Biocontrol Potential and Mitigation of Abiotic Stress Effects of Meyerozyma guilliermondii on Cucumber (Cucumis sativus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Meyerozyma guilliermondii
2.2. Experimental Design
2.2.1. Biotic Stress Experiment
- -
- Control Greenhouse (C);
- -
- Greenhouse with Biocontrol Agent (BCA);
- -
- Greenhouse with Pathogen (P).
- -
- C + P;
- -
- BCA + P;
- -
- P + BCA.
2.2.2. Abiotic Stress Experiment
2.3. Seed Sterilization and Germination:
2.4. Planting
2.5. Inoculation
Abiotic Stress Treatments
2.6. Measurement of Physiological Parameters and Plant Growth Analysis
2.6.1. Phenology and Morphology
2.6.2. Measurement of Oxidative Stress
2.6.3. Determination of Photosynthetic Pigments (Chlorophylls and Carotenoids)
2.7. Symptoms Analysis
2.8. Dual Plate Confrontation
2.9. Statistical Analysis
3. Results
3.1. Plant Growth and Development
3.2. Photosynthetic Pigments Content
3.3. Oxidative Stress
3.4. Symptoms Analysis
3.5. In Vitro Evaluation of Meyerozyma guilliermondii Activity against F. oxysporum
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paris, H.S.; Daunay, M.C.; Janick, J. Occidental diffusion of cucumber (Cucumis sativus) 500–1300 CE: Two routes to Europe. Ann. Bot. 2011, 109, 117–126. [Google Scholar] [CrossRef] [PubMed]
- FAOStat. 2021. Available online: https://www.fao.org/faostat/en/#home (accessed on 12 July 2024).
- Wan, T.; Zhao, H.; Wang, W. Effect of biocontrol agent Bacillus amyloliquefaciens SN16-1 and plant pathogen Fusarium oxysporum on tomato rhizosphere bacterial community composition. Biol. Control 2017, 112, 1–9. [Google Scholar] [CrossRef]
- Scarlett, K.; Tesoriero, L.; Daniel, R.; Guest, D. Detection and quantification of Fusarium oxysporum f. sp. cucumerinum in environmental samples using a specific quantitative PCR assay. Eur. J. Plant Pathol. 2013, 137, 315–324. [Google Scholar] [CrossRef]
- Kim, Y.G.; Kang, H.K.; Kwon, K.D.; Seo, C.H.; Lee, H.B.; Park, Y. Antagonistic activities of novel peptides from Bacillus amyloliquefaciens PT14 against Fusarium solani and Fusarium oxysporum. J. Agric. Food Chem. 2015, 63, 10380–10387. [Google Scholar] [CrossRef] [PubMed]
- Abro, M.A.; Sun, X.; Li, X.; Jatoi, G.H.; Guo, L.D. Biocontrol potential of fungal endophytes against Fusarium oxysporum f. sp. cucumerinum causing wilt in cucumber. Plant Pathol. J. 2019, 35, 598. [Google Scholar] [CrossRef] [PubMed]
- Lan, C.; Gan, L.; Dai, Y.; Liu, X.; Yang, X.; Jiang, J. Screening, Identification and Biocontrol Effect of Antagonistic Strain against Fusarium oxysporum f. sp. cucumerinum. Chin. J. Biol. Control 2023, 39, 184–193. [Google Scholar]
- Palmieri, D.; Ianiri, G.; Conte, T.; Castoria, R.; Lima, G.; De Curtis, F. Influence of Biocontrol and Integrated Strategies and Treatment Timing on Plum Brown Rot Incidence and Fungicide Residues in Fruits. Agriculture 2022, 12, 1656. [Google Scholar] [CrossRef]
- Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef]
- Ortiz, R.; Braun, H.J.; Crossa, J.; Crouch, J.H.; Davenport, G.; Dixon, J. Mejora de los recursos genéticos del trigo por parte del Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT). Genet. Resour. Crop Evol. 2008, 55, 1095–1140. [Google Scholar] [CrossRef]
- De Curtis, F.; Caputo, L.; Castoria, R.; Lima, G.; Stea, G.; De Cicco, V. Use of fluorescent amplified fragment length polymorphism (fAFLP) to identify specific molecular markers for the biocontrol agent Aureobasidium pullulans strain LS30. Postharvest Biol. Technol. 2004, 34, 179–186. [Google Scholar] [CrossRef]
- Liu, J.; Sui, Y.; Wisniewski, M.; Droby, S.; Liu, Y. Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int. J. Food Microbiol. 2013, 167, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Nakayan, P.; Hameed, A.; Singh, S.; Young, L.S.; Hung, M.H.; Young, C.C. Phosphate-solubilizing soil yeast Meyerozyma guilliermondii CC1 improves maize (Zea mays L.) productivity and minimizes requisite chemical fertilization. Plant Soil 2013, 373, 301–315. [Google Scholar] [CrossRef]
- Kthiri, Z.; Jabeur, M.B.; Chairi, F.; López-Cristoffanini, C.; López-Carbonell, M.; Serret, M.D.; Araus, J.L.; Karmous, C.; Hamada, W. Exploring the potential of Meyerozyma guilliermondii on physiological performances and defense response against Fusarium crown rot on durum wheat. Pathogens 2021, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A.E.; Mejía, L.C.; Kyllo, D.; Rojas, E.I.; Maynard, Z.; Robbins, N.; Herre, E.A. Fungal endophytes limit pathogen damage in a tropical tree. Proc. Natl. Acad. Sci. USA 2003, 100, 15649–15654. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, G.C.C.; Galindo, F.S.; Lanza, M.G.D.B.; da Rocha Silva, A.C.; de Brito Mateus, M.P.; da Silva, M.S.; Dos Reis, A.R. Selenium toxicity stress-induced phenotypical, biochemical and physiological responses in rice plants: Characterization of symptoms and plant metabolic adjustment. Ecotoxicol. Environ. Saf. 2020, 202, 110916. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, V.; Shahzad, B.; Ramakrishnan, M.; Singh Sidhu, G.P.; Bali, A.S.; Zheng, B. Photosynthetic response of plants under different abiotic stresses: A review. J. Plant Growth Regul. 2020, 39, 509–531. [Google Scholar] [CrossRef]
- Astudillo-Calderón, S.; Tello, M.L.; Alonso de Robador, J.M.; Pintos, B.; Gómez-Garay, A. First Report of Fusarium equiseti Causing Vascular Wilt Disease on Vitis vinifera in Spain. Plant Dis. 2019, 103, 2471. [Google Scholar] [CrossRef]
- Alonso de Robador, J.M.; Ortega Pérez, N.; Sanchez-Ballesta, M.T.; Tello Mariscal, M.L.; Pintos López, B.; Gómez-Garay, A. Plant Defence Induction by Meyerozyma guilliermondii in Vitis vinifera L. Agronomy 2023, 13, 2780. [Google Scholar] [CrossRef]
- Meier, U. Growth Stages of Mono-and Dicotyledonous Plants; Blackwell Wissenschafts-Verlag: Quedlinburg, Germany, 1997. [Google Scholar]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Tinevez, J.Y. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Monteoliva, M.I.; Bustos, D.A.; Luna, C.M. Abordajes Fisiológicos para el Estudio del Estrés Abiótico en Plantas; Disertaciones y protocolos; Ediciones INTA: Buenos Aires, Argentina, 2019; ISBN 978-987-521-986-1. [Google Scholar]
- López-Hidalgo, C.; Meijón, M.; Lamelas, L.; Valledor, L. The rainbow protocol: A sequential method for quantifying pigments, sugars, free amino acids, phenolics, flavonoids, and MDA from a small amount of sample. Curr. Protoc. 2021, 44, 1977–1986. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Ezziyyani, M.; Sánchez, C.P.; Requena, M.E.; Rubio, L.; Candela, M.E. Biocontrol by Streptomyces rochei -Ziyani-, of pepper rot (Capsicum annuum L.) caused by Phytophthora capsici. Anales Biología 2004, 26, 69–78. [Google Scholar]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Orozco-Mosqueda, C. Unraveling efficient strategies for inducing systemic resistance in crops for managing biotic stress. Plant Stress 2023, 8, 100156. [Google Scholar] [CrossRef]
- Agrios, G.N. Introduction to Plant Pathology; Elsevier Academic Press: San Diego, CA, USA, 2005. [Google Scholar]
- Fravel, D.R. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 2005, 43, 337–359. [Google Scholar] [CrossRef] [PubMed]
- Ongena, M.; Jacques, P. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 2008, 16, 115–125. [Google Scholar] [CrossRef]
- Chaudhry, S.; Sidhu, G.P.S. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 2022, 41, 1–31. [Google Scholar] [CrossRef]
- Yin, D.; Wang, N.; Xia, F.; Li, Q.; Wang, W. Impact of biocontrol agents Pseudomonas fluorescens 2P24 and CPF10 on the bacterial community in the cucumber rhizosphere. Eur. J. Soil Biol. 2013, 59, 36–42. [Google Scholar] [CrossRef]
- Dong, X.; Ling, N.; Wang, M.; Shen, Q.; Guo, S. Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants. Plant Physiol. Biochem. 2012, 60, 171–179. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; White, J.F., Jr.; Arnold, A.E.; Redman, A.R.A. Fungal endophytes: Diversity and functional roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef]
- Mitter, B.; Petric, A.; Shin, M.W.; Chain, P.S.; Hauberg-Lotte, L.; Reinhold-Hurek, B.; Sessitsch, A. Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front. Plant Sci. 2013, 4, 120. [Google Scholar] [CrossRef] [PubMed]
- Takeno, K. Stress-induced flowering: The third category of flowering response. J. Exp. Bot. 2016, 67, 4925–4934. [Google Scholar] [CrossRef]
- Ausin, I.; Alonso-Blanco, C.; Martinez-Zapater, J.M. Environmental regulation of flowering. Int. J. Dev. Biol. 2005, 49, 689–705. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Abdelaziz, M.E.; Ntui, V.O.; Guo, X.; Al-Babili, S. Colonization by the endophyte Piriformospora indica leads to early flowering in Arabidopsis thaliana likely by triggering gibberellin biosynthesis. Biochem. Biophys. Res. Commun. 2017, 490, 1162–1167. [Google Scholar] [CrossRef]
- Tao, S.; Estelle, M. Mutational studies of the Aux/IAA proteins in Physcomitrella reveal novel insights into their function. New Phytol. 2018, 218, 1534–1542. [Google Scholar] [CrossRef] [PubMed]
- Cho, L.H.; Yoon, J.; An, G. The control of flowering time by environmental factors. Plant J. 2017, 90, 708–719. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.; Khan, A.L.; Kamran, M.; Hamayun, M.; Kang, S.M.; Kim, Y.H.; Lee, I.J. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 2012, 17, 10754–10773. [Google Scholar] [CrossRef]
- Gechev, T.S.; Van Breusegem, F.; Stone, J.M.; Denev, I.; Laloi, C. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 2006, 28, 1091–1101. [Google Scholar] [CrossRef]
- Mesa-Marín, J.; Del-Saz, N.F.; Rodríguez-Llorente, I.D.; Redondo-Gómez, S.; Pajuelo, E.; Ribas-Carbó, M.; Mateos-Naranjo, E. PGPR Reduce Root Respiration and Oxidative Stress Enhancing Spartina maritima Root Growth and Heavy Metal Rhizoaccumulation. Front. Plant Sci. 2018, 9, 1500. [Google Scholar] [CrossRef]
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Young, A.J. The photoprotective role of carotenoids in higher plants. Physiol. Plant. 1991, 83, 702–708. [Google Scholar] [CrossRef]
Treatment | Chlb mg/g Dry Weight | SD | Carotenoids mg/g Dry Weight | SD | SOD U/mg Protein | SD |
---|---|---|---|---|---|---|
C | 6.38 c | 0.41 | 3.13 d | 0.19 | 97 e | 8.06 |
BCA | 6.15 bc | 0.70 | 3.03 d | 0.34 | 70.10 c | 6.64 |
P | 4.84 b | 0.63 | 2.44 cd | 0.26 | 57.73 b | 10.02 |
C-P | 7.36 d | 0.21 | 3.58 de | 0.29 | 68.04 c | 7.59 |
BCA-P | 7.83 d | 0.51 | 3.80 e | 0.25 | 79.38 f | 6.15 |
P-BCA | 6.93 cd | 0.58 | 3.39 de | 0.28 | 67.36 c | 9.60 |
C-WD | 3.70 b | 0.50 | 1.13 b | 0.12 | 54.94 a | 8.65 |
BCA-WD | 2.35 a | 0.06 | 0.62 a | 0.13 | 49.48 ab | 10.85 |
C-H | 5.85 bc | 0.74 | 1.06 ab | 0.36 | 79.38 d | 8.06 |
BCA-H | 5.36 c | 0.35 | 2.94 d | 0.31 | 51.54 b | 6.64 |
C-H-WD | 3.35 b | 0.22 | 1.46 b | 0.06 | 45.96 ab | 10.02 |
BCA-H-WD | 5.76 bc | 0.38 | 2.29 c | 0.28 | 44.32 a | 7.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomez-Garay, A.; Bonaventura Roca-Campos, D.; Irles Sánchez, S.; Pintos López, B. Biocontrol Potential and Mitigation of Abiotic Stress Effects of Meyerozyma guilliermondii on Cucumber (Cucumis sativus L.). Agriculture 2024, 14, 1189. https://doi.org/10.3390/agriculture14071189
Gomez-Garay A, Bonaventura Roca-Campos D, Irles Sánchez S, Pintos López B. Biocontrol Potential and Mitigation of Abiotic Stress Effects of Meyerozyma guilliermondii on Cucumber (Cucumis sativus L.). Agriculture. 2024; 14(7):1189. https://doi.org/10.3390/agriculture14071189
Chicago/Turabian StyleGomez-Garay, Arancha, Darío Bonaventura Roca-Campos, Sofía Irles Sánchez, and Beatriz Pintos López. 2024. "Biocontrol Potential and Mitigation of Abiotic Stress Effects of Meyerozyma guilliermondii on Cucumber (Cucumis sativus L.)" Agriculture 14, no. 7: 1189. https://doi.org/10.3390/agriculture14071189
APA StyleGomez-Garay, A., Bonaventura Roca-Campos, D., Irles Sánchez, S., & Pintos López, B. (2024). Biocontrol Potential and Mitigation of Abiotic Stress Effects of Meyerozyma guilliermondii on Cucumber (Cucumis sativus L.). Agriculture, 14(7), 1189. https://doi.org/10.3390/agriculture14071189