. Sci. Total Environ. 2017, 574, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Koloutsou-Vakakis, S.; Rood, M.J.; Luan, S. Projections of NH3 emissions from manure generated by livestock production in China to 2030 under six mitigation scenarios. Sci. Total Environ. 2017, 607–608, 78–86. [Google Scholar] [CrossRef]
- Zou, B.; Shi, Z.X.; Du, S.H. Gases emissions estimation and analysis by using carbon dioxide balance method in natural-ventilated dairy cow barns. Int. J. Agric. Biol. Eng. 2020, 13, 41–47. [Google Scholar] [CrossRef]
- Wang, X.; Ndegwa, P.M.; Joo, H.; Neerackal, G.M.; Harrison, J.H.; Stöckle, C.O.; Liu, H. Reliable low-cost devices for monitoring ammonia concentrations and emissions in naturally ventilated dairy barns. Environ. Pollut. 2016, 208, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Chai, L.; Kröbel, R.; Janzen, H.H.; Beauchemin, K.A.; Mcginn, S.M.; Bittman, S.; Atia, A.; Edeogu, I.; Macdonald, D.; Dong, R. A regional mass balance model based on total ammoniacal nitrogen for estimating ammonia emissions from beef cattle in Alberta Canada. Atmos. Environ. 2014, 92, 292–302. [Google Scholar] [CrossRef]
- Saha, C.K.; Ammon, C.; Berg, W.; Fiedler, M.; Loebsin, C.; Sanftleben, P.; Brunsch, R.; Amon, T. Seasonal and diel variations of ammonia and methane emissions from a naturally ventilated dairy building and the associated factors influencing emissions. Sci. Total Environ. 2014, 468–469, 53–62. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, G.; Kai, P. Ammonia and methane emissions from two naturally ventilated dairy cattle buildings and the influence of climatic factors on ammonia emissions. Atmos. Environ. 2012, 61, 232–243. [Google Scholar] [CrossRef]
- Gilhespy, S.L.; Webb, J.; Retter, A.; Chadwick, D. Dependence of Ammonia Emissions from Housing on the Time Cattle Spent Inside. J. Environ. Qual. 2006, 35, 1659–1667. [Google Scholar] [CrossRef] [PubMed]
- Maasikmets, M.; Teinemaa, E.; Kaasik, A.; Kimmel, V. Measurement and analysis of ammonia, hydrogen sulphide and odour emissions from the cattle farming in Estonia. Biosyst. Eng. 2015, 139, 48–59. [Google Scholar] [CrossRef]
- Zhang, G.; Strøm, J.S.; Li, B.; Rom, H.B.; Morsing, S.; Dahl, P.; Wang, C. Emission of Ammonia and Other Contaminant Gases from Naturally Ventilated Dairy Cattle Buildings. Biosyst. Eng. 2005, 92, 355–364. [Google Scholar] [CrossRef]
- Tabase, R.K.; Næss, G.; Larring, Y. Ammonia and methane emissions from small herd cattle buildings in a cold climate. Sci. Total Environ. 2023, 903, 166046. [Google Scholar] [CrossRef] [PubMed]
- Hempel, S.; Saha, C.K.; Fiedler, M.; Berg, W.; Hansen, C.; Amon, B.; Amon, T. Non-linear temperature dependency of ammonia and methane emissions from a naturally ventilated dairy barn. Biosyst. Eng. 2016, 145, 10–21. [Google Scholar] [CrossRef]
- Ngwabie, N.M.; Jeppsson, K.-H.; Gustafsson, G.; Nimmermark, S. Effects of animal activity and air temperature on methane and ammonia emissions from a naturally ventilated building for dairy cows. Atmos. Environ. 2011, 45, 6760–6768. [Google Scholar] [CrossRef]
- Rzeźnik, W.; Mielcarek, P.; Rzeźnik, I. Pilot Study of Greenhouse Gases and Ammonia Emissions from Naturally Ventilated Barns for Dairy Cows. Pol. J. Environ. Stud. 2016, 25, 2553–2562. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.; Misselbrook, T.H.; Chadwick, D.R.; Coutinho, J.; Trindade, H. Ammonia emissions from naturally ventilated dairy cattle buildings and outdoor concrete yards in Portugal. Atmos. Environ. 2010, 44, 3413–3421. [Google Scholar] [CrossRef]
- Hassouna, M.; Van Der Weerden, T.J.; Beltran, I.; Amon, B.; Alfaro, M.A.; Anestis, V.; Cinar, G.; Dragoni, F.; Hutch-ings, N.J.; Leytem, A.; et al. DATA-MAN: A global database of methane, nitrous oxide, and ammonia emission factors for livestock housing and outdoor storage of manure. J. Environ. Qual. 2022, 52, 207–223. [Google Scholar] [CrossRef] [PubMed]
- DATAMAN. A Database of Greenhouse Gas Emissions from Manure Management. Available online: https://www.dataman.co.nz/ (accessed on 3 July 2024).
- Çinar, G.; Dragoni, F.; Ammon, C.; Belik, V.; van der Weerden, T.J.; Noble, A.; Hassouna, M.; Amon, B. Effects of environmental and housing system factors on ammonia and greenhouse gas emissions from cattle barns: A meta-analysis of a global data collation. Waste Manag. 2023, 172, 60–70. [Google Scholar] [CrossRef]
- D’Urso, P.R.; Arcidiacono, C. Effect of the Milking Frequency on the Concentrations of Ammonia and Greenhouse Gases within an Open Dairy Barn in Hot Climate Conditions. Sustainability 2021, 13, 9235. [Google Scholar] [CrossRef]
- Yang, F.; Han, Y.; Bi, H.; Wei, X.; Luo, W.; Li, G. Ammonia emissions and their key influencing factors from naturally ventilated dairy farms. Chemosphere 2022, 307, 135747. [Google Scholar] [CrossRef]
- Monteny, G.J.; Erisman, J.W. Ammonia emission from dairy cow buildings: A review of measurement techniques, influencing factors and possibilities for reduction. Neth. J. Agric. Sci. 1998, 46, 225–247. [Google Scholar] [CrossRef]
- D’Urso, P.R.; Arcidiacono, C.; Valenti, F.; Janke, D.; Cascone, G. Measuring ammonia concentrations by an infrared photo-acoustic multi-gas analyser in an open dairy barn: Repetitions planning strategy. Comput. Electron. Agric. 2023, 204, 107509. [Google Scholar] [CrossRef]
- D’Urso, P.R.; Arcidiacono, C.; Valenti, F.; Cascone, G. Assessing Influence Factors on Daily Ammonia and Greenhouse Gas Concentrations from an Open-Sided Cubicle Barn in Hot Mediterranean Climate. Animals 2021, 11, 1400. [Google Scholar] [CrossRef]
- D’Urso, P.R.; Arcidiacono, C.; Cascone, G. Environmental and Animal-Related Parameters and the Emissions of Ammonia and Methane from an Open-Sided Free-Stall Barn in Hot Mediterranean Climate: A Preliminary Study. Agronomy 2021, 11, 1772. [Google Scholar] [CrossRef]
- Rong, L.; Liu, D.; Pedersen, E.F.; Zhang, G. Effect of climate parameters on air exchange rate and ammonia and methane emissions from a hybrid ventilated dairy cow building. Energy Build. 2014, 82, 632–643. [Google Scholar] [CrossRef]
- Reyer, H.; Honerlagen, H.; Oster, M.; Ponsuksili, S.; Kuhla, B.; Wimmers, K. Multi-tissue gene expression profiling of cows with a genetic predisposition for low and high milk urea levels. Anim. Biotechnol. 2024, 35, 2322542. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; Hanigan, M.; Cole, A.; Todd, R.; McAllister, T.A.; Ndegwa, P.M.; Rotz, A. Review: Ammonia emissions from dairy farms and beef feedlots. Can. J. Anim. Sci. 2011, 91, 1–35. [Google Scholar] [CrossRef]
- Balcells, J.; Fuertes, E.; Seradj, A.R.; Maynegre, J.; Villalba, D.; de la Fuente, G. Study of nitrogen fluxes across conventional solid floor cubicle and compost-bedded pack housing systems in dairy cattle barns located in the Mediterranean area: Effects of seasonal variation. J. Dairy Sci. 2020, 103, 10882–10897. [Google Scholar] [CrossRef] [PubMed]
- Calvet, S.; Gates, R.S.; Zhang, G.; Estelles, F.; Ogink, N.W.M.; Pedersen, S.; Berckmans, D. Measuring gas emissions from livestock buildings: A review on uncertainty analysis and error sources. Biosyst. Eng. 2013, 116, 221–231. [Google Scholar] [CrossRef]
- Aneja, V.P.; Blunden, J.; James, K.; Schlesinger, W.H.; Knighton, R.; Gilliam, W.; Jennings, G.; Niyogi, D.; Cole, S. Ammonia Assessment from Agriculture: U.S. Status and Needs. J. Environ. Qual. 2008, 37, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Snoek, D.J.W.; Stigter, J.D.; Blaauw, S.K.; Groot Koerkamp, P.W.G.; Ogink, N.W.M. Assessing fresh urine puddle physics in commercial dairy cow houses. Biosyst. Eng. 2017, 159, 133–142. [Google Scholar] [CrossRef]
- Bobrowski, A.B.; Willink, D.; Janke, D.; Amon, T.; Hagenkamp-Korth, F.; Hasler, M.; Hartung, E. Reduction of ammonia emissions by applying a urease inhibitor in naturally ventilated dairy barns. Biosyst. Eng. 2021, 204, 104–114. [Google Scholar] [CrossRef]
- Bobrowski, A.B.; van Dooren, H.J.; Ogink, N.; Hagenkamp-Korth, F.; Hasler, M.; Hartung, E. Reduction of ammonia emissions by using a urease inhibitor in a mechanically ventilated dairy housing system. Biosyst. Eng. 2021, 204, 115–129. [Google Scholar] [CrossRef]
- Chiumenti, A.; Da Borso, F.; Pezzuolo, A.; Sartori, L.; Chiumenti, R. Ammonia and greenhouse gas emissions from slatted dairy barn floors cleaned by robotic scrapers. Res. Agric. Eng. 2018, 64, 26–33. [Google Scholar] [CrossRef]
- VERA. Vera Test Protocol: For Livestock Housing and Management Systems; International VERA Secretariat: Delft, The Netherlands, 2018. [Google Scholar]
- Aguerre, M.J.; Wattiaux, M.A.; Powell, J.M.; Broderick, G.A.; Arndt, C. Effect of forage-to-concentrate ratio in dairy cow diets on emission of methane, carbon dioxide, and ammonia, lactation performance, and manure excretion. J. Dairy Sci. 2011, 94, 3081–3093. [Google Scholar] [CrossRef] [PubMed]
- Becciolini, V.; Leso, L.; Fuertes Gimeno, E.; Rossi, G.; Barbari, M.; Dalla Marta, A.; Orlandini, S.; Verdi, L. Nitrogen loss abatement from dairy cow excreta through urine and faeces separation: The effect of temperature and exposure period on NH3 fluxes. Agric. Syst. 2024, 216, 103898. [Google Scholar] [CrossRef]
- Bluteau, C.V.; Masse, D.I.; Leduc, R. Ammonia emission rates from dairy livestock buildings in eastern Canada. Biosyst. Eng. 2009, 103, 480–488. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubMed Central (PMC). Available online: https://www.ncbi.nlm.nih.gov/pmc/ (accessed on 4 July 2024).
- Gavran, M.; Spajić, R.; Jožef, I.; Poljak, F.; Šinka, D.; Gantner, V. The variation in ammonia emission from dairy cattle farms due to the effect of breeding region. Rad. Poljopr.-Prehrambenog Fak. Univ. U Sara-Jevu 2021, 66, 43–50. [Google Scholar]
- Janke, D.; Willink, D.; Ammon, C.; Hempel, S.; Schrade, S.; Demeyer, P.; Hartung, E.; Amon, B.; Ogink, N.; Amon, T. Calculation of ventilation rates and ammonia emissions: Comparison of sampling strategies for a naturally ventilated dairy barn. Biosyst. Eng. 2020, 198, 15–30. [Google Scholar] [CrossRef]
- Brian, H.; Latacz-Lohmann, U.; Luesink, H.; Michels, R.; Ståhl, L. Costs of regulating ammonia emissions from livestock farms near Natura 2000 areas—Analyses of case farms from Germany, Netherlands and Denmark. J. Environ. Manag. 2019, 246, 897–908. [Google Scholar] [CrossRef]
- Arcidiacono, C.; Da Borso, F.; Chiumenti, A. Allevamento Animale e Sostenibilità Ambientale. Vol 1. I Principi; Stefanon, B., Mele, M., Pulina, G., Eds.; Franco Angeli Editore: Roma, Italy, 2018; ISBN 8891761834. [Google Scholar]
- Charoenkit, S.; Yiemwattana, S. Living walls and their contribution to improved thermal comfort and carbon emission reducion: A review. Build. Environ. 2016, 105, 82–94. [Google Scholar] [CrossRef]
- Ajami, A.; Shah, S.B.; Stikeleather, L.F. Windbreak Wall-vegetative Strip System to Reduce Air Emissions from Mechanically-Ventilated Livestock Barns—Part 1: CFD Modeling. Water Air Soil Pollut. 2019, 230, 291. [Google Scholar] [CrossRef]
- Cervelli, E.; di Perta, E.S.; Mautone, A.; Pindozzi, S. The landscape approach as support to the livestock manure management. The buffalo herds case-study in Sele plain, Campania region. In Proceedings of the 2021 IEEE International Workshop on Me-trology for Agriculture and Forestry (MetroAgriFor), Trento-Bolzano, Italy, 3–5 November 2021; pp. 151–156. [Google Scholar] [CrossRef]
References | Farm Type | Range of NH3 Emissions in g AU−1 d−1 |
---|---|---|
(‘AU’ Refers to the Animal Unit Equalling 500 kg Body Mass; and ‘d‘ Refers to the Day) | ||
Zhang et al. (2005) [30] | Natural ventilation: | |
scraped solid floor | 8.2–69.0 * | |
scraped slatted floor | 2.7–24.5 * | |
flushed slatted floor | 10.9–61.7 * | |
Sanchis et al. (2019) [11] | Natural ventilation: | |
scraped solid floor | 2.02–111.3 ** | |
flushed solid floor | 11.1–138.9 ** | |
scraped slatted floor | 25.6–102.5 ** | |
Mechanical ventilation: | ||
scraped slatted floor | 15.0–18.0 ** | |
Qu et al. (2021) [9] | Ventilation: unspecified | |
Flooring and manure handling: | ||
scraped solid | 3.6–106 | |
scraped slatted | 23.8–27.1 | |
flushed solid | 8.7–109.4 | |
flushed slatted | 18.4–38.4 | |
Wu et al. (2012) [27] | ventilation: natural | 22.5–96.3 * |
flooring: slatted | ||
manure handling: scraped | ||
Tabase et al. (2023) [31] | Natural ventilation: | |
Scraped slatted | 23.52–38.64 † | |
Mechanical ventilation: | ||
Scraped slatted | 163.2–463.2 † | |
Wang et al. (2016) [24] | ventilation: natural | 15.4–22.8 |
flooring: | ||
unspecified | ||
manure handling: flushed | ||
Zou et al. (2020) [23] | ventilation: natural | 24.0–56.6 † |
flooring: | ||
unspecified | ||
manure handling: scraped | ||
Saha et al. (2014) [26] | ventilation: natural | 5.5–106.1 † |
flooring: solid | ||
manure handling: scraped | ||
Hempel et al. (2016) [32] | ventilation: natural | 0.0–96.0 † |
flooring: unspecified | ||
manure handling: unspecified | ||
Ngwabie et al. (2011) [33] | ventilation: natural | 9.6–36.0 † |
flooring: solid | ||
manure handling: scraped | ||
Maasikmets et al. (2015) [29] | ventilation: natural | tie housing cow building: 6.4 ± 0.47 ‡ loose housing cow barn: 7.8 ± 4.01 ‡ |
flooring: solid | ||
manure handling: removed by tractor | ||
Bougouin et al. (2016) [8] | Natural ventilation: | |
Scraped solid | 9.1–108.4 ** | |
Scraped slatted | 18.5–128.1 ** | |
Flushed solid | 41.3–131.0 ** | |
Flushed slatted | 29.8 ** | |
Mechanical ventilation: | ||
Scraped solid | 8.0 ** | |
Gilhespy et al. (2006) [28] | ventilation: natural | 8.1–24.1 †† |
flooring: solid | ||
manure handling: scraped | ||
Rzeźnik et al. (2016) [34] | ventilation: natural | |
flooring: slatted | ||
Manure handling: | ||
stored under a slatted floor | 12.5–17.5 † | |
scraped | 12.2–24.0 † | |
removed by tractor | 6.0–22.0 † | |
Pereira et al. (2010) [35] | ventilation: natural | |
Flooring and manure handling: | ||
Scraped solid | 65.8 †† | |
Flushed slatted | 29.9–35.3 †† | |
Rzeźnik and Mielcarek (2016) [10] | ventilation: unspecified | 26.7 †† |
flooring: | ||
Scraped solid | 0.1–1.7 †† | |
Scraped slatted | ||
Hassouna et al. a (2022) [36] | Natural ventilation: | |
Flooring: | ||
Slatted floor | 3.36–89.2 | |
Solid floor | 1.72–99.7 | |
Mechanical ventilation: | ||
Flooring: | ||
Slatted floor | 0.04–98.8 | |
Solid floor | 0.05–59.3 | |
Manure handling: unspecified | ||
* This article contains the description of a global database that indicates NH3 emission values expressed as % of the total number of values for each gas analysed. The reported ranges have been derived from the ‘DATAMAN’ database [37] accessed at https://www.dataman.co.nz/DataManHousings (accessed on 10 May 2024) | ||
Çinar et al. (2023) [38] | Ventilation, flooring and manure handling: unspecified * | 0.0–146.7 |
* This article states that NH3 emissions differ between types of housing, but not between types of flooring. | ||
Poteko et al. (2019) [13] | ventilation: unspecified | |
flooring: | ||
solid | 1.1–191.2 †† | |
slatted | 4.0–85.0 †† | |
manure handling: unspecified | ||
Sommer et al. (2019) [12] | Ventilation and manure handling: | |
unspecified | ||
flooring: | ||
solid | 12.8–55.4 †† | |
slatted | 0.8–88.0 †† |
References | Farm Type | Mitigation Strategies | % Reduction |
---|---|---|---|
Mendes et al. (2017) [21] | ventilation: natural flooring: solid manure handling: scraped and flushed | manure acidification | 27% |
floor scraping | 17–22% | ||
floor scraping and washing | 20–27% | ||
floor design | - | ||
Fangueiro et al. (2015) [15] | ventilation: not available flooring: not available manure handling: not available | manure acidification | 37% |
Hou et al. (2015) [16] | ventilation: natural flooring: solid; slatted and deep litter manure handling: crusting; straw cover; artificial film and acidification | reduction of the protein content of the animal diet | 24–65% |
external slurry storage via acidification | 83% | ||
cover stored manure with straw or artificial film | 78–98% | ||
Baldini et al. (2016) [20] | ventilation: natural flooring: solid; rubber matted and slatted manure handling: scraped and flushed | Feeding alley: | |
Flushing system | 80% | ||
(percentage of reduction compared to the worst condition: scraper on a concrete floor) | |||
Resting area: | 20% | ||
Rubber mat-bedded cubicles | |||
(percentage of reduction compared to the worst condition: Straw-bedded cubicles) | |||
Snoek et al. (2017) [51] | ventilation: unspecified; flooring: solid and slatted manure handling: scraped and manually cleaned | floor design | - |
use of scrapers | 50–70% | ||
Xu et al. (2017) [22] | ventilation: unspecified; flooring: unspecified; manure handling: unspecified | low nitrogen food (LNF) | |
manure management | 18.9–37.3% | ||
Tullo et al. (2019) [14] | ventilation: natural and mechanical; flooring: unspecified; manure handling: unspecified | Precision Livestock Farming (PLF) | 27–41% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitaliano, S.; D’Urso, P.R.; Arcidiacono, C.; Cascone, G. Ammonia Emissions and Building-Related Mitigation Strategies in Dairy Barns: A Review. Agriculture 2024, 14, 1148. https://doi.org/10.3390/agriculture14071148
Vitaliano S, D’Urso PR, Arcidiacono C, Cascone G. Ammonia Emissions and Building-Related Mitigation Strategies in Dairy Barns: A Review. Agriculture. 2024; 14(7):1148. https://doi.org/10.3390/agriculture14071148
Chicago/Turabian StyleVitaliano, Serena, Provvidenza Rita D’Urso, Claudia Arcidiacono, and Giovanni Cascone. 2024. "Ammonia Emissions and Building-Related Mitigation Strategies in Dairy Barns: A Review" Agriculture 14, no. 7: 1148. https://doi.org/10.3390/agriculture14071148
APA StyleVitaliano, S., D’Urso, P. R., Arcidiacono, C., & Cascone, G. (2024). Ammonia Emissions and Building-Related Mitigation Strategies in Dairy Barns: A Review. Agriculture, 14(7), 1148. https://doi.org/10.3390/agriculture14071148