The Impact of Digital Finance on Enhancing the Spatial Effects of Heterogeneous Environmental Regulations in Supporting Agricultural Green Total Factor Productivity
Abstract
:1. Introduction
2. Research Hypothesis
2.1. Effects of ER on AGTFP
2.1.1. The Effect of Command-Based ER on AGTFP
2.1.2. The Effect of Market-Incentive ER on AGTFP
2.1.3. The Effect of Public-Voluntary ER on AGTFP
2.2. The Impact of Digital Finance on AGTFP
2.2.1. The Impact of Digital Finance on Local AGTFP
2.2.2. The Impact of Digital Finance on Other Neighboring AGTFP
2.3. The Regulatory Effect of Digital Finance on ER Affecting AGTFP
2.3.1. The Regulatory Effect of Digital Financial Type in the Process of Command-Based ER Affecting AGTFP
2.3.2. The Regulatory Effect of Digital Financial Type in the Process of Market-Incentive ER Affecting AGTFP
2.3.3. The Regulatory Effect of Digital Financial Type in the Process of Public-Voluntary ER Affecting AGTFP
3. Materials and Methods
3.1. Study Area and Data Source
3.2. Variable Selection
3.3. Research Method
3.3.1. Non-Expected MinDS Super-Efficiency—MetaFrontier Malmquist Model
3.3.2. Dynamic Spatial Durbin Model
4. Results and Discussion
4.1. AGTFP Spatial Correlation Test
4.2. Spatial Model Selection
4.3. Baseline Regression Analysis
4.3.1. Analysis of the Effect of ER on AGTFP
4.3.2. Moderating Effects of Digital Finance on ER affecting AGTFP
4.4. Robustness Test
4.5. Heterogeneity Analysis
5. Conclusions and Policy Enlightenment
- (1)
- Command-based, market-incentive and public-voluntary ER can increase local AGTFP and have positive spatial spillover effect. Command-based ER has the highest effect on AGTFP, followed by market-incentive and public-voluntary ones.
- (2)
- Digital finance has a direct promotional effect on local AGTFP, and it has an inhibitory effect on AGTFP in neighboring regions due to the siphon effect.
- (3)
- Digital finance is an important moderating variable of the three ERs affecting AGTFP.
- (4)
- The heterogeneous analysis found that digital finance had a significant moderating effect on the impact of command-based, market-incentive and public-voluntary ER on AGTFP with the market-incentive being highest in eastern China. Digital finance has a significant moderating effect on the impact of command-based and public-voluntary ER on AGTFP with the command-based being higher in central China. In western China, digital finance only plays a significant moderating role in the impact of command-based regulation on AGTFP.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, D.; Zhu, X.; Wang, Y. China’s Agricultural Green Total Factor Productivity Based on Carbon Emission: An Analysis of Evolution Trend and Influencing Factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Luo, J.; Huang, M.; Bai, Y. Promoting Green Development of Agriculture Based on Low-Carbon Policies and Green Preferences: An Evolutionary Game Analysis. Environ. Dev. Sustain. 2023, 26, 6443–6470. [Google Scholar] [CrossRef]
- Chen, Y.; Miao, J.; Zhu, Z. Measuring Green Total Factor Productivity of China’s Agricultural Sector: A Three-Stage SBM-DEA Model with Non-Point Source Pollution and CO2 Emissions. J. Clean. Prod. 2021, 318, 128543. [Google Scholar] [CrossRef]
- Luo, J.; Huang, M.; Hu, M.; Bai, Y. How Does Agricultural Production Agglomeration Affect Green Total Factor Productivity?: Empirical Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 67865–67879. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Zhang, R.; Li, G. Environmental Decentralization, Digital Finance and Green Technology Innovation. Struct. Chang. Econ. Dyn. 2022, 61, 70–83. [Google Scholar] [CrossRef]
- Huang, X.; Feng, C.; Qin, J.; Wang, X.; Zhang, T. Measuring China’s Agricultural Green Total Factor Productivity and Its Drivers during 1998–2019. Sci. Total Environ. 2022, 829, 154477. [Google Scholar] [CrossRef] [PubMed]
- Prathapachandran, N.; Devadas, V. Sustainable and Traditional Agricultural Practices to Reinforce Income Dynamics among Tribal Communities in Rural Wayanad, Kerala, India. Agric. Rural Stud. 2023, 1, 0017. [Google Scholar] [CrossRef]
- Feng, Y.; Zhong, S.; Li, Q.; Zhao, X.; Dong, X. Ecological Well-Being Performance Growth in China (1994–2014): From Perspectives of Industrial Structure Green Adjustment and Green Total Factor Productivity. J. Clean. Prod. 2019, 236, 117556. [Google Scholar] [CrossRef]
- Yasmeen, R.; Tao, R.; Shah, W.U.H.; Padda, I.U.H.; Tang, C. The Nexuses between Carbon Emissions, Agriculture Production Efficiency, Research and Development, and Government Effectiveness: Evidence from Major Agriculture-Producing Countries. Environ. Sci. Pollut. Res. 2022, 29, 52133–52146. [Google Scholar] [CrossRef]
- Pe’er, G.; Zinngrebe, Y.; Moreira, F.; Sirami, C.; Schindler, S.; Müller, R.; Bontzorlos, V.; Clough, D.; Bezák, P.; Bonn, A.; et al. A Greener Path for the EU Common Agricultural Policy. Science (1979) 2019, 365, 449–451. [Google Scholar] [CrossRef]
- Medina, G.; Isley, C.; Arbuckle, J. Promoting Sustainable Agriculture: Iowa Stakeholders’ Perspectives on the US Farm Bill Conservation Programs. Environ. Dev. Sustain. 2021, 23, 173–194. [Google Scholar] [CrossRef]
- Chopra, R.; Magazzino, C.; Shah, M.I.; Sharma, G.D.; Rao, A.; Shahzad, U. The Role of Renewable Energy and Natural Resources for Sustainable Agriculture in ASEAN Countries: Do Carbon Emissions and Deforestation Affect Agriculture Productivity? Resour. Policy 2022, 76, 102578. [Google Scholar] [CrossRef]
- Alam, A.; Ghosal, N.; Khan, A.; Satpati, L. Agricultural Bill 2020 in India: Agricultural Policy and Transition to Sustainable Agriculture and Self-Reliance. In Climate Change, Agriculture and Society; Springer International Publishing: Cham, Switzerland, 2023; pp. 289–305. [Google Scholar]
- Heyes, A. Is Environmental Regulation Bad for Competition? A Survey. J. Regul. Econ. 2009, 36, 1–28. [Google Scholar] [CrossRef]
- Li, J.; Ji, J.; Zhang, Y. Non-Linear Effects of Environmental Regulations on Economic Outcomes. Manag. Environ. Qual. Int. J. 2019, 30, 368–382. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, X.; Wang, W. Study on the Effect of Environmental Regulations and Industrial Structure on Haze Pollution in China from the Dual Perspective of Independence and Linkage. J. Clean. Prod. 2020, 256, 120748. [Google Scholar] [CrossRef]
- Zhang, D. Green Credit Regulation, Induced R&D and Green Productivity: Revisiting the Porter Hypothesis. Int. Rev. Financ. Anal. 2021, 75, 101723. [Google Scholar] [CrossRef]
- Zhao, S.; Cao, Y.; Feng, C.; Guo, K.; Zhang, J. How Do Heterogeneous R&D Investments Affect China’s Green Productivity: Revisiting the Porter Hypothesis. Sci. Total Environ. 2022, 825, 154090. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y. Environmental Regulation, Agricultural Green Technology Innovation, and Agricultural Green Total Factor Productivity. Front. Environ. Sci. 2022, 10, 955954. [Google Scholar] [CrossRef]
- Shen, Z.; Hong, T.; Blancard, S.; Bai, K. Digital Financial Inclusion and Green Growth: Analysis of Chinese Agriculture. Appl. Econ. 2023, 55, 1–19. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, K. Impact of Green Digital Finance on Green Economic Recovery and Green Agricultural Development: Implications for Green Environment. Environ. Sci. Pollut. Res. 2023, 30, 107611–107623. [Google Scholar] [CrossRef]
- Hong, M.; Tian, M.; Wang, J. Digital Inclusive Finance, Agricultural Industrial Structure Optimization and Agricultural Green Total Factor Productivity. Sustainability 2022, 14, 11450. [Google Scholar] [CrossRef]
- Zhang, W.-L.; Song, L.-Y.; Ilyas, M. Can the Digital Economy Promote Fiscal Effort?: Empirical Evidence from Chinese Cities. Econ. Chang. Restruct. 2023, 56, 3501–3525. [Google Scholar] [CrossRef]
- Liu, Y.; She, Y.; Liu, S.; Lan, H. Supply-Shock, Demand-Induced or Superposition Effect? The Impacts of Formal and Informal Environmental Regulations on Total Factor Productivity of Chinese Agricultural Enterprises. J. Clean. Prod. 2022, 380, 135052. [Google Scholar] [CrossRef]
- Ma, G.; Lv, D.; Luo, Y.; Jiang, T. Environmental Regulation, Urban-Rural Income Gap and Agricultural Green Total Factor Productivity. Sustainability 2022, 14, 8995. [Google Scholar] [CrossRef]
- Zhan, J.; Xu, Y. Environmental Regulation, Agricultural Green TFP and Grain Security. China Popul. Resour. Environ. 2019, 29, 167–176. (In Chinese) [Google Scholar]
- Zhang, J.; Sun, J.; Li, W.; Zhang, Y. Research on Implementation Effectiveness of Command-and-Control Environmental Regulations: Evidence from the Basin Ecological Compensation Policy of China. Emerg. Mark. Financ. Trade 2023, 59, 2577–2599. [Google Scholar] [CrossRef]
- Sun, J.; Zhai, N.; Miao, J.; Mu, H.; Li, W. How Do Heterogeneous Environmental Regulations Affect the Sustainable Development of Marine Green Economy? Empirical Evidence from China’s Coastal Areas. Ocean Coast. Manag. 2023, 232, 106448. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, H.; Zhu, G.; You, D. The Impact of Environmental Regulation on Enterprises’ Green Innovation under the Constraint of External Financing: Evidence from China’s Industrial Firms. Environ. Sci. Pollut. Res. 2022, 30, 42943–42964. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Yi, M. Impacts and Mechanisms of Heterogeneous Environmental Regulations on Carbon Emissions: An Empirical Research Based on DID Method. Environ. Impact Assess. Rev. 2023, 99, 107039. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, Y.; Sun, X. Can Environmental Regulations Facilitate Total-Factor Efficiencies in OECD Countries? Energy-Saving Target VS Emission-Reduction Target. Int. J. Green Energy 2023, 20, 1488–1500. [Google Scholar] [CrossRef]
- Wang, G.; Salman, M. The Impacts of Heterogeneous Environmental Regulations on Green Economic Efficiency from the Perspective of Urbanization: A Dynamic Threshold Analysis. Environ. Dev. Sustain. 2023, 25, 9485–9516. [Google Scholar] [CrossRef]
- Hu, S.; Wang, M.; Wu, M.; Wang, A. Voluntary Environmental Regulations, Greenwashing and Green Innovation: Empirical Study of China’s ISO14001 Certification. Environ. Impact Assess. Rev. 2023, 102, 107224. [Google Scholar] [CrossRef]
- Shen, M.; Ma, N.; Chen, Q. Has Green Finance Policy Promoted Ecologically Sustainable Development under the Constraints of Government Environmental Attention? J. Clean. Prod. 2024, 450, 141854. [Google Scholar] [CrossRef]
- Huang, X.; Yang, F.; Fahad, S. The Impact of Digital Technology Use on Farmers’ Low-Carbon Production Behavior under the Background of Carbon Emission Peak and Carbon Neutrality Goals. Front. Environ. Sci. 2022, 10, 1002181. [Google Scholar] [CrossRef]
- Razzaq, A.; Sharif, A.; Ozturk, I.; Skare, M. Asymmetric Influence of Digital Finance, and Renewable Energy Technology Innovation on Green Growth in China. Renew. Energy 2023, 202, 310–319. [Google Scholar] [CrossRef]
- Yang, B.; Wang, X.; Wu, T.; Deng, W. Reducing Farmers’ Poverty Vulnerability in China: The Role of Digital Financial Inclusion. Rev. Dev. Econ. 2023, 27, 1445–1480. [Google Scholar] [CrossRef]
- Lian, X.; Mu, Y.; Zhang, W. Digital Inclusive Financial Services and Rural Income: Evidence from China’s Major Grain-Producing Regions. Financ. Res. Lett. 2023, 53, 103622. [Google Scholar] [CrossRef]
- Wu, H.; Li, Y.; Hao, Y.; Ren, S.; Zhang, P. Environmental Decentralization, Local Government Competition, and Regional Green Development: Evidence from China. Sci. Total Environ. 2020, 708, 135085. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Liang, C.; Cao, F.; Wang, L. The Impact of Heterogeneous Environmental Regulation on Innovation of High-Tech Enterprises in China: Mediating and Interaction Effect. Environ. Sci. Pollut. Res. 2021, 28, 8323–8336. [Google Scholar] [CrossRef]
- Peng, J.; Xie, R.; Ma, C.; Fu, Y. Market-Based Environmental Regulation and Total Factor Productivity: Evidence from Chinese Enterprises. Econ. Model. 2021, 95, 394–407. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, Z.; Zeng, Y. Can Voluntary Environmental Regulation Promote Corporate Technological Innovation? Bus. Strategy Environ. 2020, 29, 390–406. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, Z.; Lan, X. How Environmental Regulations Affect Corporate Innovation? The Coupling Mechanism of Mandatory Rules and Voluntary Management. Technol. Soc. 2021, 65, 101575. [Google Scholar] [CrossRef]
- Tian, Y.; Feng, C. The Internal-Structural Effects of Different Types of Environmental Regulations on China’s Green Total-Factor Productivity. Energy Econ. 2022, 113, 106246. [Google Scholar] [CrossRef]
- Tang, M.; Cao, A.; Guo, L.; Li, H. Improving Agricultural Green Total Factor Productivity in China: Do Environmental Governance and Green Low-Carbon Policies Matter? Environ. Sci. Pollut. Res. 2023, 30, 52906–52922. [Google Scholar] [CrossRef]
- Chang, D.; Lai, Z.; Li, S.; Li, D.; Zhou, J. Critical Source Areas’ Identification for Non-Point Source Pollution Related to Nitrogen and Phosphorus in an Agricultural Watershed Based on SWAT Model. Environ. Sci. Pollut. Res. 2021, 28, 47162–47181. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, M.; Zheng, X. Digital Economy, Agricultural Technology Innovation, and Agricultural Green Total Factor Productivity. Sage Open 2023, 13, 1–13. [Google Scholar] [CrossRef]
- Yu, L.; Zhao, D.; Xue, Z.; Gao, Y. Research on the Use of Digital Finance and the Adoption of Green Control Techniques by Family Farms in China. Technol. Soc. 2020, 62, 101323. [Google Scholar] [CrossRef]
- Lee, C.-C.; Wang, F. How Does Digital Inclusive Finance Affect Carbon Intensity? Econ. Anal. Policy 2022, 75, 174–190. [Google Scholar] [CrossRef]
- Lee, C.-C.; Wang, F.; Lou, R. Digital Financial Inclusion and Carbon Neutrality: Evidence from Non-Linear Analysis. Resour. Policy 2022, 79, 102974. [Google Scholar] [CrossRef]
- Shi, X.; Xu, Y.; Wu, G. Does the Construction of Rural Multifunctional Community in China Improve Agricultural Green Total Factor Productivity? J. Environ. Plan. Manag. 2024, 67, 1–27. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, M.; Li, Q.; Zhao, X. The Impact of Green Trade Barriers on Agricultural Green Total Factor Productivity: Evidence from China and OECD Countries. Econ. Anal. Policy 2023, 78, 319–331. [Google Scholar] [CrossRef]
- Wang, A.; Hussain, S.; Yan, J. Evaluating the Interlinkage between Pesticide Residue Regulation and Agricultural Green Total Factor Productivity: Empirical Insights Derived from the Threshold Effect Model. Environ. Dev. Sustain. 2024, 26, 1–28. [Google Scholar] [CrossRef]
- Tone, K. Dealing with Undesirable Outputs in DEA: A Slacks-Based Measure (SBM) Approach. GRIPS Res. Rep. Ser. 2003, 3, 1–20. [Google Scholar]
- O’Donnell, C.J.; Rao, D.S.P.; Battese, G.E. Metafrontier Frameworks for the Study of Firm-Level Efficiencies and Technology Ratios. Empir. Econ. 2008, 34, 231–255. [Google Scholar] [CrossRef]
- Liu, Y.; Ouyang, Y.; Cai, H. Evaluation of China’s Agricultural Green TFP and Its Spatiotemporal Evolution Characteristics. Quant. Econ. Tech. Econ. Res. 2021, 38, 39–56. (In Chinese) [Google Scholar]
- Fischer, M.M.; Scherngell, T.; Reismann, M. Knowledge Spillovers and Total Factor Productivity: Evidence Using a Spatial Panel Data Model. Geogr. Anal. 2009, 41, 204–220. [Google Scholar] [CrossRef]
- Monfort, P.; Nicolini, R. Regional Convergence and International Integration. J. Urban. Econ. 2000, 48, 286–306. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, W.; Wang, H.; Yang, J. The Impact of Environmental Regulation on Agricultural Productivity: From the Perspective of Digital Transformation. Int. J. Environ. Res. Public. Health 2022, 19, 10794. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Li, A.; Wu, J. How Does Digital Finance Affect Environmental Total Factor Productivity: A Comprehensive Analysis Based on Econometric Model. Environ. Dev. 2022, 44, 100759. [Google Scholar] [CrossRef]
- Hong, M.; Tian, M.; Wang, J. The Impact of Digital Economy on Green Development of Agriculture and Its Spatial Spillover Effect. China Agric. Econ. Rev. 2023, 15, 708–726. [Google Scholar] [CrossRef]
- Fang, L.; Hu, R.; Mao, H.; Chen, S. How Crop Insurance Influences Agricultural Green Total Factor Productivity: Evidence from Chinese Farmers. J. Clean. Prod. 2021, 321, 128977. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, S.; Zhang, M. The Impact of Entrepreneurship of Farmers on Agriculture and Rural Economic Growth: Innovation-Driven Perspective. Innov. Green Dev. 2024, 3, 100093. [Google Scholar] [CrossRef]
- Yang, J.; Li, L.; Liang, Y.; Wu, J.; Wang, Z.; Zhong, Q.; Liang, S. Sustainability Performance of Global Chemical Industry Based on Green Total Factor Productivity. Sci. Total Environ. 2022, 830, 154787. [Google Scholar] [CrossRef] [PubMed]
Variable Name | Variable Symbol | Variable Meaning and Assignment | Observation | Mean | Standard |
---|---|---|---|---|---|
Agricultural green total factor productivity | AGTFP | AGTFP Index | 330 | 1.011 | 0.049 |
Digital finance index | DF | Total digital finance index (logarithm) | 330 | 5.283 | 0.669 |
Command ER | CER | Number of environmental protection policies by each province at the end of each year | 330 | 1.446 | 1.574 |
Market-incentive ER | MER | One after the provincial carbon emission trading market is launched, otherwise zero | 330 | 0.218 | 0.414 |
Public-voluntary ER | PER | Investment in environmental protection as a percentage of regional GDP | 330 | 6.414 | 0.637 |
Agricultural structure | STR | Added value of plantation industry/added value of agriculture, forestry, animal husbandry and fishery | 330 | 0.526 | 0.084 |
Agricultural machinery density | MAC | Total power of agricultural machinery per unit sown area | 330 | 0.651 | 0.239 |
Income distribution | IND | Urban per capita disposable income/rural per capita net income | 330 | 2.610 | 0.429 |
Agricultural disaster rate | ADR | Crop affected area/crop sown area | 330 | 0.147 | 0.118 |
Human capital | HCA | Per capita years of education in rural areas | 330 | 7.809 | 0.614 |
Urbanization rate | URB | Non-farm population/total population | 330 | 0.596 | 0.121 |
Rural road density | RDE | Rural road mileage/regional land area | 330 | 0.130 | 0.170 |
Year | Moran’I | z | Year | Moran’I | z |
---|---|---|---|---|---|
2011 | 0.127 *** | 2.661 | 2017 | 0.209 *** | 2.629 |
2012 | 0.191 *** | 2.668 | 2018 | 0.215 *** | 3.474 |
2013 | 0.202 *** | 2.729 | 2019 | 0.226 *** | 3.579 |
2014 | 0.210 *** | 2.752 | 2020 | 0.234 *** | 3.658 |
2015 | 0.231 *** | 3.370 | 2021 | 0.230 *** | 3.235 |
2016 | 0. 193 * | 1.932 |
Inspection Name | Coefficient | p-Value | Inspection Name | Coefficient | p-Value |
---|---|---|---|---|---|
LM-SLM | 48.186 | 0.000 | LR-SAR | 30.80 | 0.002 |
LM-SEM | 48.298 | 0.000 | LR-SEM | 32.11 | 0.003 |
Robust LM-SLM | 0.222 | 0.000 | Hausman | 57.98 | 0.000 |
Robust LM-SEM | 0.334 | 0.000 | LR-area | 102.41 | 0.000 |
Wald | 33.660 | 0.000 | LR-time | 142.71 | 0.000 |
Variable | CER | MER | PER | Variable | CER | MER | PER |
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | ||
ER | 0.032 *** (0.011) | 0.031 ** (0.016) | 0.029 ** (0.014) | W ER | 0.028 ** (0.013) | 0.026 * (0.017) | 0.015 * (0.008) |
DF | 0.026 ** (0.012) | 0.019 ** (0.010) | 0.011 ** (0.006) | W DF | −0.016 ** (0.008) | −0.015 * (0.009) | −0.006 ** (0.003) |
ER DF | 0.009 ** (0.005) | 0.006 * (0.004) | 0.004 * (0.003) | W DF | 0.008 ** (0.004) | 0.005 * (0.003) | 0.003 * (0.002) |
STR | 0.016 (0.011) | 0.024 ** (0.012) | 0.020 ** (0.010) | W STR | 0.008 (0.059) | 0.053 (0.064) | 0.041 ** (0.010) |
MAC | −0.004 ** (0.002) | −0.006 *** (0.002) | −0.005 ** (0.002) | W MAC | −0.020 (0.014) | −0.037 ** (0.015) | −0.050 *** (0.013) |
IND | −0.001 (0.002) | −0.001 (0.002) | −0.002 (0.002) | W IND | −0.006 (0.011) | −0.010 (0.012) | −0.005 (0.010) |
ADR | −0.003 *** (0.001) | −0.002 ** (0.001) | −0.002 ** (0.001) | W ADR | −0.005 *** (0.002) | −0.004 ** (0.002) | −0.008 ** (0.004) |
HCA | 0.000 (0.001) | 0.000 (0.001) | 0.001 * (0.000) | W HCA | 0.003 (0.006) | 0.004 (0.007) | 0.003 * (0.002) |
URB | 0.058 ** (0.025) | 0.084 *** (0.028) | 0.090 *** (0.025) | W URB | 0.104 (0.137) | 0.134 (0.152) | 0.118 *** (0.042) |
RDE | 0.055 *** (0.020) | 0.048 * (0.029) | 0.043 * (0.023) | W RDE | 0.075 *** (0.030) | 0.059 (0.064) | 0.054 (0.052) |
Province FE | YES | YES | YES | Time FE | YES | YES | YES |
0.282 *** (0.016) | 0.259 *** (0.023) | 0.234 *** (0.015) | R2 | 0.371 | 0.357 | 0.302 |
Variable | CER | MER | PER | ||||||
---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
Direct | Indirect | Total Effect | Direct | Indirect | Total Effect | Direct | Indirect | Total Effect | |
ER | 0.036 *** (0.011) | 0.014 *** (0.003) | 0.050 *** (0.019) | 0.031 ** (0.015) | 0.008 * (0.005) | 0.039 ** (0.020) | 0.026 ** (0.012) | 0.007 ** (0.003) | 0.033 ** (0.015) |
DF | 0.025 ** (0.011) | −0.008 ** (0.004) | 0.017 ** (0.008) | 0.015 ** (0.007) | −0.005 * (0.003) | 0.010 ** (0.004) | 0.013 ** (0.006) | −0.004 ** (0.002) | 0.009 ** (0.004) |
ER DF | 0.017 ** (0.008) | 0.002 * (0.001) | 0.019 ** (0.009) | 0.008 ** (0.004) | 0.009 * (0.005) | 0.017 ** (0.009) | 0.005 ** (0.013) | 0.003 * (0.002) | 0.008 ** (0.004) |
STR | 0.033 *** (0.012) | 0.016 ** (0.007) | 0.049 * (0.031) | 0.042 *** (0.016) | 0.011 * (0.005) | 0.053 ** (0.025) | 0.039 *** (0.013) | 0.007 * (0.004) | 0.045 * (0.025) |
MAC | −0.014 *** (0.005) | −0.001 (0.003) | −0.015 *** (0.005) | −0.036 *** (0.009) | −0.003 (0.005) | −0.039 *** (0.005) | −0.013 *** (0.005) | −0.002 (0.003) | −0.015 *** (0.004) |
IND | −0.004 (0.006) | −0.002 (0.002) | −0.006 (0.006) | −0.004 (0.005) | −0.005 (0.009) | −0.009 (0.010) | −0.001 (0.003) | −0.005 (0.005) | −0.006 (0.005) |
ADR | −0.001 (0.001) | −0.001 (0.003) | −0.002 (0.006) | −0.002 (0.005) | −0.002 (0.010) | −0.004 (0.010) | −0.001 (0.003) | −0.001 (0.006) | −0.002 (0.005) |
HCA | 0.006 * (0.003) | 0.001 (0.001) | 0.007 * (0.004) | 0.002 ** (0.001) | 0.005 (0.005) | 0.007 * (0.004) | 0.005 * (0.003) | 0.002 (0.002) | 0.007 ** (0.003) |
URB | 0.140 ** (0.064) | 0.059 ** (0.030) | 0.199 *** (0.065) | 0.218 ** (0.098) | 0.116 *** (0.005) | 0.334 *** (0.105) | 0.082 *** (0.031) | 0.042 ** (0.020) | 0.124 ** (0.052) |
RDE | 0.104 *** (0.033) | 0.002 (0.013) | 0.106 *** (0.034) | 0.097 * (0.061) | 0.007 (0.005) | 0.104 ** (0.050) | 0.063 * (0.038) | 0.006 (0.013) | 0.069 * (0.041) |
Variable | Economic Matrix | Change the Explained Variable | ||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
CER | MER | PER | CER | MER | PER | |
ER | 0.019 ** (0.005) | 0.016 ** (0.007) | 0.015 ** (0.001) | 0.011 ** (0.006) | 0.010 ** (0.003) | 0.008 * (0.005) |
DF | 0.016 ** (0.009) | 0.011 * (0.006) | 0.007 ** (0.004) | 0.009 ** (0.004) | 0.008 ** (0.004) | 0.004 * (0.003) |
ER DF | 0.009 ** (0.004) | 0.008 ** (0.004) | 0.005 * (0.003) | 0.010 ** (0.005) | 0.008 * (0.005) | 0.006 * (0.004) |
0.252 *** (0.017) | 0.220 *** (0.025) | 0.205 *** (0.018) | 0.223 *** (0.014) | 0.211 *** (0.027) | 0.202 *** (0.016) | |
Control variables | YES | YES | YES | YES | YES | YES |
Province FE | YES | YES | YES | YES | YES | YES |
Time FE | YES | YES | YES | YES | YES | YES |
R2 | 0.332 | 0.315 | 0.307 | 0.309 | 0.302 | 0.287 |
Variable | East | Middle | West | ||||||
---|---|---|---|---|---|---|---|---|---|
CER | MER | PER | CER | MER | PER | CER | MER | PER | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
ER | 0.024 ** (0.012) | 0.062 *** (0.018) | 0.015 ** (0.007) | 0.006 ** (0.003) | 0.001 (0.033) | 0.002 ** (0.001) | 0.004 ** (0.001) | —— | 0.015 (0.019) |
DF | 0.020 ** (0.009) | 0.038 ** (0.008) | 0.014 * (0.008) | 0.005 ** (0.002) | 0.002 (0.002) | 0.002 ** (0.001) | 0.003 * (0.002) | 0.006 (0.013) | 0.002 (0.023) |
ER DF | 0.008 ** (0.003) | 0.021 ** (0.010) | 0.002 * (0.001) | 0.003 * (0.002) | 0.000 (0.005) | 0.001 * (0.000) | 0.001 * (0.001) | —— | 0.003 (0.002) |
0.219 *** (0.021) | 0.241 *** (0.018) | 0.217 *** (0.016) | 0.230 *** (0.018) | 0.196 *** (0.022) | 0.211 *** (0.017) | 0.163 *** (0.025) | 0.132 *** (0.023) | 0.115 ** (0.057) | |
Control variables | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Province FE | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Time FE | YES | YES | YES | YES | YES | YES | YES | YES | YES |
R2 | 0.268 | 0.334 | 0.238 | 0.298 | 0.237 | 0.256 | 0.259 | 0.100 | 0.151 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Chen, Q.; Li, M. The Impact of Digital Finance on Enhancing the Spatial Effects of Heterogeneous Environmental Regulations in Supporting Agricultural Green Total Factor Productivity. Agriculture 2024, 14, 995. https://doi.org/10.3390/agriculture14070995
Li R, Chen Q, Li M. The Impact of Digital Finance on Enhancing the Spatial Effects of Heterogeneous Environmental Regulations in Supporting Agricultural Green Total Factor Productivity. Agriculture. 2024; 14(7):995. https://doi.org/10.3390/agriculture14070995
Chicago/Turabian StyleLi, Ruining, Qinghua Chen, and Meng Li. 2024. "The Impact of Digital Finance on Enhancing the Spatial Effects of Heterogeneous Environmental Regulations in Supporting Agricultural Green Total Factor Productivity" Agriculture 14, no. 7: 995. https://doi.org/10.3390/agriculture14070995
APA StyleLi, R., Chen, Q., & Li, M. (2024). The Impact of Digital Finance on Enhancing the Spatial Effects of Heterogeneous Environmental Regulations in Supporting Agricultural Green Total Factor Productivity. Agriculture, 14(7), 995. https://doi.org/10.3390/agriculture14070995