Evaluation of the Impact of Flutriafol on Soil Culturable Microorganisms and on Soil Enzymes Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungicide
2.2. Soil Sampling
2.3. Assessment of the Effects of Flutriafol on Populations of Soil Culturable Microorganisms
2.4. Evaluation of the Effects of Flutriafol on Soil Enzyme Activities
2.5. Molecular Docking Study
Enzyme | Microorganism | Description and PDB/AlphaFold ID |
---|---|---|
Dehydrogenase | Clostridium beijerinckii | NADP-dependent alcohol dehydrogenase in complex with dihydro-nicotinamide-adenine-dinucleotide phosphate and Zn ion (1KEV chain A) [28] |
Aspergillus fumigatus | Mannitol 2-dehydrogenase in complex with 1,4-dihydronicotinamide adenine dinucleotide (7RK5 chain A) [29] | |
Rhizobium leguminosarum | Succinate semialdehyde dehydrogenase in complex with 1,4-dihydronicotinamide adenine dinucleotide (8C54 chain A) [30] | |
Urease | Bacillus pasteurii | Urease subunit gamma in complex with citrate anion, 1,2-ethanediol, hydroxide, nickel (II), and sulfate ions (4AC7 chain C) [31] |
Aspergillus fumigatus | AlphaFold model of catalase AF-Q6A3P9-F1 [27] | |
Rhizobium leguminosarum | AlphaFold model of catalase AF-Q1MCV9-F1 [27] | |
Phosphatase | Bacillus subtilis | Phosphate phosphatase F in complex with its inhibitory peptide GLN-ARG-GLY-MET-ILE (4I9C chain A) [32] |
Aspergillus niger | Acid phosphatase in complex with oligosaccharides, 2-acetamido-2-deoxy-beta-D-glucopyranose, glycerol, and sulfate ion (1QFX chain A) [33] | |
Rhizobium leguminosarum | Alkaline phosphatase in complex with acetate, manganese (II), calcium, and sodium ions (2VQR chain A) [34] | |
Catalase | Micrococcus lysodeikticus | Catalase complexed with dihydro-nicotinamide-adenine-dinucleotide phosphate and hem (1GWH chain A) [35] |
Komagataella pastoris | Catalase in complex with hem, dihydro-nicotinamide-adenine-dinucleotide phosphate, di(hydroxyethyl)ether, glycerol, sulfate, sodium, chloride and potassium ions (6RJN chain A) [36] | |
Rhizobium meliloti | AlphaFold model of catalase AF-Q9X576-F1 [27] |
2.6. Statistical Analysis
3. Results
3.1. Assessment of the Effects of Flutriafol on Soil Microbiota
3.2. Assessment of the Effects of Flutriafol on Activities of Soil Enzymes
3.3. Molecular Docking Analysis of the Interactions between the Flutriafol Enantiomers and Investigated Soil Enzymes
4. Discussion
4.1. Evaluation of the Effects of Flutriafol on Populations of Soil Culturable Microorganisms
4.2. Evaluation of the Effects of Flutriafol on Soil Enzyme Activities
4.3. Molecular Docking Analysis
4.4. Factors Affecting the Impact of Pesticides on Soil and Crops and Remediation Solutions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Pesticides Trade and Pesticides Indicators–Global, Regional and Country Trends, 1990–2020. In FAOSTAT Analytical Briefs, No. 46; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Eurostat. Agri-Environmental Indicator—Consumption of Pesticides. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_consumption_of_pesticides#Analysis_at_EU_and_country_level%20%E2%80%93%20ac-cessed%20in%2018.05.2024 (accessed on 2 May 2024).
- Roman, D.L.; Voiculescu, D.I.; Filip, M.; Ostafe, V.; Isvoran, A. Effects of Triazole Fungicides on Soil Microbiota and on the Activities of Enzymes Found in Soil: A Review. Agriculture 2021, 11, 893. [Google Scholar] [CrossRef]
- Dong, F.; Li, J.; Chankvetadze, B.; Cheng, Y.; Xu, J.; Liu, X.; Li, Y.; Chen, X.; Bertucci, C.; Tedesco, D.; et al. Chiral Triazole Fungicide Difenoconazole: Absolute Stereochemistry, Stereoselective Bioactivity, Aquatic Toxicity, and Environmental Behavior in Vegetables and Soil. Environ. Sci. Technol. 2013, 47, 3386–3394. [Google Scholar] [CrossRef]
- Li, L.; Huang, P.; Li, J. Enantioselective Effects of the Fungicide Metconazole on Photosynthetic Activity in Microcystis flos-aquae. Ecotoxicol. Environ. Saf. 2021, 211, 111894. [Google Scholar] [CrossRef]
- Roman, D.L.; Voiculescu, D.I.; Matica, M.A.; Baerle, V.; Filimon, M.N.; Ostafe, V.; Isvoran, A. Assessment of the Effects of Triticonazole on Soil and Human Health. Molecules 2022, 27, 6554. [Google Scholar] [CrossRef]
- Roman, D.L.; Matica, M.A.; Ciorsac, A.; Boros, B.V.; Isvoran, A. The Effects of the Fungicide Myclobutanil on Soil Enzyme Activity. Agriculture 2023, 13, 1956. [Google Scholar] [CrossRef]
- Hergueta-Castillo, M.E.; López-Ruiz, R.; Garrido Frenich, A.; Romero-González, R. Understanding the Metabolism and Dissipation Kinetics of Flutriafol in Vegetables Under Laboratory and Greenhouse Scenarios. Foods 2023, 12, 201. [Google Scholar] [CrossRef]
- US EPA. Flutriafol: Human Health Risk Assessment in Support of a Section 3 Registration for Application to Alfalfa, Barley, Sweet Com, Rice (as a Rotated Crop), Turf, and Ornamentals; Office Of Chemical Safety and Pollution Prevention, United States Environmental Protection Agency: Washington, DC, USA, 2019.
- Zhang, Q.; Hua, X.-D.; Shi, H.-y.; Liu, J.-S.; Tian, M.-M.; Wang, M.-H. Enantioselective Bioactivity, Acute Toxicity and Dissipation in Vegetables of the Chiral Triazole Fungicide Flutriafol. J. Hazard. Mater. 2015, 284, 65–72. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An International Database for Pesticide Risk Assessments and Management. Hum. Ecol. Risk. Assess. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- Munier-Lamy, C.; Borde, O. Effect of a Triazole Fungicide on the Cellulose Decomposition by the Soil Microflora. Chemosphere 2000, 41, 1029–1035. [Google Scholar] [CrossRef]
- Sim, J.X.F.; Doolette, C.L.; Vasileiadis, S.; Drigo, B.; Wyrsch, E.R.; Djordjevic, S.P.; Donner, E.; Karpouzas, D.G.; Lombi, E. Pesticide Effects on Nitrogen Cycle Related Microbial Functions and Community Composition. Sci. Total Environ. 2022, 807, 150734. [Google Scholar] [CrossRef]
- Sim, J.X.F.; Drigo, B.; Doolette, C.L.; Vasileiadis, S.; Karpouzas, D.G.; Lombi, E. Impact of Twenty Pesticides on Soil Carbon Microbial Functions and Community Composition. Chemosphere 2022, 307, 135820. [Google Scholar] [CrossRef]
- Sim, J.X.F.; Drigo, B.; Doolette, C.L.; Vasileiadis, S.; Donner, E.; Karpouzas, D.G.; Lombi, E. Repeated Applications of Fipronil, Propyzamide and Flutriafol Affect Soil Microbial Functions and Community Composition: A laboratory-to-field Assessment. Chemosphere 2023, 331, 138850. [Google Scholar] [CrossRef]
- Boros, B.-V.; Roman, D.-L.; Isvoran, A. Evaluation of the Aquatic Toxicity of Several Triazole Fungicides. Metabolites 2024, 14, 197. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.; Thiessen, P.; Yu, B.; et al. PubChem 2023 Update. Nucleic Acids Res. 2022, 51, D1373–D1380. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Carter, M.R.; Gregorich, E.G. Cultural Methods for Soil and Root-Associated Microorganisms. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2007; p. 14. [Google Scholar]
- Dick, W.A.; Cheng, L.; Wang, P. Soil Acid and Alkaline Phosphatase Activity as pH Adjustment Indicators. Soil Biol. Biochem. 2000, 32, 1915–1919. [Google Scholar] [CrossRef]
- Semenov, M.; Blagodatskaya, E.; Stepanov, A.; Kuzyakov, Y. DNA-based Determination of Soil Microbial Biomass in Alkaline and Carbonaceous Soils of Semi-arid Climate. J. Arid Environ. 2018, 150, 54–61. [Google Scholar] [CrossRef]
- Schinner, F.; Öhlinger, R.; Kandeler, E.; Margesin, R. Enzymes Involved in Intracellular Metabolism. In Methods in Soil Biology, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 235–245. [Google Scholar]
- Alef, K.; Nannipieri, P. Enzyme activities. In Methods in Applied Soil Microbiology and Biochemistry; Academic Press: London, UK, 1995; pp. 311–373. [Google Scholar]
- Dick, R.P.; Breakwell, D.P.; Turco, R.F. Soil Enzyme Activities and Biodiversity Measurements as Integrative Microbiological Indicators. In Methods for Assessing Soil Quality; SSSA Special Publications: Madison, WI, USA, 1997; pp. 247–271. [Google Scholar]
- Drăgan-Bularda, M. Lucrări Practice de Microbiologie Generală; Universitatea Babes Bolyai: Cluj-Napoca, Romania, 2000; pp. 175–191. [Google Scholar]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy Models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef]
- Korkhin, Y.; Frolow, F.; Bogin, O.; Peretz, M.; Kalb, A.J.; Burstein, Y. Crystalline Alcohol Dehydrogenases From the Mesophilic Bacterium Clostridium beijerinckii and the Thermophilic Bacterium Thermoanaerobium brockii: Preparation, Characterization and Molecular Symmetry. Acta Crystallogr. D Biol. Crystallogr. 1996, 52, 882–886. [Google Scholar] [CrossRef]
- RCSB. Available online: https://www.rcsb.org/structure/7RK5 (accessed on 2 May 2024).
- Li, J.; Sharma, M.; Meek, R.; Alhifthi, A.; Armstrong, Z.; Soler, N.M.; Lee, M.; Goddard-Borger, E.D.; Blaza, J.N.; Davies, G.J.; et al. Molecular Basis of Sulfolactate Synthesis by Sulfolactaldehyde Dehydrogenase from Rhizobium leguminosarum. Chem. Sci. 2023, 14, 11429–11440. [Google Scholar] [CrossRef]
- Benini, S.; Kosikowska, P.; Cianci, M.; Mazzei, L.; Vara, A.G.; Berlicki, Ł.; Ciurli, S. The Crystal Structure of Sporosarcina pasteurii urease in a Complex with Citrate Provides New Hints for Inhibitor Design. J. Biol. Inorg. Chem. 2013, 18, 391–399. [Google Scholar] [CrossRef]
- Gallego del Sol, F.; Marina, A. Structural Basis of Rap Phosphatase Inhibition by Phr Peptides. PLoS Biol. 2013, 11, e1001511. [Google Scholar] [CrossRef]
- Kostrewa, D.; Wyss, M.; D’Arcy, A.; van Loon, A.P. Crystal Structure of Aspergillus niger pH 2.5 Acid Phosphatase at 2.4 Å Resolution. J. Mol. Biol. 1999, 288, 965–974. [Google Scholar] [CrossRef]
- Jonas, S.; van Loo, B.; Hyvönen, M.; Hollfelder, F. A New Member of the Alkaline Phosphatase Superfamily with a Formylglycine Nucleophile: Structural and Kinetic Characterisation of a Phosphonate Monoester Hydrolase/Phosphodiesterase From Rhizobium leguminosarum. J. Mol. Biol. 2008, 384, 120–136. [Google Scholar] [CrossRef]
- Murshudov, G.N.; Grebenko, A.I.; Brannigan, J.A.; Antson, A.A.; Barynin, V.V.; Dodson, G.G.; Dauter, Z.; Wilson, K.S.; Melik-Adamyan, W.R. The Structures of Micrococcus lysodeikticus Catalase, its Ferryl Intermediate (Compound II) and NADPH Complex. Acta Crystallogr. D Biol. Crystallogr. 2002, 58, 1972–1982. [Google Scholar] [CrossRef]
- Gómez, S.; Navas-Yuste, S.; Payne, A.M.; Rivera, W.; López-Estepa, M.; Brangbour, C.; Fullà, D.; Juanhuix, J.; Fernández, F.J.; Vega, M.C. Peroxisomal Catalases From the Yeasts Pichia pastoris and Kluyveromyces lactis as Models for Oxidative Damage in Higher Eukaryotes. Free Radic. Biol. Med. 2019, 141, 279–290. [Google Scholar] [CrossRef]
- Kirkman, H.N.; Rolfo, M.; Ferraris, A.M.; Gaetani, G.F. Mechanisms of Protection of Catalase by NADPH: KINETICS AND STOICHIOMETRY. J. Biol. Chem. 1999, 274, 13908–13914. [Google Scholar] [CrossRef]
- Grosdidier, A.; Zoete, V.; Michielin, O. SwissDock, a Protein-Small Molecule Docking Web Service Based on EADock DSS. Nucleic Acids Res. 2011, 39, W270–W277. [Google Scholar] [CrossRef]
- Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: Fully Automated Protein–Ligand Interaction Profiler. Nucleic Acids Res. 2015, 43, W443–W447. [Google Scholar] [CrossRef]
- Hammer, O.; Harper, D.; Ryan, P. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 4. [Google Scholar]
- Hossain, M. Recent Perspective of Herbicide: Review of Demand and Adoption in World Agriculture. J. Bangladesh Agric. Univ. 2016, 13, 19–30. [Google Scholar] [CrossRef]
- Zubrod, J.P.; Bundschuh, M.; Arts, G.; Brühl, C.A.; Imfeld, G.; Knäbel, A.; Payraudeau, S.; Rasmussen, J.J.; Rohr, J.; Scharmüller, A.; et al. Fungicides: An Overlooked Pesticide Class? Environ. Sci. Technol. 2019, 53, 3347–3365. [Google Scholar] [CrossRef]
- Satapute, P.; Kamble, M.V.; Adhikari, S.S.; Jogaiah, S. Influence of Triazole Pesticides on Tillage Soil Microbial Populations and Metabolic Changes. Sci. Total Environ. 2019, 651, 2334–2344. [Google Scholar] [CrossRef]
- Niewiadomska, A.; Sawinska, Z.; Wolna-Maruwka, A. Impact of Selected Seed Dressings on Soil Microbiological Activity in Spring Barley Cultivation. Fresenius Environ. Bull. 2011, 20, 1252–1261. [Google Scholar]
- Milenkovski, S.; Bååth, E.; Lindgren, P.E.; Berglund, O. Toxicity of Fungicides to Natural Bacterial Communities in Wetland Water and Sediment Measured Using Leucine Incorporation and Potential Denitrification. Ecotoxicology 2010, 19, 285–294. [Google Scholar] [CrossRef]
- Luong, T.T.; Nguyen, T.H.T.; Nguyen, T.D.; Le, V.T.; Pham, T.H.T.; Ho, T.T.; Nguyen, N.L. Degradation of Triazole Fungicides by Plant Growth-Promoting Bacteria From Contaminated Agricultural Soil. J. Microbiol. Biotechnol. 2024, 34, 56–64. [Google Scholar] [CrossRef]
- Satapute, P.; Kaliwal, B. Biodegradation of the Fungicide Propiconazole by Pseudomonas aeruginosa PS-4 Strain Isolated from a Paddy Soil. Ann. Microbiol. 2016, 66, 1355–1365. [Google Scholar] [CrossRef]
- Vasilchenko, A.V.; Poshvina, D.V.; Semenov, M.V.; Timofeev, V.N.; Iashnikov, A.V.; Stepanov, A.A.; Pervushina, A.N.; Vasilchenko, A.S. Triazoles and Strobilurin Mixture Affects Soil Microbial Community and Incidences of Wheat Diseases. Plants 2023, 12, 660. [Google Scholar] [CrossRef]
- Van Lith, R.; Ameer, G.A. Antioxidant Polymers as Biomaterial. In Oxidative Stress and Biomaterials; Dziubla, T., Butterfield, D.A., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 251–296. [Google Scholar]
- Singh, N. Factors Affecting Triadimefon Degradation in Soils. J. Agric. Food Chem. 2005, 53, 70–75. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, G.; Bao, Z.; Jin, Y.; Wang, J.; Chen, J.; Qian, M. Stereoselective Effects of Fungicide Difenoconazole and Its Four Stereoisomers on Gut Barrier, Microbiota, and Glucolipid Metabolism in Male Mice. Sci. Total Environ. 2022, 805, 150454. [Google Scholar] [CrossRef]
- Li, C.; Fan, S.; Zhang, Y.; Zhang, X.; Luo, J.; Liu, C. Toxicity, Bioactivity of Triazole Fungicide Metconazole and its Effect on Mycotoxin Production by Fusarium verticillioides: New Perspective From an Enantiomeric Șevel. Sci. Total Environ. 2022, 828, 154432. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, B.; He, Z.; Li, L.; Zhang, Q.; Kaziem, A.E.; Wang, M. Stereoselective Bioactivity of the Chiral Triazole Fungicide Prothioconazole and its Metabolite. Pestic. Biochem. Physiol. 2019, 160, 112–118. [Google Scholar] [CrossRef]
- Diao, X.; Han, Y.; Liu, C. The Fungicidal Activity of Tebuconazole Enantiomers against Fusarium graminearum and Its Selective Effect on DON Production under Different Conditions. J. Agric. Food Chem. 2018, 66, 3637–3643. [Google Scholar] [CrossRef]
- Qu, J.; Xue, J.; Sun, M.; Li, K.; Wang, J.; Zhang, G.; Wang, L.; Jiang, Z.; Zhang, Y. Superefficient Non-Radical Degradation of Benzo[a]pyrene in Soil by Fe-biochar Composites Activating Persulfate. Chem. Eng. J. 2024, 481, 148585. [Google Scholar] [CrossRef]
- Qu, J.; Li, Z.; Wang, S.; Lin, Q.; Zhang, Z.; Wu, Z.; Hu, Q.; Jiang, Z.; Tao, Y.; Zhang, Y. Enhanced Degradation of Atrazine from Soil with Recyclable Magnetic Carbon-Based Bacterial Pellets: Performance and Mechanism. Chem. Eng. J. 2024, 490, 151662. [Google Scholar] [CrossRef]
- Baibakova, E.V.; Nefedjeva, E.E.; Suska-Malawska, M.; Wilk, M.; Sevriukova, G.A.; Zheltobriukhov, V.F. Modern Fungicides: Mechanisms of Action, Fungal Resistance and Phytotoxic Effects. Annu. Res. Rev. Biol. 2019, 32, 1–16. [Google Scholar] [CrossRef]
- Martínez-Escudero, C.M.; Garrido, I.; Flores, P.; Hellín, P.; Contreras-López, F.; Fenoll, J. Remediation of Triazole, Anilinopyrimidine, Strobilurin and Neonicotinoid Pesticides in Polluted Soil Using Ozonation and Solarization. J. Environ. Manag. 2022, 310, 114781. [Google Scholar] [CrossRef]
- Parlakidis, P.; Gounari, I.; Georgiou, A.; Adamidis, G.; Vryzas, Z.; Gikas, G.D. Removal of Two Triazole Fungicides from Agricultural Wastewater in Pilot-Scale Horizontal Subsurface Flow Constructed Wetlands. Agronomy 2023, 13, 265. [Google Scholar] [CrossRef]
- Qu, J.; Li, Y.; Sun, H.; Liu, R.; Han, Y.; Bi, F.; Fan, H.; Zhang, G.; Zhang, Y.; Wang, Y.; et al. Ball-milled Sepiolite/Phosphate Rock for Simultaneous Remediation of Cadmium-contaminated Farmland and Alleviation of Phosphorus Deficiency Symptoms in Pepper. Chem. Eng. J. 2024, 488, 150925. [Google Scholar] [CrossRef]
Dose/ Time (Days) | p Values | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | 1/2D | D | 2D | ||||||||||||||
7 | 14 | 21 | 28 | 7 | 14 | 21 | 28 | 7 | 14 | 21 | 28 | 7 | 14 | 21 | 28 | ||
Control | 7 | 0.98 | 0.01 | 0.14 | 0.91 | 0.20 | 0.06 | 0.01 | 0.94 | 0.04 | 0.02 | <0.05 | 0.78 | 0.04 | 0.01 | <0.01 | |
14 | 1.00 | 0.01 | 0.13 | 0.88 | 0.19 | 0.06 | 0.01 | 0.97 | 0.04 | 0.02 | 0.04 | 0.76 | 0.04 | 0.01 | <0.01 | ||
21 | 0.96 | 0.99 | 0.30 | 0.02 | 0.22 | 0.52 | 0.98 | 0.01 | 0.65 | 0.85 | 0.60 | 0.03 | 0.63 | 0.87 | 0.56 | ||
28 | 0.02 | 0.04 | 0.49 | 0.18 | 0.84 | 0.69 | 0.31 | 0.12 | 0.56 | 0.40 | 0.61 | 0.23 | 0.58 | 0.23 | 0.11 | ||
1/2D | 7 | 1.00 | 1.00 | 0.97 | 0.02 | 0.25 | 0.08 | 0.02 | 0.85 | 0.05 | 0.03 | 0.06 | 0.87 | 0.06 | 0.01 | <0.01 | |
14 | 1.00 | 1.00 | 0.68 | <0.01 | 1.00 | 0.55 | 0.23 | 0.18 | 0.43 | 0.29 | 0.47 | 0.32 | 0.45 | 0.16 | 0.07 | ||
21 | 1.00 | 1.00 | 1.00 | 0.28 | 1.00 | 0.88 | 0.54 | 0.05 | 0.85 | 0.65 | 0.91 | 0.11 | 0.87 | 0.42 | 0.22 | ||
28 | <0.01 | <0.01 | 0.07 | 1.00 | <0.01 | <0.01 | 0.03 | 0.01 | 0.67 | 0.87 | 0.62 | 0.03 | 0.65 | 0.85 | 0.54 | ||
1D | 7 | 1.00 | 1.00 | 1.00 | 0.04 | 1.00 | 1.00 | 1.00 | <0.01 | 0.03 | 0.02 | 0.04 | 0.73 | 0.04 | 0.01 | <0.01 | |
14 | 1.00 | 1.00 | 0.91 | 0.01 | 1.00 | 1.00 | 0.99 | <0.01 | 1.00 | 0.79 | 0.94 | 0.08 | 0.98 | 0.54 | 0.30 | ||
21 | 0.17 | 0.27 | 0.96 | 1.00 | 0.18 | 0.04 | 0.84 | 0.81 | 0.30 | 0.12 | 0.74 | 0.04 | 0.77 | 0.73 | 0.44 | ||
28 | 0.02 | 0.03 | 0.42 | 1.00 | 0.02 | <0.01 | 0.23 | 1.00 | 0.03 | 0.01 | 1.00 | 0.09 | 0.97 | 0.49 | 0.27 | ||
2D | 7 | 1.00 | 1.00 | 0.98 | 0.03 | 1.00 | 1.00 | 1.00 | <0.01 | 1.00 | 1.00 | 0.20 | 0.02 | 0.08 | 0.02 | <0.01 | |
14 | 1.00 | 1.00 | 0.90 | 0.01 | 1.00 | 1.00 | 0.98 | <0.01 | 1.00 | 1.00 | 0.10 | 0.01 | 1.00 | 0.52 | 0.29 | ||
21 | 0.39 | 0.55 | 1.00 | 0.99 | 0.42 | 0.12 | 0.98 | 0.51 | 0.60 | 0.29 | 1.00 | 0.97 | 0.45 | 0.27 | 0.67 | ||
28 | 0.01 | 0.01 | 0.23 | 1.00 | 0.01 | <0.01 | 0.11 | 1.00 | 0.01 | <0.01 | 0.99 | 1.00 | 0.01 | <0.01 | 0.86 |
Dose/ Time (Days) | p Values | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | 1/2D | D | 2D | ||||||||||||||
7 | 14 | 21 | 28 | 7 | 14 | 21 | 28 | 7 | 14 | 21 | 28 | 7 | 14 | 21 | 28 | ||
Control | 7 | <0.01 | <0.01 | <0.01 | 0.98 | 0.65 | <0.01 | 1.00 | 0.83 | <0.01 | <0.01 | 0.38 | 0.98 | <0.01 | <0.01 | 0.08 | |
14 | 0.02 | 0.99 | 0.65 | <0.01 | <0.01 | 0.89 | <0.01 | <0.01 | 0.23 | 0.87 | <0.01 | <0.01 | 0.08 | 0.99 | 0.01 | ||
21 | 0.08 | 0.55 | 0.11 | <0.01 | <0.01 | 1.00 | <0.01 | <0.01 | 0.86 | 1.00 | <0.01 | <0.01 | 0.55 | 0.48 | <0.01 | ||
28 | 0.09 | 0.52 | 0.97 | <0.01 | 0.38 | 0.06 | 0.02 | 0.23 | <0.01 | 0.06 | 0.36 | 0.03 | <0.01 | 1.00 | 0.87 | ||
1/2D | 7 | 0.03 | 0.87 | 0.66 | 0.63 | 0.04 | <0.01 | 0.25 | 0.08 | <0.01 | <0.01 | 0.01 | 0.16 | <0.01 | <0.01 | <0.01 | |
14 | 0.01 | 0.69 | 0.35 | 0.33 | 0.59 | <0.01 | 0.99 | 1.00 | <0.01 | <0.01 | 1.00 | 1.00 | <0.01 | 0.09 | 1.00 | ||
21 | <0.01 | 0.41 | 0.17 | 0.16 | 0.33 | 0.70 | <0.01 | <0.01 | 1.00 | 1.00 | <0.01 | <0.01 | 0.95 | 0.29 | <0.01 | ||
28 | 0.20 | 0.27 | 0.61 | 0.63 | 0.34 | 0.16 | 0.07 | 1.00 | <0.01 | <0.01 | 0.93 | 1.00 | <0.01 | <0.01 | 0.40 | ||
1D | 7 | 0.36 | 0.13 | 0.36 | 0.37 | 0.17 | 0.08 | 0.03 | 0.68 | <0.01 | <0.01 | 1.00 | 1.00 | <0.01 | <0.05 | 0.98 | |
14 | 0.01 | 0.57 | 0.27 | 0.26 | 0.48 | 0.88 | 0.82 | 0.12 | 0.05 | 1.00 | <0.01 | <0.01 | 1.00 | 0.03 | <0.01 | ||
21 | <0.01 | 0.46 | 0.18 | 0.17 | 0.37 | 0.80 | 0.86 | 0.07 | 0.02 | 0.93 | <0.01 | <0.01 | 0.96 | 0.26 | <0.01 | ||
28 | 0.07 | 0.61 | 0.92 | 0.90 | 0.73 | 0.39 | 0.20 | 0.55 | 0.31 | 0.31 | 0.22 | 0.98 | <0.01 | 0.07 | 1.00 | ||
2D | 7 | 0.43 | 0.10 | 0.29 | 0.30 | 0.13 | 0.06 | 0.02 | 0.58 | 0.89 | 0.04 | 0.02 | 0.25 | <0.01 | <0.01 | 0.55 | |
14 | 0.12 | 0.40 | 0.81 | 0.84 | 0.49 | 0.25 | 0.11 | 0.79 | 0.49 | 0.19 | 0.12 | 0.74 | 0.41 | 0.01 | <0.01 | ||
21 | 0.01 | 0.77 | 0.37 | 0.36 | 0.66 | 0.89 | 0.57 | 0.16 | 0.07 | 0.75 | 0.66 | 0.43 | 0.05 | 0.26 | 0.36 | ||
28 | 0.47 | 0.08 | 0.25 | 0.27 | 0.11 | <0.05 | 0.02 | 0.52 | 0.82 | 0.03 | 0.01 | 0.22 | 0.94 | 0.36 | 0.04 |
Dose/ Time (Days) | p Values | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | 1/2D | D | 2D | ||||||||||||||
7 | 14 | 21 | 28 | 7 | 14 | 21 | 28 | 7 | 14 | 21 | 28 | 7 | 14 | 21 | 28 | ||
Control | 7 | 0.97 | 1.00 | 0.10 | <0.01 | 1.00 | 0.99 | 0.11 | <0.01 | 1.00 | 0.98 | 0.07 | <0.01 | 1.00 | 0.99 | 0.11 | |
14 | 0.02 | 1.00 | 0.86 | <0.01 | 1.00 | 1.00 | 0.88 | <0.01 | 0.66 | 1.00 | 0.78 | <0.01 | 1.00 | 1.00 | 0.79 | ||
21 | <0.01 | 0.41 | 0.38 | <0.01 | 1.00 | 1.00 | 0.40 | <0.01 | 0.98 | 1.00 | 0.30 | <0.01 | 1.00 | 1.00 | 0.35 | ||
28 | 0.13 | 0.59 | 0.20 | <0.01 | 0.63 | 0.73 | 1.00 | <0.01 | 0.02 | 0.84 | 1.00 | <0.01 | 0.28 | 0.78 | 1.00 | ||
1/2D | 7 | 0.38 | 0.15 | 0.02 | 0.46 | <0.01 | <0.01 | <0.01 | 0.02 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |
14 | 0.03 | 0.91 | 0.35 | 0.66 | 0.19 | 1.00 | 0.65 | <0.01 | 0.99 | 1.00 | 0.53 | <0.01 | 1.00 | 1.00 | 0.55 | ||
21 | <0.01 | 0.15 | 0.53 | 0.07 | <0.01 | 0.12 | 0.76 | <0.01 | 0.80 | 1.00 | 0.63 | <0.01 | 1.00 | 1.00 | 0.66 | ||
28 | 0.28 | 0.22 | 0.04 | 0.57 | 0.84 | 0.26 | 0.01 | <0.01 | 0.02 | 0.86 | 1.00 | <0.01 | 0.30 | 0.80 | 1.00 | ||
1D | 7 | 0.65 | 0.11 | 0.02 | 0.33 | 0.75 | 0.13 | <0.01 | 0.62 | <0.01 | <0.01 | <0.01 | 0.99 | <0.01 | <0.01 | <0.01 | |
14 | 0.02 | 0.99 | 0.40 | 0.60 | 0.16 | 0.93 | 0.14 | 0.23 | 0.11 | 0.68 | 0.01 | <0.01 | 1.00 | 0.76 | 0.03 | ||
21 | <0.01 | 0.18 | 0.60 | 0.08 | 0.01 | 0.14 | 0.93 | 0.01 | <0.01 | 0.17 | 0.76 | <0.01 | 1.00 | 1.00 | 0.77 | ||
28 | 0.83 | 0.06 | 0.01 | 0.23 | 0.57 | 0.08 | <0.01 | 0.45 | 0.82 | 0.07 | <0.01 | <0.01 | 0.21 | 0.68 | 1.00 | ||
2D | 7 | 0.16 | 0.37 | 0.08 | 0.79 | 0.60 | 0.43 | 0.02 | 0.74 | 0.43 | 0.38 | 0.02 | 0.30 | <0.01 | <0.01 | <0.01 | |
14 | 0.01 | 0.64 | 0.72 | 0.34 | 0.06 | 0.57 | 0.33 | 0.09 | 0.04 | 0.63 | 0.38 | 0.02 | 0.17 | 1.00 | 0.26 | ||
21 | <0.01 | 0.26 | 0.76 | 0.12 | 0.01 | 0.21 | 0.76 | 0.02 | 0.01 | 0.25 | 0.83 | <0.01 | 0.04 | 0.50 | 0.71 | ||
28 | 0.37 | 0.16 | 0.03 | 0.47 | 0.98 | 0.20 | <0.01 | 0.86 | 0.73 | 0.17 | 0.01 | 0.55 | 0.62 | 0.06 | 0.01 |
Enzyme | Organism | ΔG (kcal/mol) | |||
---|---|---|---|---|---|
(R)-Flutriafol | Mean Value | (S)-Flutriafol | Mean Value | ||
Dehydrogenase | Clostridium beijerinckii | −8.41 | −8.48 | ||
Aspergillus fumigatus | −7.51 | −7.85 | −6.89 | −7.58 | |
Rhizobium leguminosarum | −7.63 | −7.38 | |||
Phosphatase | Bacillus subtilis | −7.54 | −7.75 | ||
Aspergillus niger | −7.22 | −7.36 | it does not bind to the active site | −7.45 | |
Rhizobium leguminosarum | −7.32 | −7.16 | |||
Catalase | Komagataella pastoris | −9.16 | −9.16 | −9.04 | −9.04 |
Enzyme | Ligand | Residues Associated with the Non-Covalent Interactions |
---|---|---|
Clostridium beijerinckii dehydrogenase | (R)-flutriafol | GLY176, ALA177, VAL178, GLY179, ARG200 |
(S)-flutriafol | THR38, ILE175, GLY176, ALA177, VAL178, TYR267, ILE345 | |
NADPH | THR38, SER39, ILE175, ALA176, VAL178, GLY179, SER199, ARG200, GLU247, ASN266, TYR267, LYS340 | |
Aspergillus fumigatus dehydrogenase | (R)-flutriafol | GLY44, PHE45, THR139GLN244 |
(S)-flutriafol | GLY44, PHE45, THR137, THR139, GLU140 | |
NADPH | GLY44, PHE45, GLN74, ASP77 (2), ASP199, ASN200, VAL238, THR242 | |
Rhizobium leguminosarum dehydrogenase | (R)-flutriafol | PRO161, TRP162, LYS186, SER240 |
(S)-flutriafol | TRP162, LYS186, ALA188, SER240 | |
NADPH | THR160, PRO161,LYS186, PRO187, SER240, GLU261 | |
Bacillus subtilis phosphatase | (R)-flutriafol | TYR66, TYR152, TYR153, ARG223, TYR226, LEU230, GLN263 |
(S)-flutriafol | - | |
Inhibitory peptide | TYR66, TYR152, TYR153, LYS155, GLN183, LEU187, ASP194, ARG223, TYR226 ASN227, SER260, GLN263, PHE266, TYR300, GLU303, ALA334, ASP335, ASP338 | |
Aspergillus niger phosphatase | (R)-flutriafol | ALA292, ASN296, LEU415, ASP417, TYR418, THR419, LEU432 |
NAG | ASN296, THR300, ASN439, LEU432 | |
Rhizobium leguminosarum phosphatase | (R)-flutriafol | TYR105, PHE138, ASN141 |
(S)-flutriafol | TYR105, LEU125, PHE138, ASN141, TYR215 | |
Calcium | ASP12, ASP324, HIS325 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roman, D.-L.; Matica, M.A.; Boros, B.-V.; Vulpe, C.-B.; Isvoran, A. Evaluation of the Impact of Flutriafol on Soil Culturable Microorganisms and on Soil Enzymes Activity. Agriculture 2024, 14, 1445. https://doi.org/10.3390/agriculture14091445
Roman D-L, Matica MA, Boros B-V, Vulpe C-B, Isvoran A. Evaluation of the Impact of Flutriafol on Soil Culturable Microorganisms and on Soil Enzymes Activity. Agriculture. 2024; 14(9):1445. https://doi.org/10.3390/agriculture14091445
Chicago/Turabian StyleRoman, Diana-Larisa, Mariana Adina Matica, Bianca-Vanesa Boros, Constantina-Bianca Vulpe, and Adriana Isvoran. 2024. "Evaluation of the Impact of Flutriafol on Soil Culturable Microorganisms and on Soil Enzymes Activity" Agriculture 14, no. 9: 1445. https://doi.org/10.3390/agriculture14091445
APA StyleRoman, D. -L., Matica, M. A., Boros, B. -V., Vulpe, C. -B., & Isvoran, A. (2024). Evaluation of the Impact of Flutriafol on Soil Culturable Microorganisms and on Soil Enzymes Activity. Agriculture, 14(9), 1445. https://doi.org/10.3390/agriculture14091445