Assessment of Spatiotemporal Distribution of Herbicides in European Agricultural Land Using Agri-Environmental Indices
Abstract
:1. Introduction
2. Data Analysis and Methods
2.1. Study Area
2.2. Data Collection
- (i)
- Based on land use, agricultural land (AL) can be divided into three (3) categories as follows (see list of abbreviations):
- (ii)
- Based on farming systems, AL (agricultural land) can be divided into 2 categories as follows (see list of abbreviations):
- (iii)
- Based on land cover of cropland (cropL) where it is also the main recipient of herbicides due to their intensive use, it was divided into eight (8) categories (land cover groups or crop groups) as follows (see list of abbreviations):In the calculation, the ratios of each crop group (ha) to the total cropland (ha) were used, forming the crop group index (IG) for each category (IGcl, IGDp, IGRc, IGIc, IGPg, IGFv, IGPc, IGOther).
- (iv)
- Based on farm size (FS) of cropland can be divided into 8 categories (Figure 1) as follows (see list of abbreviations):
- (v)
- Based on herbicide chemical families (HCFs), the active substances (a.s.) with different modes of action and herbicidal activity where they are widely used in agricultural land (AL) can be divided into 10 categories (Figure 1). Total herbicide use (in kg of a.s.) is the sum of the quantities of each HCF class (kg of a.s.) and can be described as follows (see list of abbreviations):
- (vi)
- An attempt was made to create a comparative indicator of herbicide use in the EU conventional agricultural land (convAL), using the following equation:
2.3. Statistical Analysis
3. Results
3.1. Spatiotemporal Distribution of the Herbicide Index (HI) in the Agricultural Sector of the European Union
3.2. Assessment of Selected Agri-Environmental Indices
3.3. Assessment of the Herbicides Use in the 27 EU Member States
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AL | Agricultural land area (ha) | FS4 | From 10 to 19.9 ha (n4) |
(i) | Agricultural land use abbreviations | IFS4 | Index of farm size group4 (FS4/cropL) |
arL | arable land (ha) | FS5 | From 20 to 29.9 ha (n5) |
pcL | land under permanent crops (ha) | IFS5 | Index of farm size group5 (FS5/cropL) |
pmL | pastureland in ha | FS6 | From 30 to 49.9 ha (n6) |
cropL | cropland (cropL = arL + pcL) in ha | IFS6 | Index of farm size group6 (FS6/cropL) |
IcropL | cropland index (cropL/AL) | FS7 | From 50 to 99.9 ha (n7) |
IpmL | pastureland index (mpL/AL) | IFS7 | Index of farm size group7 (FS7/cropL) |
(ii) | Farming systems abbreviations | FS8 | 100 ha or over (n8) |
convAL | conventional AL (AL–OrgAL) in ha | IFS8 | Index of farm size group8 (FS8/cropL) |
orgAL | organic AL (area) in ha | (v) | Herbicide chemical families abbreviations |
IconvAL | convAL index (convAL/AL) | a.s. | Active substance |
IorgAL | orgAL index (orgAL/AL) | HI | Herbicide index (a.s. in kg per ha conAL) |
(iii) | Land cover abbreviations | HCF | Herbicide chemical family (a.s. in kg) |
CG | Crops groups in cropL (n = 8) | HCFtotal | kg a.s. of all herbicides used in study area |
IG | crop group index (CG/cropL) | IHCF | HCF index (HCF/HCFtotal) |
GPc | Permanent crops in ha (n1) | Hphy | phenoxy hormone products—HCF |
IGPc | Pc crop group index (Pc/cropL) | IHphy | phy herbicide index (Hphy/HCFtotal) |
GCl | Cereals for the production of grain. (n2) | Htrz | triazines—HCF (a.s. in kg) |
IGCl | Cl crop group index (Cl/cropL) | IHtrz | trz herbicide index (trz/HCFtotal) |
GDp | Dry pulses and protein crops. (n3) | Hamd | amides—HCF |
IGDp | Dp crop group index (Dp/cropL) | IHamd | amd herbicide index (amd/HCFtotal) |
GRc | Root crops in ha (n4) | Hcarb | carbamates—HCF |
IGRc | Rc crop group index (Rc/cropL) | IHcarb | carbametes herb. index (carb/HCFtotal) |
GIc | Industrial crops in ha (n5) | Hdin | dinitroanilines—HCF |
IGIc | Ic crop group index (Ic/cropL) | IHdin | dinitroaniline herb. index (din/HCFtotal) |
GPg | Plants harvested green from arable. (n6) | Hurc | uracil—HCF |
IGPg | Pg crop group index (Pg/cropL) | IHurc | uracil herbicide index (urc/HCFtotal) |
GFv | Fresh vegetables and strawberries (n7) | Hsulf | sulfonyl ureas—HCF |
IGFv | Fv crop group index (Fv/cropL) | IHsulf | sulfonyl ureas herb. index (sulf/HCFtotal) |
GOther | Other cropland in ha (n8) | Hurea | ureas—HCF |
IGOther | Other cr. group index (Other/cropL) | IHurea | ureas herb. index (urea/HCFtotal) |
(iv) | Farm size abbreviations | Hbpd | bipiridils—HCF |
FS | Farm size group in cropL (n = 8) | IHbpd | bipiridils her. index (bpd/HCFtotal) |
FS1 | Less than 2 ha (n1) | Hother | other herbicides—HCF |
IFS1 | Index of farm size group1 (FS1/cropL) | IHother | other herbicides index (other/HCFtotal) |
FS2 | From 2 to 4.9 ha (n2) | (vi) | Other abbreviations |
IFS2 | Index of farm size group2 (FS2/cropL) | EU27 | European Union of 27 Member States |
FS3 | From 5 to 9.9 ha (n3) | LDA | Linear discriminant analysis |
IFS3 | Index of farm size group3 (FS3/cropL) |
References
- Zimdahl, R.L. Chapter 12—Properties and uses of herbicides. In Fundamentals of Week Science; Zimdahl, R.L., Ed.; Academic Press: Cambridge, MA, USA, 1993; pp. 225–269. [Google Scholar]
- Triantafyllidis, V.; Mavroeidis, A.; Kosma, C.; Karabagias, I.K.; Zotos, A.; Kehayias, G.; Beslemes, D.; Roussis, I.; Bilalis, D.; Economou, G.; et al. Herbicide use in the era of farm to fork: Strengths, weaknesses, and future implications. Water Air Soil Pollut. 2023, 234, 94. [Google Scholar] [CrossRef] [PubMed]
- Müller-Schärer, H.; Collins, A.R. Integrated Weed Management. In Encyclopedia of Environmental Management; Jorgensen, S.E., Ed.; Taylor and Francis: New York, NY, USA, 2012. [Google Scholar]
- FAOSTAT, 2024. Domain: Land Use, Element: Area, Area: Separately each of 27 Member States of EU, Item Codes: 6610, 6620, 6621, 6650, 6655. Available online: https://www.fao.org/faostat/en/#data/RL (accessed on 7 November 2023).
- FAOSTAT, 2024. Domain: Pesticides Use, Element: Agricultural Use, Area: Separately each of 27 Member States of EU, Item Codes: 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330. Available online: https://www.fao.org/faostat/en/#data/RP (accessed on 10 November 2023).
- Antier, C.; Kudsk, P.; Reboud, X.; Ulber, L.; Baret, P.V.; Messéan, A. Glyphosate use in the European agricultural sector and a framework for its further monitoring. Sustainability 2020, 12, 5682. [Google Scholar] [CrossRef]
- Powles, S.B. Evolved glyphosate-resistant weeds around the world: Lessons to be learnt. Pest Manag. 2008, 64, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Steinmann, H.H.; Dickeduisberg, M.; Theuvsen, L. Uses and benefits of glyphosate in German arable farming. Crop Prot. 2012, 42, 164–169. [Google Scholar] [CrossRef]
- Triantafyllidis, V.; Kosma, C.; Karabagias, I.K.; Zotos, A.; Pittaras, A.; Kehayias, G. Fungicides in Europe during the Twenty-first Century: A Comparative Assessment Using Agri-environmental Indices of EU27. Water Air Soil Pollut. 2022, 233, 52. [Google Scholar] [CrossRef]
- Thomas, M.R. Guidelines for the Collection of Pesticide Usage Statistics within Agriculture and Horticulture; Organisation for Economic Cooperation and Development (OECD): Paris, France, 1999; p. 40. [Google Scholar]
- Atwood, D.; Paisley-Jones, C. Pesticides Industry Sales and Usage 2008–2012 Market Estimates; Environmental Protection Agency, Biological and Economic Analysis Division: Washington, DC, USA, 2017. Available online: www.epa.gov/sites/production/files/2017-01/documents/pesticides-industry-salesusage-2016_0.pdf (accessed on 10 November 2023).
- Devault, D.A.; Pascaline, H. Efficiency of pesticide alternatives in non-agricultural areas. In Pesticides—Toxic Aspects; Soloneski, S., Ed.; InTech: Houston, TX, USA, 2014; Available online: https://www.intechopen.com/chapters/45980 (accessed on 15 January 2024).
- Hanke, I.; Wittmer, I.; Bischofberger, S.; Stamm, C.; Singer, H. Relevance of urban glyphosate use for surface water quality. Chemosphere 2010, 81, 422–429. [Google Scholar] [CrossRef]
- Woodburn, A.T. Glyphosate: Production, pricing and use worldwide. Pest Manag. Sci. 2000, 56, 309–312. [Google Scholar] [CrossRef]
- Kristoffersen, P.; Rask, A.M.; Grundy, A.C.; Franzen, I.; Kempenaar, C.; Raisio, J.; Schroeder, H.; Spijker, J.; Verschwele, A.; Zarina, L. A review of pesticide policies and regulations for urban amenity areas in seven European countries. Weed Res. 2008, 48, 201–214. [Google Scholar] [CrossRef]
- Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 3. [Google Scholar] [CrossRef]
- Intergovernmental Oceanographic Commission. Ocean Data Standards Volume 1. Recommendation to Adopt ISO 3166-1 and 3166-3 Country Codes as the Standard for Identifying Countries in Oceanographic Data Exchange. Version 1.1. Available online: https://repository.oceanbestpractices.org/handle/11329/287 (accessed on 3 April 2024).
- Ritchie, H.; Roser, M. Half of the World’s Habitable Land is Used for Agriculture. Published Online at OurWorldInData.Org. 2019. Available online: https://ourworldindata.org/global-land-for-agriculture (accessed on 16 March 2024).
- Field, A. Discovering Statistics Using SPSS, 3rd ed.; Sage Publications Ltd.: London, UK, 2009. [Google Scholar]
- Büyüköztürk, Ş.; Çokluk-Bökeoğlu, Ö. Discriminant function analysis: Concept and application. Egit. Arastirmalari-Eurasian J. Educ. Res. 2008, 33, 73–92. [Google Scholar]
- Stoate, C.; Boatman, N.D.; Borralho, R.J.; Carvalho, C.R.; De Snoo, G.R.; Eden, P. Ecological impacts of arable intensification in Europe. J. Environ. Manag. 2001, 63, 337–365. [Google Scholar] [CrossRef] [PubMed]
- Eurostat, 2024. Online Data Code: APRO_CPSH “Crop Production in EU Standard Humidity”, Online Data Dataset: Pesticide Sales. Available online: https://ec.europa.eu/eurostat/databrowser/view/aei_fm_salpest09/ (accessed on 10 January 2024).
- FiBL, 2024. Area Data on Organic Agriculture in Europe 2000–2021. The Statistics.FiBL.Org Website Maintained by the Research Institute of Organic Agriculture (FiBL), Frick, Switzerland. Available online: https://statistics.fibl.org/europe/key-indicators-europe.html (accessed on 5 January 2024).
- Liebman, M.; Baraibar, B.; Buckley, Y.; Childs, D.; Christensen, S.; Cousens, R.; Eizenberg, H.; Heijting, S.; Loddo, D.; Merotto, A.; et al. Ecologically sustainable weed management: How do we get from proof-of-concept to adoption? Ecol. Appl. 2016, 26, 1352–1369. [Google Scholar] [CrossRef]
- Kudsk, P. Optimising herbicide dose: A straightforward approach to reduce the risk of side effects of herbicides. Environ. Syst. Decis. 2008, 28, 49–55. [Google Scholar] [CrossRef]
- Storkey, J.; Meyer, S.; Still, K.S.; Leuschner, C. The impact of agricultural intensification and land-use change on the European arable flora. Proc. R. Soc. B Biol. Sci. 2012, 279, 1421–1429. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllidis, V.; Manos, S.; Hela, D.; Manos, G.; Konstantinou, I. Persistence of trifluralin in soil of oilseed rape fields in Western Greece. Int. J. Environ. Anal. Chem. 2010, 90, 344–356. [Google Scholar] [CrossRef]
- Triantafyllidis, V.; Hela, D.; Papadaki, M.; Bilalis, D.; Konstantinou, I. Evaluation of mobility and dissipation of mefenoxam and pendimethalin by application of CSTR model and field experiments using bare and tobacco tilled soil columns. Water Air Soil Pollut. 2012, 223, 1625–1637. [Google Scholar] [CrossRef]
- Sims, B.; Corsi, S.; Gbehounou, G.; Kienzle, J.; Taguchi, M.; Friedrich, T. Sustainable weed management for conservation agriculture: Options for smallholder farmers. Agriculture 2018, 8, 118. [Google Scholar] [CrossRef]
- Harker, K.N.; O’Donovan, J.T. Recent weed control, weed management, and integrated weed management. Weed Technol. 2013, 27, 1–11. [Google Scholar] [CrossRef]
- Bengtsson, J.; Ahnström, J.; Weibull, A.C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis. J. Appl. Ecol. 2005, 42, 261–269. [Google Scholar] [CrossRef]
- Berendse, F.; Chamberlain, D.; Kleijn, D.; Schekkerman, H. Declining biodiversity in agricultural landscapes and the effectiveness of agri-environment schemes. Ambio 2004, 33, 499–502. [Google Scholar] [CrossRef]
- Kleijn, D.; Berendse, F.; Smit, R.; Gilissen, N. Agri-environment schemes do not effectively protect biodiversity in Dutch agricultural landscapes. Nature 2001, 413, 723–725. [Google Scholar] [CrossRef]
- Geiger, F.; Bengtsson, J.; Berendse, F.; Weisser, W.W.; Emmerson, M.; Morales, M.B.; Ceryngier, P.; Liira, J.; Tscharntke, T.; Winqvist, C.; et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 2010, 11, 97–105. [Google Scholar] [CrossRef]
- Ali, M.P.; Kabir, M.M.; Haque, S.S.; Qin, X.; Nasrin, S.; Landis, D.; Holmquist, B.; Ahmed, N. Farmer’s behavior in pesticide use: Insights study from smallholder and intensive agricultural farms in Bangladesh. Sci. Total Environ. 2020, 747, 141160. [Google Scholar] [CrossRef] [PubMed]
- Baessler, C.; Klotz, S. Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agric. Ecosyst. Environ. 2006, 115, 43–50. [Google Scholar] [CrossRef]
- Berkhout, P.; van Bruchem, C. Agricultural Economic Report 2009 of the Netherlands: Summary; No. 2009-066; LEI WUR: The Hague, The Netherlands, 2009. [Google Scholar]
- Bonanno, A.; Materia, V.C.; Venus, T.; Wesseler, J. The plant protection products (PPP) sector in the European Union: A special view on herbicides. Eur. J. Dev. Res. 2017, 29, 575–595. [Google Scholar] [CrossRef]
- Boström, U.; Fogelfors, H. Response of weeds and crop yield to herbicide dose decision-support guidelines. Weed Sci. 2002, 50, 186–195. [Google Scholar] [CrossRef]
- Kraehmer, H.; van Almsick, A.; Beffa, R.; Dietrich, H.; Eckes, P.; Hacker, E.; Hain, R.; Strek, H.J.; Stuebler, H.; Willms, L. Herbicides as weed control agents: State of the art: II. Recent achievements. Plant Physiol. 2014, 166, 1132–1148. [Google Scholar] [CrossRef]
- Piel, C.; Pouchieu, C.; Carles, C.; Béziat, B.; Boulanger, M.; Bureau, M.; Busson, A.; Grüber, A.; Lecluse, Y.; Migault, L.; et al. Agricultural exposures to carbamate herbicides and fungicides and central nervous system tumour incidence in the cohort AGRICAN. Environ. Int. 2019, 130, 104876. [Google Scholar] [CrossRef] [PubMed]
- Arena, M.; Auteri, D.; Barmaz, S.; Bellisai, G.; Brancato, A.; Brocca, D.; Bura, L.; Byers, H.; Chiusolo, A.; et al.; European Food Safety Authority (EFSA) Peer review of the pesticide risk assessment of the active substance chlorpropham. EFSA J. 2017, 15, e04903. [Google Scholar]
- Gressel, J. Evolving understanding of the evolution of herbicide resistance. Pest Manag. Sci 2009, 65, 1164–1173. [Google Scholar] [CrossRef]
- Madsen, K.H.; Streibig, J.C. Benefits and risks of the use of herbicide-resistant crops. In Weed Management for Developing Countries: Addendum 1; FAO: Rome, Italy, 2003. [Google Scholar]
- Heap, I. The International Herbicide-Resistant, 2024. Weed Database. Available online: https://www.weedscience.org (accessed on 12 June 2024).
- Duke, S.O.; Powles, S.B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 2008, 64, 319–325. [Google Scholar] [CrossRef] [PubMed]
Structure Matrix | |||||||||||
Functions | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
Eigenvalue | 40.616 a | 21.954 a | 17.170 a | 10.577 a | 4.458 a | 2.124 a | 1.419 a | 1.186 a | 0.605 a | 0.345 a | 0.105 a |
% of Variance | 40.4 | 21.8 | 17.1 | 10.5 | 4.4 | 2.1 | 1.4 | 1.2 | 0.6 | 0.3 | 0.1 |
Cumulative % | 40.4 | 62.2 | 79.3 | 89.8 | 94.2 | 96.4 | 97.8 | 99.0 | 99.6 | 99.9 | 100.0 |
Canonical Correlation | 0.988 | 0.978 | 0.972 | 0.956 | 0.904 | 0.825 | 0.766 | 0.737 | 0.614 | 0.507 | 0.308 |
Variables | Correlation between each variable and any discriminant function | ||||||||||
IpmpL | −0.953 * | 0.155 | 0.000 | 0.051 | 0.113 | −0.003 | −0.02 | 0.117 | 0.167 | −0.022 | 0.103 |
IcropLb | 0.952 * | −0.155 | 0.000 | −0.05 | −0.113 | 0.004 | 0.02 | −0.118 | −0.167 | 0.022 | −0.103 |
IGFv | −0.028 | 0.697 * | 0.318 | −0.014 | 0.249 | 0.192 | −0.026 | 0.549 | 0.067 | −0.08 | −0.026 |
IGPc | −0.093 | −0.098 | 0.833 * | 0.249 | 0.177 | −0.127 | 0.071 | −0.208 | −0.177 | −0.286 | 0.131 |
IGPg | 0.016 | 0.019 | 0.000 | −0.573 * | −0.275 | −0.097 | 0.461 | 0.181 | −0.164 | −0.514 | 0.22 |
IGCl | −0.021 | −0.143 | −0.464 | 0.353 | 0.646 * | 0.39 | 0.207 | 0.011 | −0.071 | −0.144 | 0.018 |
IorgALb | 0.009 | −0.067 | −0.053 | −0.124 | 0.434 | −0.736 * | −0.096 | 0.244 | −0.417 | 0.073 | 0.000 |
IconvAL | −0.009 | 0.067 | 0.053 | 0.124 | −0.434 | 0.735 * | 0.096 | −0.244 | 0.417 | −0.073 | 0.001 |
IGIc | 0.018 | 0.11 | −0.286 | 0.602 | −0.25 | −0.613 * | 0.111 | 0.116 | −0.261 | −0.099 | 0.026 |
HI | 0.061 | 0.326 | −0.011 | −0.072 | −0.029 | −0.157 | 0.609 * | −0.501 | −0.246 | 0.404 | −0.118 |
IGRc | −0.002 | 0.5 | −0.057 | −0.319 | −0.126 | 0.134 | −0.309 | −0.565 * | 0.295 | −0.219 | 0.248 |
IGDp | −0.025 | −0.053 | −0.025 | 0.012 | 0.128 | 0.04 | −0.288 | 0.000 | −0.894 * | 0.282 | 0.127 |
IGoth | 0.045 | −0.061 | 0.122 | −0.091 | −0.27 | −0.002 | −0.452 | −0.008 | 0.424 | 0.711 * | −0.099 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triantafyllidis, V. Assessment of Spatiotemporal Distribution of Herbicides in European Agricultural Land Using Agri-Environmental Indices. Agriculture 2024, 14, 1171. https://doi.org/10.3390/agriculture14071171
Triantafyllidis V. Assessment of Spatiotemporal Distribution of Herbicides in European Agricultural Land Using Agri-Environmental Indices. Agriculture. 2024; 14(7):1171. https://doi.org/10.3390/agriculture14071171
Chicago/Turabian StyleTriantafyllidis, Vassilios. 2024. "Assessment of Spatiotemporal Distribution of Herbicides in European Agricultural Land Using Agri-Environmental Indices" Agriculture 14, no. 7: 1171. https://doi.org/10.3390/agriculture14071171
APA StyleTriantafyllidis, V. (2024). Assessment of Spatiotemporal Distribution of Herbicides in European Agricultural Land Using Agri-Environmental Indices. Agriculture, 14(7), 1171. https://doi.org/10.3390/agriculture14071171