Oilseed Rape Yield Prediction from UAVs Using Vegetation Index and Machine Learning: A Case Study in East China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Data Acquisition
2.3. Data Reduction
2.4. Data Modeling
2.5. Model Performance
3. Results
3.1. Oilseed Rape Yield
3.2. Reflectance of Oilseed Rape Plants
3.3. VIs of Oilseed Rape Plants
3.4. PCA of VIs
3.5. Performance of Oilseed Rape Yield Prediction Model
Stage | Model | Training Performance | Testing Performance | ||||
---|---|---|---|---|---|---|---|
RMSE (kg/ha) | RRMSE (%) | R2 | RMSE (kg/ha) | RRMSE (%) | R2 | ||
S1 | RF | 214.9 | 7.57 | 0.893 | 531.3 | 19.34 | 0.243 |
MLR | 370.7 | 13.05 | 0.618 | 559.6 | 20.37 | 0.297 | |
SVM | 398.2 | 14.02 | 0.568 | 518.5 | 18.87 | 0.314 | |
S2 | RF | 167.8 | 5.91 | 0.925 | 319.7 | 11.64 | 0.723 |
MLR | 309.7 | 10.90 | 0.733 | 309.5 | 11.26 | 0.732 | |
SVM | 316.9 | 11.15 | 0.722 | 318.2 | 11.58 | 0.714 | |
S3 | RF | 227.7 | 8.02 | 0.861 | 601.3 | 21.88 | 0.220 |
MLR | 398.6 | 14.03 | 0.558 | 546.6 | 19.89 | 0.268 | |
SVM | 404.0. | 14.22 | 0.558 | 577.0 | 21.00 | 0.268 | |
S4 | RF | 247.4 | 8.71 | 0.842 | 543.0 | 19.76 | 0.227 |
MLR | 503.8 | 17.74 | 0.293 | 477.0 | 17.36 | 0.367 | |
SVM | 529.0 | 18.62 | 0.293 | 525.4 | 19.12 | 0.367 |
3.6. Comparisons of Predicted and Measured Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clark, R.; Dahlhaus, P.; Robinson, N.; Larkins, J.-A.; Morse-McNabb, E. Matching the model to the available data to predict wheat, barley, or canola yield: A review of recently published models and data. Agric. Sys. 2023, 211, 103749. [Google Scholar] [CrossRef]
- Habibi, L.N.; Matsui, T.; Tanaka, T.S.T. Critical evaluation of the effects of a cross-validation strategy and machine learning optimization on the prediction accuracy and transferability of a soybean yield prediction model using UAV-based remote sensing. J. Agric. Food Res. 2024, 16, 101096. [Google Scholar] [CrossRef]
- Luo, L.; Sun, S.; Xue, J.; Gao, Z.; Zhao, J.; Yin, Y.; Gao, F.; Luan, X. Crop yield estimation based on assimilation of crop models and remote sensing data: A systematic evaluation. Agric. Sys. 2023, 210, 103711. [Google Scholar] [CrossRef]
- Pantazi, X.E.; Moshou, D.; Alexandridis, T.; Whetton, R.L.; Mouazen, A.M. Wheat yield prediction using machine learning and advanced sensing techniques. Comput. Electron. Agric. 2016, 121, 57–65. [Google Scholar] [CrossRef]
- Ren, S.; Chen, H.; Hou, J.; Zhao, P.; Dong, Q.G.; Feng, H. Based on historical weather data to predict summer field-scale maize yield: Assimilation of remote sensing data to WOFOST model by ensemble Kalman filter algorithm. Comput. Electron. Agric. 2024, 219, 108822. [Google Scholar] [CrossRef]
- Cheema, M.J.M.; Bakhsh, A.; Mahmood, T.; Liaqat, M.U. Assessment of water allocations using remote sensing and GIS modeling for Indus Basin, Pakistan. In Proceedings of the PSSP Working Paper, Washington, DC, USA, 19 February 2016; pp. 1–42. [Google Scholar]
- Rhebergen, T.; Yeates, S.J. Climate and soil-based constraints to rainfed cotton yield in the Northern Territory, Australia—A modelling approach using APSIM-OZCOT. Eur. J. Agron. 2023, 151, 126998. [Google Scholar] [CrossRef]
- Nakano, H.; Tanaka, R.; Guan, S.; Ohdan, H. Predicting rice grain yield using normalized difference vegetation index from UAV and GreenSeeker. Crop Environ. 2023, 2, 59–65. [Google Scholar] [CrossRef]
- Xiong, X.; Zhong, R.; Tian, Q.; Huang, J.; Zhu, L.; Yang, Y.; Lin, T. Daily DeepCropNet: A hierarchical deep learning approach with daily time series of vegetation indices and climatic variables for corn yield estimation. ISPRS J. Photogramm. Remote Sens. 2024, 209, 249–264. [Google Scholar] [CrossRef]
- Fernandes, J.L.; Ebecken, N.F.F.; Esquerdo, J.C.D.M. Sugarcane yield prediction in Brazil using NDVI time series and neural networks ensemble. Int. J. Remote Sens. 2017, 38, 4631–4644. [Google Scholar] [CrossRef]
- Sulik, J.J.; Long, D.S. Spectral considerations for modeling yield of canola. Remote Sens. Environ. 2016, 184, 161–174. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Zhang, J.; Fan, Y.; Cheng, Y.; Wang, B.; Wu, X.; Tan, X.; Tan, T.; Li, S.; et al. Predicting grain yield and protein content using canopy reflectance in maize grown under different water and nitrogen levels. Field Crops Res. 2021, 260, 107988. [Google Scholar] [CrossRef]
- Panek, E.; Gozdowski, D. Analysis of relationship between cereal yield and NDVI for selected regions of Central Europe based on MODIS satellite data. Remote Sens. Appl. Soc. Environ. 2020, 17, 100286. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Kayad, A.; Rodrigues, F.A., Jr.; Naranjo, S.; Sozzi, M.; Pirotti, F.; Marinello, F.; Schulthess, U.; Defourny, P.; Gerard, B.; Weiss, M. Radiative transfer model inversion using high-resolution hyperspectral airborne imagery—Retrieving maize LAI to access biomass and grain yield. Field Crops Res. 2022, 282, 108449. [Google Scholar] [CrossRef] [PubMed]
- Kaul, M.; Hill, R.L.; Walthall, C. Artificial neural networks for corn and soybean yield prediction. Agric. Sys. 2005, 85, 1–18. [Google Scholar] [CrossRef]
- Kamir, E.; Waldner, F.; Hochman, Z. Estimating wheat yields in Australia using climate records, satellite image time series and machine learning methods. ISPRS J. Photogramm. Remote Sens. 2020, 160, 124–135. [Google Scholar] [CrossRef]
- Marques Ramos, A.P.; Prado Osco, L.; Elis Garcia Furuya, D.; Nunes Gonçalves, W.; Cordeiro Santana, D.; Pereira Ribeiro Teodoro, L.; Antonio da Silva Junior, C.; Fernando Capristo-Silva, G.; Li, J.; Henrique Rojo Baio, F.; et al. A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices. Comput. Electron. Agric. 2020, 178, 105791. [Google Scholar] [CrossRef]
- Jeevaganesh, R.; Harish, D.; Priya, B. A machine learning-based approach for crop yield prediction and fertilizer recommendation. In Proceedings of the 6th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 28–30 April 2022; pp. 1330–1334. [Google Scholar]
- Rajković, D.; Marjanović Jeromela, A.; Pezo, L.; Lončar, B.; Zanetti, F.; Monti, A.; Kondić Špika, A. Yield and quality prediction of winter rapeseed—Artificial neural network and random forest models. Agronomy 2021, 12, 58. [Google Scholar] [CrossRef]
- Liu, Z.; Ju, H.; Ma, Q.; Sun, C.; Lv, Y.; Liu, K.; Wu, T.; Cheng, M. Rice yield estimation using multi-temporal remote sensing data and machine learning: A case study of Jiangsu, China. Agriculture 2024, 14, 14040638. [Google Scholar] [CrossRef]
- Gómez, D.; Salvador, P.; Sanz, J.; Casanova, J.L. Potato yield prediction using machine learning techniques and sentinel 2 Data. Remote Sens. 2019, 11, 1745. [Google Scholar] [CrossRef]
- Sun, C.; Feng, L.; Zhang, Z.; Ma, Y.; Crosby, T.; Naber, M.; Wang, Y. Prediction of end-of-season tuber yield and tuber set in potatoes using in-season UAV-based hyperspectral imagery and machine learning. Sensors 2020, 20, 5293. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.D.; Hsieh, W.W.; Cannon, A.J.; Davidson, A.; Bédard, F. Crop yield forecasting on the Canadian Prairies by remotely sensed vegetation indices and machine learning methods. Agric. For. Meteorol. 2016, 218–219, 74–84. [Google Scholar] [CrossRef]
- Prasad, N.R.; Patel, N.R.; Danodia, A. Crop yield prediction in cotton for regional level using random forest approach. Spat. Inf. Res. 2020, 29, 195–206. [Google Scholar] [CrossRef]
- Matese, A.; Toscano, P.; Di Gennaro, S.; Genesio, L.; Vaccari, F.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef]
- Taşan, S.; Cemek, B.; Taşan, M.; Cantürk, A. Estimation of eggplant yield with machine learning methods using spectral vegetation indices. Comput. Electron. Agric. 2022, 202, 107367. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ETRS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 10–14 December 1973; pp. 309–317. [Google Scholar]
- Sulik, J.J.; Long, D.S. Spectral indices for yellow canola flowers. Int. J. Remote Sens. 2015, 36, 2751–2765. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Hancock, D.W.; Dougherty, C.T. Relationships between blue-and red-based vegetation indices and leaf area and yield of alfalfa. Crop Sci. 2007, 47, 2547–2556. [Google Scholar] [CrossRef]
- Hadjimitsis, D.G.; Papadavid, G.; Agapiou, A.; Themistocleous, K.; Hadjimitsis, M.G.; Retalis, A.; Michaelides, S.; Chrysoulakis, N.; Toulios, L.; Clayton, C.R.I. Atmospheric correction for satellite remotely sensed data intended for agricultural applications: Impact on vegetation indices. Nat. Hazards Earth Syst. Sci. 2010, 10, 89–95. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Alabi, T.R.; Abebe, A.T.; Chigeza, G.; Fowobaje, K.R. Estimation of soybean grain yield from multispectral high-resolution UAV data with machine learning models in West Africa. Remote Sens. Appl. Soc. Environ. 2022, 27, 100782. [Google Scholar] [CrossRef]
- Ge, H.; Ma, F.; Li, Z.; Du, C. Estimating rice yield by assimilating UAV-derived plant nitrogen concentration into the DSSAT model: Evaluation at different assimilation time windows. Field Crops Res. 2022, 288, 108705. [Google Scholar] [CrossRef]
- Barriguinha, A.; Jardim, B.; de Castro Neto, M.; Gil, A. Using NDVI, climate data and machine learning to estimate yield in the Douro wine region. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103069. [Google Scholar] [CrossRef]
- Zsebő, S.; Bede, L.; Kukorelli, G.; Kulmány, I.M.; Milics, G.; Stencinger, D.; Teschner, G.; Varga, Z.; Vona, V.; Kovács, A.J. Yield Prediction Using NDVI Values from GreenSeeker and MicaSense Cameras at Different Stages of Winter Wheat Phenology. Drones 2024, 8, 88. [Google Scholar] [CrossRef]
- Lukas, V.; Huňady, I.; Kintl, A.; Mezera, J.; Hammerschmiedt, T.; Sobotková, J.; Brtnický, M.; Elbl, J. Using UAV to Identify the optimal vegetation index for yield prediction ofoil seed rape (Brassica napus L.) at the flowering stage. Remote Sens. 2022, 14, 4953. [Google Scholar] [CrossRef]
- Huang, J.; Tian, L.; Liang, S.; Ma, H.; Becker-Reshef, I.; Huang, Y.; Su, W.; Zhang, X.; Zhu, D.; Wu, W. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agric. For. Meteorol. 2015, 204, 106–121. [Google Scholar] [CrossRef]
- Sadenova, M.; Beisekenov, N.; Varbanov, P.S.; Pan, T. Application of machine learning and neural networks to predict the yield of cereals, legumes, oilseeds and forage crops in Kazakhstan. Agriculture 2023, 13, 1195. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, P.; Bai, X.; Khan, J.; Zhang, S.; Li, L.; Wang, L. Assimilation of the leaf area index and vegetation temperature condition index for winter wheat yield estimation using Landsat imagery and the CERES-Wheat model. Agric. For. Meteorol. 2017, 246, 194–206. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, J.; Lou, W.; Sheng, L.; Li, D.; Hu, H. Improving grain yield prediction through fusion of multi-temporal spectral features and agronomic trait parameters derived from UAV imagery. Front. Plant Sci. 2023, 14, 1217448. [Google Scholar] [CrossRef] [PubMed]
- Adnan, R.M.; Liang, Z.; Heddam, S.; Zounemat-Kermani, M.; Kisi, O.; Li, B. Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs. J. Hydrol. 2020, 586, 124371. [Google Scholar] [CrossRef]
- Freitas, R.G.; Pereira, F.R.S.; Dos Reis, A.A.; Magalhães, P.S.G.; Figueiredo, G.K.D.A.; do Amaral, L.R. Estimating pasture aboveground biomass under an integrated crop-livestock system based on spectral and texture measures derived from UAV images. Comput. Electron. Agric. 2022, 198, 107122. [Google Scholar] [CrossRef]
- He, D.; Zamora, M.; Oto, A.; Karczmar, G.S.; Fan, X. Comparison of region-of-interest-averaged and pixel-averaged analysis of DCE-MRI data based on simulations and pre-clinical experiments. Phys. Med. Biol. 2017, 62, N445–N459. [Google Scholar] [CrossRef] [PubMed]
Notation | Treatment | Note |
---|---|---|
F1 | N fertilizer 125 kg/ha | Repeated 12 times |
F2 | N fertilizer 500 kg/ha | |
F3 | N fertilizer 750 kg/ha | |
NHB | Herbicide (S)-Metolachlor sprayed with 1.5 L/ha | Repeated 12 times |
HB | Without herbicide (S)-Metolachlor sprayed | |
D1 | Density of 1.5 × 105 seedlings/ha | Repeated 6 times |
D2 | Density of 4.5 × 105 seedlings/ha | |
D3 | Density of 7.5 × 105 seedlings/ha | |
CF | Compound fertilizer (N:P2O5:K2O = 16:16:16) | Repeated 3 times |
SF | Special fertilizer for oilseed rape plant |
Index | Equation | Reference |
---|---|---|
NDVI | (R800 − R670)/(R800 + R670) | [28] |
NDVY | (R560 − R450)/(R560 + R450) | [29] |
CIre | R800/R720-1 | [30] |
CIgreen | R800/R550-1 | [30] |
RVI | R800/R670 | [31] |
TVI | 0.5 × (120 × (R750 − R550) − 200 × (R670 − R550) | [32] |
BNDVI | (R860 − R450)/(R860 + R450) | [33] |
DVI | R800-R670 | [34] |
RDVI | [NDVI × (R800 + R670) ^ 2] ^ 0.5 | [35] |
NIR | R860 | / |
Stage | Median (kg/ha) | Average (kg/ha) | Max (kg/ha) | Min (kg/ha) | Range | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|---|
Measured | 2901.3 | 2747.7 | 3701.9 | 1215.0 | 2486.8 | −0.53 | 0.20 | |
S1 | RF | 2950.9 | 2856.9 | 3313.8 | 1695.9 | 1617.9 | −2.00 | 4.11 |
MLR | 2928.4 | 2744.0 | 3304.4 | 643.6 | 2660.8 | −2.23 | 5.59 | |
SVM | 3001.7 | 2871.5 | 3310.4 | 1322.2 | 1988.2 | −2.12 | 4.67 | |
S2 | RF | 2825.2 | 2676.1 | 3318.4 | 1388.7 | 1929.8 | −2.00 | 4.11 |
MLR | 2870.2 | 2695.4 | 3338.1 | 1470.1 | 1868.0 | −2.23 | 5.59 | |
SVM | 2885.1 | 2718.4 | 3279.0 | 1591.5 | 1687.5 | −2.12 | 4.67 | |
S3 | RF | 2856.4 | 2704.8 | 3603.4 | 1477.4 | 2125.9 | −2.00 | 4.11 |
MLR | 2779.7 | 2703.3 | 3822.5 | 1658.9 | 2163.6 | −2.23 | 5.59 | |
SVM | 2792.8 | 2705.8 | 3980.7 | 1516.0 | 2464.8 | −2.12 | 4.67 | |
S4 | RF | 2877.9 | 2761.6 | 3384.0 | 1458.5 | 1925.5 | −2.00 | 4.11 |
MLR | 2842.7 | 2825.1 | 3401.8 | 2182.3 | 1219.5 | −2.23 | 5.59 | |
SVM | 2907.4 | 2897.8 | 3213.3 | 2546.2 | 667.1 | −2.12 | 4.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Ren, Y.; Zhou, H.; Lou, W.; Hao, P.; Lin, B.; Zhang, G.; Gu, Q.; Hua, S. Oilseed Rape Yield Prediction from UAVs Using Vegetation Index and Machine Learning: A Case Study in East China. Agriculture 2024, 14, 1317. https://doi.org/10.3390/agriculture14081317
Hu H, Ren Y, Zhou H, Lou W, Hao P, Lin B, Zhang G, Gu Q, Hua S. Oilseed Rape Yield Prediction from UAVs Using Vegetation Index and Machine Learning: A Case Study in East China. Agriculture. 2024; 14(8):1317. https://doi.org/10.3390/agriculture14081317
Chicago/Turabian StyleHu, Hao, Yun Ren, Hongkui Zhou, Weidong Lou, Pengfei Hao, Baogang Lin, Guangzhi Zhang, Qing Gu, and Shuijin Hua. 2024. "Oilseed Rape Yield Prediction from UAVs Using Vegetation Index and Machine Learning: A Case Study in East China" Agriculture 14, no. 8: 1317. https://doi.org/10.3390/agriculture14081317
APA StyleHu, H., Ren, Y., Zhou, H., Lou, W., Hao, P., Lin, B., Zhang, G., Gu, Q., & Hua, S. (2024). Oilseed Rape Yield Prediction from UAVs Using Vegetation Index and Machine Learning: A Case Study in East China. Agriculture, 14(8), 1317. https://doi.org/10.3390/agriculture14081317