Modeling Comprehensive Deficit Irrigation Strategies for Drip-Irrigated Cotton Using AquaCrop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Design of the Test Pit Experiment and Crop Management
2.3. Measurement Indicators and Methods
2.4. Description of the Model (AquaCrop 6.1)
2.5. Model Input, Calibration, and Verification
2.6. Model Evaluation Indicators
2.7. Irrigation Scenario Design
2.8. Data Analysis
3. Results
3.1. Total Soil Water And ETc
3.2. Canopy Cover
3.3. Aboveground Biomass
3.4. Biomass and Final Seed Yield
3.5. Model Application
3.6. A Comprehensive Evaluation of the AquaCrop Simulation Results Based on Different Irrigation Scenarios
4. Discussion
4.1. Applicability of the AquaCrop Model
4.2. Application of the Model to Different Irrigation Scenarios
4.3. Selection and Evaluation of Optimal Moisture Regulation for Machine-Picked Cotton in Southern Xinjiang
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Lesk, C.; Coffel, E.; Horton, R. Net benefits to US soy and maize yields from intensifying hourly rainfall. Nat. Clim. Chang. 2020, 10, 819–822. [Google Scholar] [CrossRef]
- Chavez, E.; Conway, G.; Ghil, M.; Sadler, M. An end-to-end assessment of extreme weather impacts on food security. Nat. Clim. Chang. 2015, 5, 997–1001. [Google Scholar] [CrossRef]
- Li, Y.; Guan, K.; Schnitkey, G.D.; DeLucia, E.; Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Chang. Biol. 2019, 25, 2325–2337. [Google Scholar] [CrossRef]
- Li, Z.; Zou, H.; Lai, Z.; Zhang, F.; Fan, J. Optimal drip fertigation regimes improved soil micro-environment, root growth and grain yield of spring maize in arid northwest china. Agronomy 2023, 13, 227. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, J.; Fang, L.; Zhang, Z.; Ma, W.; Niu, Y.; Ju, L.; Deng, J.; Zhao, T.; Lian, J.; et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat. Genet. 2019, 51, 739–748. [Google Scholar] [CrossRef]
- Yang, Z.; Qanmber, G.; Wang, Z.; Yang, Z.; Li, F. Gossypium genomics: Trends, scope, and utilization for cotton improvement. Trends Plant Sci. 2020, 25, 488–500. [Google Scholar] [CrossRef]
- Allanov, K.; Shamsiev, A.; Durdiev, N.; Avliyakulov, M.; Karimov, A.; Khaitov, B. Improving nutrition and water use efficiencies of pima cotton (Gossypium barbadense L.) varieties under arid conditions of Uzbekistan. J. Plant. Nutr. 2020, 43, 2590–2600. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, L.; Luo, Q.; Chen, H.; Yang, Y. Spatial optimization of cotton cultivation in Xinjiang: A climate change perspective. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103523. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, J.; Yu, M.; Zhang, Y.; Abbas, A.; Wang, S.; Bagadeem, S. Sustainable Cotton Production through Increased Competitiveness: Analysis of Comparative Advantage and Influencing Factors of Cotton Production in Xinjiang, China. Agronomy 2022, 12, 2239. [Google Scholar] [CrossRef]
- Akbari Variani, H.; Afshar, A.; Vahabzadeh, M.; Molajou, A. A review on food subsystem simulation models for the water-food-energy nexus: Development perspective. Environ. Sci. Pollut. Res. 2023, 30, 95197–95214. [Google Scholar] [CrossRef] [PubMed]
- Berghuijs, H.N.; Silva, J.V.; Reidsma, P.; de Wit, A.J. Expanding the WOFOST crop model to explore options for sustainable nitrogen management: A study for winter wheat in the Netherlands. Eur. J. Agron. 2024, 154, 127099. [Google Scholar] [CrossRef]
- Lagerquist, E.; Vogeler, I.; Kumar, U.; Bergkvist, G.; Lana, M.; Watson, C.A.; Parsons, D. Assessing the effect of intercropped leguminous service crops on main crops and soil processes using APSIM NG. Agric. Syst. 2024, 216, 103884. [Google Scholar] [CrossRef]
- Shahid, M.R.; Wakeel, A.; Ullah, M.S.; Gaydon, D.S. Identifying changes to key APSIM-wheat constants to sensibly simulate high temperature crop response in Pakistan. Field Crop. Res. 2024, 307, 109265. [Google Scholar] [CrossRef]
- Guhan, V.; Annadurai, K.; Easwaran, S.; Marimuthu, M.; Balu, D.; Vigneswaran, S.; Navinkumar, C. Assessing the impact of climate change on water requirement and yield of sugarcane over different agro-climatic zones of Tamil Nadu. Sci. Rep. 2024, 14, 8239. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, M.; Liao, Z.; Guo, J.; Zhang, F.; Fan, J.; Feng, H.; Yang, Q.; Wu, L.; Wang, X. Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes. Agric. Water Manag. 2023, 276, 108076. [Google Scholar] [CrossRef]
- Ran, H.; Kang, S.; Hu, X.; Li, F.; Du, T.; Tong, L.; Li, S.; Ding, R.; Zhou, Z.; Parsons, D. Newly developed water productivity and harvest index models for maize in an arid region. Field Crop. Res. 2019, 234, 73–86. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef]
- Tan, S.; Wang, Q.; Zhang, J.; Chen, Y.; Shan, Y.; Xu, D. Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang, China. Agric. Water Manag. 2018, 196, 99–113. [Google Scholar] [CrossRef]
- Hsiao, T.C.; Heng, L.; Steduto, P.; Rojas Lara, B.; Raes, D.; Fereres, E. AquaCrop—The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron. J. 2009, 101, 448–459. [Google Scholar] [CrossRef]
- Huang, M.; Wang, C.; Qi, W.; Zhang, Z.; Xu, H. Modelling the integrated strategies of deficit irrigation, nitrogen fertilization, and biochar addition for winter wheat by AquaCrop based on a two-year field study. Field Crop. Res. 2022, 282, 108510. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Si, Z.; Hamani, A.K.M.; Huang, W.; Fan, K.; Wang, X.; Gao, Y. Alternative planting patterns of film-mulching cotton for alleviating plastic residue pollution in Aksu oasis, southern Xinjiang. Ind. Crop. Prod. 2023, 203, 117205. [Google Scholar] [CrossRef]
- Zhang, J.; Li, K.; Gao, Y.; Feng, D.; Zheng, C.; Cao, C.; Sun, J.; Dang, H.; Hamani, A.K.M. Evaluation of saline water irrigation on cotton growth and yield using the AquaCrop crop simulation model. Agric. Water Manag. 2022, 261, 107355. [Google Scholar] [CrossRef]
- Yin, J.; Yang, Y.; Eeswaran, R.; Yang, Z.; Ma, Z.; Sun, F. Irrigation scheduling for potatoes (Solanum tuberosum L.) under drip irrigation in an arid region using AquaCrop model. Front. Plant Sci. 2023, 14, 1242074. [Google Scholar] [CrossRef] [PubMed]
- Mirsafi, Z.; Sepaskhah, A.R.; Ahmadi, S.H.; Kamgar-Haghighi, A.A. Assessment of AquaCrop model for simulating growth and yield of saffron (Crocus sativus L.). Sci. Hortic. 2016, 211, 343–351. [Google Scholar] [CrossRef]
- Araya, A.; Keesstra, S.D.; Stroosnijder, L. Simulating yield response to water of Teff (Eragrostis tef) with FAO’s AquaCrop model. Field Crop. Res. 2010, 116, 196–204. [Google Scholar] [CrossRef]
- Razzaghi, F.; Babolhakami, A.; Sepaskhah, A.R. Is AquaCrop a useful tool for rapeseed growth and yield prediction in semi-arid regions: Model evaluation under different water-saving using long-term weather data. Theor. Appl. Climatol. 2023, 155, 1–21. [Google Scholar]
- Jiang, T.; Wang, B.; Xu, X.; Cao, Y.; Li Liu, D.; He, L.; Jin, N.; Ma, H.; Chen, S.; Zhao, K.; et al. Identifying sources of uncertainty in wheat production projections with consideration of crop climatic suitability under future climate. Agric. For. Meteorol. 2022, 319, 108933. [Google Scholar] [CrossRef]
- Solgi, S.; Ahmadi, S.H.; Sepaskhah, A.R.; Edalat, M. Wheat yield modeling under water-saving irrigation and climatic scenarios in transition from surface to sprinkler irrigation systems. J. Hydrol. 2022, 612, 128053. [Google Scholar] [CrossRef]
- Ul-Allah, S.; Rehman, A.; Hussain, M.; Farooq, M. Fiber yield and quality in cotton under drought: Effects and management. Agric. Water Manag. 2021, 255, 106994. [Google Scholar] [CrossRef]
- Wellens, J.; Raes, D.; Fereres, E.; Diels, J.; Coppye, C.; Adiele, J.G.; Ezui, K.S.G.; Becerra, L.; Selvaraj, M.G.; Dercon, G.; et al. Calibration and validation of the FAO AquaCrop water productivity model for cassava (Manihot esculenta Crantz). Agric. Water Manag. 2022, 263, 107491. [Google Scholar] [CrossRef]
- Shen, X.J.; Sun, J.S.; Zhang, J.Y.; Wang, J.L.; Li, M.S. Study on the placement of sensors for moisture content in soil profile for cotton under mulched drip irrigation condition. Agric. Res. Arid. Areas 2012, 30, 90–95. [Google Scholar]
- Hou, X.; Fan, J.; Zhang, F.; Hu, W.; Yan, F.; Xiao, C.; Li, Y.; Cheng, H. Determining water use and crop coefficients of drip-irrigated cotton in south Xinjiang of China under various irrigation amounts. Ind. Crop. Prod. 2022, 176, 114376. [Google Scholar] [CrossRef]
- Çetin, O.; Kara, A. Assesment of wa35ter productivity using different drip irrigation systems for cotton. Agric. Water Manag. 2019, 223, 105693. [Google Scholar] [CrossRef]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop—The FAO crop model to simulate yield response to waicter: II. Main algorithms and software description. Agron. J. 2009, 101, 438–447. [Google Scholar] [CrossRef]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied hydrology. J. Eng. Educ. 1962, 308, 1959. [Google Scholar]
- Tsakiris, G.; Vangelis, H. Establishing a drought index incorporating evapotranspiration. Eur. Water 2005, 9, 3–11. [Google Scholar]
- Pierce, K.M.; Hope, J.L.; Hoggard, J.C.; Synovec, R.E. A principal component analysis based method to discover chemical differences in comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) separations of metabolites in plant samples. Talanta 2006, 70, 797–804. [Google Scholar] [CrossRef]
- Yavuz, D.; Seymen, M.; Süheri, S.; Yavuz, N.; Türkmen, Ö.; Kurtar, E.S. How do rootstocks of citron watermelon (Citrullus lanatus var. citroides) affect the yield and quality of watermelon under deficit irrigation? Agric. Water Manag. 2020, 241, 106351. [Google Scholar] [CrossRef]
- Yavuz, N. Can grafting affect yield and water use efficiency of melon under different irrigation depths in a semi-arid zone? Arab. J. Geosci. 2021, 14, 1–14. [Google Scholar] [CrossRef]
- Ran, H.; Kang, S.; Li, F.; Du, T.; Tong, L.; Li, S.; Ding, R.; Zhang, X. Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China. Agric. Water Manage. 2018, 203, 438–450. [Google Scholar] [CrossRef]
- Tsakmakis, I.D.; Kokkos, N.P.; Gikas, G.D.; Pisinaras, V.; Hatzigiannakis, E.; Arampatzis, G.; Sylaios, G.K. Evaluation of AquaCrop model simulations of cotton growth under deficit irrigation with an emphasis on root growth and water extraction patterns. Agric. Water Manage. 2019, 213, 419–432. [Google Scholar] [CrossRef]
- Paredes, P.; de Melo-Abreu, J.P.; Alves, I.; Pereira, L.S. Assessing the performance of the FAO AquaCrop model to estimate maize yields and water use under full and deficit irrigation with focus on model parameterization. Agric. Water Manag. 2014, 144, 81–97. [Google Scholar] [CrossRef]
- Feng, D.; Li, G.; Wang, D.; Wulazibieke, M.; Cai, M.; Kang, J.; Yuan, Z.; Xu, H. Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China. Agric. Water Manag. 2022, 261, 107372. [Google Scholar] [CrossRef]
- Sandhu, R.; Irmak, S. Assessment of AquaCrop model in simulating maize canopy cover, soil-water, evapotranspiration, yield, and water productivity for different planting dates and densities under irrigated and rainfed conditions. Agric. Water Manag. 2019, 224, 105753. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, F.; Wang, H.; Cao, H.; Yang, Y.; Gao, Y. Irrigation Scheduling Optimization of Drip-irrigated without Plastic Film Cotton in South Xinjiang Based on AquaCrop model. Trans. Chin. Soc. Agric. Mach. 2021, 52, 293–301. [Google Scholar]
- Du, T.; Kang, S.; Zhang, J.; Li, F. Water use and yield responses of cotton to alternate partial root-zone drip irrigation in the arid area of north-west China. Irrig. Sci. 2008, 26, 147–159. [Google Scholar] [CrossRef]
- Xiao, C.; Ji, Q.; Zhang, F.; Li, Y.; Fan, J.; Hou, X.; Yan, F.; Liu, X.; Gong, K. Effects of various soil water potential thresholds for drip irrigation on soil salinity, seed cotton yield and water productivity of cotton in northwest China. Agric. Water Manag. 2023, 279, 108172. [Google Scholar] [CrossRef]
- Jiang, T.; Sun, S.; Li, Z.; Li, Q.; Lu, Y.; Li, C.; Wang, Y.; Wu, P. Vulnerability of crop water footprint in rain-fed and irrigation agricultural production system under future climate scenarios. Agric. For. Meteorol. 2022, 326, 109164. [Google Scholar] [CrossRef]
- Li, N.; Li, Y.; Yang, Q.; Biswas, A.; Dong, H. Simulating climate change impacts on cotton using AquaCrop model in China. Agr. Syst. 2024, 216, 103897. [Google Scholar] [CrossRef]
- He, P.; Yu, S.E.; Zhang, F.; Ma, T.; Ding, J.; Chen, K.; Chen, X.; Dai, Y. Effects of Soil Water Regulation on the Cotton Yield, Fiber Quality and Soil Salt Accumulation under Mulched Drip Irrigation in Southern Xinjiang, China. Agronomy 2022, 12, 1246. [Google Scholar] [CrossRef]
- An, J.; Zhang, Z.; Li, X.; Xing, F.; Lei, Y.; Yang, B.; Wang, Z.; Han, Y.; Chen, H.; Wang, G.; et al. Loose and tower-type canopy structure can improve cotton yield in the Yellow River basin of China by increasing light interception. Arch. Agron. Soil Sci. 2023, 69, 920–933(14). [Google Scholar] [CrossRef]
- Wang, Q.; Chen, H.; Han, Y.; Xing, F.; Wang, Z.; Feng, L.; Wang, G.; Yang, B.; Lei, Y.; Xiong, S.; et al. Effect of Spatial-Temporal Light Competition on Cotton Yield and Yield Distribution. Agronomy 2021, 11, 2346. [Google Scholar] [CrossRef]
- De Mello, C.S.; Van Dijk, J.P.; Voorhuijzen, M.; Kok, E.J.; Arisi, A.C.M. Tuber proteome comparison of five potato varieties by principal component analysis. J. Sci. Food Agric. 2016, 96, 3928–3936. [Google Scholar] [CrossRef] [PubMed]
- Jarwar, A.H.; Wang, X.; Iqbal, M.S.; Sarfraz, Z.; Wang, L.; Ma, Q.; Shuli, F. Genetic divergence on the basis of principal component, correlation and cluster analysis of yield and quality traits in cotton cultivars. Pak. J. Bot. 2019, 51, 1143–1148. [Google Scholar] [CrossRef]
- Yu, H.; Li, S.; Ding, J.; Yang, T.; Wang, Y. Water use efficiency and its drivers of two typical cash crops in an arid area of Northwest China. Agric. Water Manag. 2023, 287, 108433. [Google Scholar] [CrossRef]
Year | Treatment | Irrigation Threshold | Irrigation Quotas and Frequency of Irrigation | Irrigation during Critical Fertility Period (mm) | Whole Fertility Cycle | |||
---|---|---|---|---|---|---|---|---|
Squaring Stage | Blooming Stage | Seeding Stage (mm) | Squaring Stage (mm) | Blooming Stage (mm) | Total Irrigation (mm) | |||
2021 | W1 | 50–100% | 50–100% | 70 | 42 × 2 | 66 × 4 | 346 | 416 |
W2 | 60–80% | 60–80% | 70 | 17 × 4 | 26 × 11 | 356 | 426 | |
W3 | 60–90% | 60–90% | 70 | 25 × 3 | 39 × 8 | 390 | 460 | |
W4 | 60–100% | 60–100% | 70 | 34 × 3 | 52 × 6 | 415 | 485 | |
2022 | WD1 | 55–90% | 60–90% | 70 | 29 × 2 | 39 × 6 | 295 | 365 |
WD2 | 70–100% | 70–100% | 70 | 29 × 2 | 26 × 10 | 321 | 391 | |
WD3 | 55–90% | 60–90% | 70 | 29 × 2 | 13 × 21 | 334 | 404 | |
WD4 | 55–90% | 70–90% | 70 | 21 × 3 | 39 × 6 | 299 | 369 | |
WD5 | 55–90% | 80–90% | 70 | 21 × 3 | 26 × 10 | 325 | 395 | |
WD6 | 65–90% | 80–90% | 70 | 21 × 3 | 13 × 21 | 338 | 408 | |
WD7 | 65–90% | 70–90% | 70 | 13 × 5 | 39 × 7 | 338 | 408 | |
WD8 | 65–90% | 80–90% | 70 | 13 × 5 | 26 × 11 | 351 | 421 | |
WD9 | 75–90% | 60–90% | 70 | 13 × 7 | 13 × 20 | 350 | 420 | |
CK | 75–90% | 70–90% | 70 | - | - | 575 | 645 |
Crop Parameter | Value | Remarks |
---|---|---|
Base temperature (Tbase)/(°C) | 12 | Measured |
Upper temperature (Tupper)/(°C) | 35 | Measured |
Crop transpiration coefficient KcTR,x | 1.30 | Calibrated |
Initial canopy cover (CC0)/(%) | 1.22 | Calibrated |
Canopy growth coefficient (CGC)/(% d−1) | 6.9 | Calibrated |
Maximum canopy cover (CCX)/(%) | 88 | Calibrated |
Canopy decline coefficient (CDC)/(% d−1) | 8.8 | Calibrated |
Normalized crop water productivity (WP)/(g m−2) | 24 | Calibrated |
Reduction coefficient of WP* during yield formation (f yield) | 74 | Calibrated |
Maximum effective rooting depth/(m) | 0.70 | Recommended |
Reference harvest index (HI0)/(%) | 35 | Calibrated |
Upper threshold for canopy expansion (Pexp,upper) | 0.2 | Calibrated |
Lower threshold for canopy expansion (Pexp,lower) | 0.64 | Calibrated |
Upper threshold for stomatal closure (Pclo,upper) | 0.32 | Calibrated |
Upper threshold for canopy senescence (Psen,upper) | 0.6 | Calibrated |
Lower threshold of the impact of salt on crop growth (Ece,lower)/(dS m−1) | 8 | Calibrated |
Upper limit of impact threshold of salt on crop growth (Ece,upper)/(dS m−1) | 27 | Calibrated |
Simulation Scenario | Irrigation Amount (mm) | Irrigation Cycle (d) | Irrigation Frequency | Simulation Scenario | Irrigation Amount (mm) | Irrigation Cycle (d) | Irrigation Frequency |
---|---|---|---|---|---|---|---|
T1 | 360 | 6 | 16 | T9 | 450 | 6 | 16 |
T2 | 360 | 8 | 12 | T10 | 450 | 8 | 12 |
T3 | 360 | 10 | 10 | T11 | 450 | 10 | 10 |
T4 | 360 | 12 | 8 | T12 | 450 | 12 | 8 |
T5 | 405 | 6 | 16 | T13 | 525 | 6 | 16 |
T6 | 405 | 8 | 12 | T14 | 525 | 8 | 12 |
T7 | 405 | 10 | 10 | T15 | 525 | 10 | 10 |
T8 | 405 | 12 | 8 | T16 | 525 | 12 | 8 |
Year | Treatment | ETc (mm) | |||
---|---|---|---|---|---|
Simulated | Measured | Pe (%) | Dif | ||
2021 | W1 | 441 | 445 | −0.70 | −3 |
W2 | 490 | 481 | 1.72 | 8 | |
W3 | 492 | 480 | 2.43 | 12 | |
W4 | 499 | 512 | −2.70 | −14 | |
2022 | WD1 | 421 | 436 | −3.53 | −15 |
WD2 | 427 | 448 | −4.80 | −22 | |
WD3 | 429 | 456 | −6.11 | −28 | |
WD4 | 419 | 423 | −1.17 | −5 | |
WD5 | 433 | 447 | −2.97 | −13 | |
WD6 | 432 | 462 | −6.47 | −30 | |
WD7 | 432 | 468 | −7.67 | −36 | |
WD8 | 434 | 474 | −8.50 | −40 | |
WD9 | 436 | 485 | −10.06 | −49 |
Treatment | Scenario Simulation | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wet Years | Normal Years | Dry Years | ||||||||||||||||
Ya | Bio | ET | WP | WPIrrig | HI | Ya | Bio | ET | WP | WPIrrig | HI | Ya | Bio | ET | WP | WPIrrig | HI | |
T1 | 6.25 e | 16.10 f | 509.52 fg | 1.23 cd | 1.46 a | 38.86 b | 5.16 fg | 12.93 h | 506.78 i | 1.02 ef | 1.20 a | 39.96 cde | 4.66 g | 11.44 h | 507.30 h | 0.92 de | 1.08 a | 40.78 def |
T2 | 6.18 f | 15.70 g | 496.24 hi | 1.25 b | 1.44 b | 39.42 a | 4.99 hi | 12.37 i | 488.16 j | 1.02 de | 1.16 bc | 40.36 bcd | 4.51 h | 10.94 i | 486.80 j | 0.93 cd | 1.05 b | 41.28 cd |
T3 | 6.20 ef | 15.65 g | 491.40 i | 1.26 a | 1.44 ab | 39.62 a | 5.09 gh | 12.52 i | 488.32 j | 1.04 ab | 1.18 ab | 40.72 ab | 4.62 g | 11.02 i | 486.74 j | 0.95 b | 1.07 a | 41.90 ab |
T4 | 6.05 g | 15.24 h | 478.56 j | 1.27 a | 1.41 c | 39.74 a | 4.91 i | 11.96 j | 467.64 k | 1.05 a | 1.14 cd | 41.12 a | 4.46 h | 10.54 j | 463.52 k | 0.96 a | 1.04 bc | 42.38 a |
T5 | 6.37 cd | 16.67 e | 525.48 de | 1.21 ef | 1.34 d | 38.20 d | 5.30 e | 13.47 f | 527.90 fg | 1.01 fg | 1.12 de | 39.38 ef | 4.85 e | 12.02 f | 532.24 f | 0.91 ef | 1.02 d | 40.34 fg |
T6 | 6.35 cd | 16.55 e | 521.00 de | 1.22 de | 1.34 d | 38.42 cd | 5.23 ef | 13.15 g | 515.06 hi | 1.02 ef | 1.10 e | 39.86 de | 4.84 e | 11.73 g | 517.54 g | 0.94 c | 1.02 d | 41.25 cd |
T7 | 6.32 d | 16.30 f | 510.36 f | 1.24 bc | 1.33 d | 38.76 bc | 5.28 ef | 13.11 g | 508.22 hi | 1.04 abcd | 1.11 e | 40.32 bcd | 4.87 e | 11.63 g | 510.24 h | 0.96 ab | 1.03 cd | 41.90 ab |
T8 | 6.23 ef | 16.07 f | 502.26 gh | 1.24 b | 1.31 e | 38.82 b | 5.15 fg | 12.77 h | 495.44 j | 1.04 abc | 1.09 e | 40.48 bc | 4.76 f | 11.30 h | 494.32 i | 0.96 a | 1.00 e | 42.16 ab |
T9 | 6.47 ab | 17.33 c | 543.80 bc | 1.19 g | 1.24 f | 37.34 g | 5.47 bc | 14.14 d | 549.96 cd | 1.00 gh | 1.05 f | 38.78 gh | 5.12 c | 12.74 d | 563.36 c | 0.91 ef | 0.98 f | 40.18 g |
T10 | 6.46 ab | 17.23 c | 539.28 bc | 1.20 fg | 1.24 f | 37.46 fg | 5.45 cd | 13.92 e | 542.70 de | 1.01 fg | 1.05 f | 39.18 fg | 5.11 c | 12.47 e | 546.82 d | 0.94 c | 0.98 f | 40.98 de |
T11 | 6.41 bc | 16.95 d | 528.88 d | 1.21 ef | 1.23 fg | 37.80 ef | 5.48 bc | 13.85 e | 535.00 ef | 1.03 cde | 1.05 f | 39.62 ef | 5.15 c | 12.36 e | 539.44 e | 0.96 ab | 0.99 ef | 41.72 bc |
T12 | 6.35 cd | 16.65 e | 518.46 e | 1.23 cde | 1.22 g | 38.14 de | 5.33 de | 13.40 f | 518.30 gh | 1.03 bcde | 1.03 f | 39.84 de | 4.97 d | 11.94 f | 519.66 g | 0.96 ab | 0.96 g | 41.68 bc |
T13 | 6.52 a | 17.95 a | 561.70 a | 1.16 h | 1.10 h | 36.32 i | 5.71 a | 15.17 a | 589.40 a | 0.97 i | 0.96 g | 37.70 i | 5.47 a | 13.83 a | 606.04 a | 0.90 f | 0.92 h | 39.58 h |
T14 | 6.51 a | 17.82 a | 556.76 a | 1.17 h | 1.09 h | 36.54 hi | 5.68 a | 14.92 b | 577.68 b | 0.99 hi | 0.96 g | 38.36 h | 5.42 a | 13.52 b | 588.96 b | 0.92 de | 0.91 h | 40.18 g |
T15 | 6.48 a | 17.58 b | 546.86 b | 1.19 g | 1.09 h | 36.88 h | 5.68 a | 14.79 b | 570.08 b | 1.00 gh | 0.95 g | 38.50 h | 5.47 a | 13.45 b | 583.94 b | 0.94 c | 0.92 h | 40.70 efg |
T16 | 6.45 ab | 17.32 c | 538.38 c | 1.20 fg | 1.09 h | 37.24 g | 5.59 ab | 14.49 c | 556.92 c | 1.01 fg | 0.94 g | 38.66 gh | 5.30 b | 13.10 c | 565.74 c | 0.94 c | 0.89 i | 40.54 efg |
Eigenvector | Scenario | |||||
---|---|---|---|---|---|---|
Wet Years | Normal Years | Dry Years | ||||
PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | |
Ya | 0.98 | 0.07 | 0.99 | −0.08 | 0.97 | 0.19 |
Bio | 0.99 | −0.02 | 1.00 | 0.00 | 1.00 | 0.03 |
ET | 0.99 | 0.12 | 1.00 | 0.08 | 1.00 | −0.06 |
TI | 0.94 | −0.31 | 0.96 | −0.27 | 0.95 | 0.29 |
IF | 0.29 | 0.95 | 0.27 | 0.96 | 0.30 | −0.94 |
WPIrrig | −0.92 | 0.37 | −0.90 | 0.38 | −0.88 | −0.40 |
WP | −0.98 | −0.17 | −0.90 | −0.40 | −0.56 | 0.82 |
HI | −1.00 | 0.01 | −0.98 | −0.18 | −0.82 | 0.55 |
TC | 0.99 | −0.11 | 0.99 | −0.14 | 0.97 | 0.22 |
NR | 0.96 | 0.15 | 0.99 | −0.06 | 0.97 | 0.19 |
Eigenvalue | 8.58 | 1.21 | 8.48 | 1.37 | 7.58 | 2.22 |
Percentage of variance | 85.83 | 12.12 | 84.78 | 13.65 | 75.76 | 22.22 |
Cumulative variance | 85.83 | 97.95 | 84.78 | 98.44 | 75.76 | 97.98 |
Treatment | Scenarios | Rank | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Wet Year | Normal Year | Dry Year | Wet Year | Normal Year | Dry Year | |||||||
Score | PC1 | PC2 | Score | PC1 | PC2 | Score | PC1 | PC2 | ||||
T1 | −0.44 | −0.75 | 1.76 | −0.39 | −0.74 | 1.74 | −0.94 | −0.71 | −1.73 | 11 | 11 | 14 |
T2 | −1.00 | −1.21 | 0.51 | −0.89 | −1.14 | 0.69 | −1.03 | −1.08 | −0.88 | 14 | 14 | 15 |
T3 | −1.14 | −1.28 | −0.16 | −1.04 | −1.19 | −0.16 | −0.91 | −1.20 | 0.04 | 15 | 15 | 13 |
T4 | −1.65 | −1.76 | −0.86 | −1.48 | −1.60 | −0.73 | −1.06 | −1.57 | 0.67 | 16 | 16 | 16 |
T5 | 0.16 | −0.03 | 1.52 | 0.14 | −0.08 | 1.50 | −0.38 | −0.03 | −1.58 | 8 | 7 | 11 |
T6 | −0.14 | −0.22 | 0.44 | −0.28 | −0.38 | 0.35 | −0.36 | −0.38 | −0.31 | 9 | 10 | 10 |
T7 | −0.46 | −0.48 | −0.34 | −0.55 | −0.55 | −0.55 | −0.32 | −0.59 | 0.60 | 12 | 12 | 9 |
T8 | −0.79 | −0.77 | −0.92 | −0.83 | −0.80 | −0.98 | −0.41 | −0.84 | 1.04 | 13 | 13 | 12 |
T9 | 0.80 | 0.72 | 1.33 | 0.69 | 0.60 | 1.24 | 0.23 | 0.67 | −1.25 | 4 | 4 | 7 |
T10 | 0.52 | 0.56 | 0.26 | 0.36 | 0.39 | 0.16 | 0.25 | 0.32 | 0.03 | 6 | 6 | 6 |
T11 | 0.18 | 0.28 | −0.53 | 0.09 | 0.22 | −0.72 | 0.30 | 0.11 | 0.96 | 7 | 8 | 5 |
T12 | −0.17 | −0.04 | −1.11 | −0.26 | −0.11 | −1.18 | 0.14 | −0.16 | 1.18 | 10 | 9 | 8 |
T13 | 1.47 | 1.56 | 0.84 | 1.61 | 1.70 | 1.06 | 1.14 | 1.74 | −0.91 | 1 | 1 | 2 |
T14 | 1.19 | 1.39 | −0.23 | 1.20 | 1.41 | −0.14 | 1.12 | 1.41 | 0.14 | 2 | 2 | 3 |
T15 | 0.89 | 1.15 | −0.99 | 0.96 | 1.26 | −0.90 | 1.19 | 1.26 | 0.94 | 3 | 3 | 1 |
T16 | 0.59 | 0.89 | −1.53 | 0.68 | 1.01 | −1.37 | 1.04 | 1.03 | 1.07 | 5 | 5 | 4 |
Linear function | w = 0.876 w1 +0.124 w2 | n = 0.862 n1 + 0.139 n2 | d = 0.773 d1 + 0.227 d2 | T13 | T13 | T15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Fu, Q.; Ai, P.; Ma, Y.; Pan, Y. Modeling Comprehensive Deficit Irrigation Strategies for Drip-Irrigated Cotton Using AquaCrop. Agriculture 2024, 14, 1269. https://doi.org/10.3390/agriculture14081269
Du Y, Fu Q, Ai P, Ma Y, Pan Y. Modeling Comprehensive Deficit Irrigation Strategies for Drip-Irrigated Cotton Using AquaCrop. Agriculture. 2024; 14(8):1269. https://doi.org/10.3390/agriculture14081269
Chicago/Turabian StyleDu, Yalong, Qiuping Fu, Pengrui Ai, Yingjie Ma, and Yang Pan. 2024. "Modeling Comprehensive Deficit Irrigation Strategies for Drip-Irrigated Cotton Using AquaCrop" Agriculture 14, no. 8: 1269. https://doi.org/10.3390/agriculture14081269
APA StyleDu, Y., Fu, Q., Ai, P., Ma, Y., & Pan, Y. (2024). Modeling Comprehensive Deficit Irrigation Strategies for Drip-Irrigated Cotton Using AquaCrop. Agriculture, 14(8), 1269. https://doi.org/10.3390/agriculture14081269