Feeding Values of Indigenous Browse Species and Forage Legumes for the Feeding of Ruminants in Ethiopia: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database Development
2.2. Statistical Analysis
2.2.1. Nutritional Value Data
2.2.2. Animal Experiment Data
3. Results
3.1. Description of Browse Species and Forage Legumes Included in Chemical Composition and in Vitro Digestibility Database
3.2. Mean Nutritional Values of Main Forage Categories
3.3. Nutritive Value of Selected Species from Herbaceous Forage Legumes
3.4. Nutritive Value of Selected Species from Multipurpose Fodder Tree/Shrubs
3.5. Nutritive Values of Selected Species from Indigenous Browse Plants
3.6. Tannin Contents of Selected Indigenous Browse Species and Forage Legumes
3.7. Description of Animal Experiments Included in In Vivo Database
3.8. Nutrient Utilization and Animal Performance
3.8.1. Feed Intake and Apparent Digestibility
3.8.2. Production Responses
4. Discussion
4.1. Nutritional Importance of Browse Species and Forage Legumes
4.2. Chemical Composition
4.3. In Vitro Organic Digestibility and Metabolizable Energy Value
4.4. Tannin Content
4.5. Nutrient Concentration of Experiment Diets and Feeding Patterns
4.6. Nutrient Utilization and Production Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variables | Crop Residues (n = 13) | Cultivated Grass Hay (n = 9) | Natural Pasture Hay (n = 40) | Overall Mean (n = 61) | ||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | Range | |
DM% | 84.1 ± 13.0 | 55.0–94.8 | 85.7 ± 19.0 | 25.8–96.0 | 91.9 ± 2.3 | 87.0–95.8 | 89.2 ± 10.8 | 25.8–96.0 |
Ash% | 8.8 ± 2.2 | 4.0–11.7 | 9.9 ± 2.6 | 5.1–14.8 | 9.7 ± 1.6 | 6.6–12.3 | 9.6 ± 2.0 | 4.0–14.8 |
CP% | 6.2 ± 1.9 | 3.2–10.2 | 7.6 ± 2.7 | 2.8–12.2 | 6.9 ± 1.5 | 3.2–10.2 | 6.9 ± 2.0 | 2.8–12.2 |
NDF% | 74.8 ± 9.6 | 52.8–84.2 | 67.4 ± 8.9 | 46.2–77.2 | 70.7 ± 9.6 | 41.0–89.9 | 70.7 ± 9.6 | 41.0–89.9 |
ADF% | 52.7 ± 8.9 | 37.9–64.4 | 41.9 ± 10.3 | 17.3–53.3 | 46.6 ± 8.0 | 30.2–68.4 | 46.6 ± 9.2 | 17.2–68.4 |
ADL% | 12.7 ± 8.9 | 5.4–30.7 | 7.0 ± 5.4 | 2.7–19.0 | 9.9 ± 4.6 | 4.3–22.2 | 10.0 ± 5.9 | 2.7–30.7 |
Variables | N | Mean | SD | Minimum | Maximum |
---|---|---|---|---|---|
Initial body weight of animals (kg) | 61 | 17.8 | 3.43 | 11.5 | 28.4 |
Supplementation level g/day | 47 | 277.5 | 101.4 | 100 | 588 |
Substitution level of concentrate with foliage (%) | 26 | 47.9 | 18.3 | 15 | 82.8 |
Proportion of foliage in the total diet (%) | 45 | 31.9 | 11.4 | 8.4 | 64.5 |
Nutrient content | |||||
Basal diet CP (%DM) | 61 | 6.9 | 1.9 | 2.8 | 12.2 |
Foliage CP (%DM) | 48 | 19.8 | 4.7 | 7.4 | 30.0 |
Concentrate CP (%DM) | 35 | 22.2 | 7.1 | 16.0 | 45.3 |
Basal diet NDF (%DM) | 61 | 70.1 | 9.3 | 41.0 | 89.9 |
Foliage NDF (%DM) | 48 | 41.2 | 12.2 | 13.2 | 68.8 |
Concentrate NDF (%DM) | 35 | 41.9 | 10.2 | 23.5 | 69.3 |
References
- Ayantunde, A.A.; Duncan, A.J.; Van Wijk, M.T.; Thorne, P. Review: Role of herbivores in sustainable agriculture in Sub-Saharan Africa. Animal 2018, 12, 199–209. [Google Scholar] [CrossRef] [PubMed]
- CSA (Central Statistical Agency). Federal Democratic Republic of Ethiopia Central Statistical Agency Agricultural Sample Survey 2020/21 [2013 E. C.] Report; CSA: Addis Abeba, Ethiopia, 2021; Volume II. [Google Scholar]
- Balehegn, M.; Duncan, A.; Tolera, A.; Ayantunde, A.A.; Issa, S.; Karimou, M.; Zampaligré, N.; André, K.; Gnanda, I.; Varijakshapanicker, P.; et al. Improving adoption of technologies and interventions for increasing supply of quality livestock feed in low- and middle-income countries. Glob. Food Sec. 2020, 26, 100372. [Google Scholar] [CrossRef]
- Tahir, M.B.; Wossen, A.M.; Mersso, B.T. Evaluation of livestock feed balance under mixed crop—Livestock production system in the central highlands of Ethiopia. Agric. Food Secur. 2018, 7, 19. [Google Scholar] [CrossRef]
- Abebaye, H.; Mengistu, A.; Assefa, G.; Feyissa, F. Feed Resources Availability and Feeding Practices of Smallholder Farmers in Selected Districts of West Shewa Zone, Ethiopia Feed Resources Availability and Feeding Practices of Smallholder. World J. Agric. Sci. 2019, 15, 21–30. [Google Scholar]
- FAO (Food and Agricultural Organization). Ethiopia: Report on Feed Inventory and Feed Balance, 2018; FAO: Rome, Italy, 2018. [Google Scholar]
- Begna, R.; Masho, W. Valuation of livestock population and national feed security to enhance livestock productivity in Ethiopia. Vet. Med. Sci. 2024, 10, e1415. [Google Scholar] [CrossRef] [PubMed]
- Tolera, A. Feed resources for producing export quality meat and livestock in Ethiopia (Examples from selected Woredas in Oromia and SNNP regional states. In Ethiopian Sanitary and Phytosanitary Standards and Livestock Meat and Marketing Program (SPS-LMM); Texas Agricultural Experiment Station (TAES), Texas A&M University System: College Station, TX, USA, 2007; Volume 88. [Google Scholar]
- Mengistu, A.; Kebede, G.; Feyissa, F.; Assefa, G. Review on Major Feed Resources in Ethiopia: Conditions, Challenges and Opportunities. Acadamic Res. J. Agric. Sci. Res. 2017, 5, 176–185. [Google Scholar]
- Feyisa, T.; Tolera, A.; Nurfeta, A.; Balehegn, M. Assessment of fodder resources in Ethiopia: Biomass production and nutritional value. Agron. J. 2021, 114, 8–25. [Google Scholar] [CrossRef]
- Bell, L.W.; Moore, A.D.; Thomas, D.T. Integrating diverse forage sources reduces feed gaps on mixed crop-livestock farms. Animal 2017, 12, 1967–1980. [Google Scholar] [CrossRef]
- Hassen, A.; Kurtu, M.Y.; Treydte, A.C. Livestock feed resources utilization and management as influenced by altitude in the central highlands of Ethiopia. Livest. Res. Rural. Dev. 2010, 22, 229. [Google Scholar]
- FAO (Food and Agricultural Organization). Ethiopia: Availability and Utilization of Agro-Industrial By-Products as Animal Feed, 2018; FAO: Rome, Italy, 2019. [Google Scholar]
- Salo, S. Estimation of Feeds and Fodders for Livestock Population of Ethiopia and Mitigation of Feed Shortage. J. Nat. Sci. Res. 2017, 7, 45–51. [Google Scholar]
- Tolera, A. The role of forage supplements in smallholder mixed farming systems. In Proceedings of an International Forage Symposium; Ubon Ratchathani University: Ratchathani, Thailand, 2007; pp. 165–186. [Google Scholar]
- Franzel, S.; Carsan, S.; Lukuyu, B.; Sinja, J.; Wambugu, C. Fodder trees for improving livestock productivity and smallholder livelihoods in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 98–103. [Google Scholar] [CrossRef]
- Oosting, S.J.; Mekoya, A.; Fernandez-Rivera, S.; van der Zijpp, A.J. Sesbania sesban as a fodder tree in Ethiopian livestock farming systems: Feeding practices and farmers’ perception of feeding effects on sheep performance. Livest. Sci. 2011, 139, 135–141. [Google Scholar] [CrossRef]
- Wambugu, C.; Place, F.; Franzel, S.; Wambugu, C.; Place, F.; Franzel, S. Research, development and scaling-up the adoption of fodder shrub innovations in East Africa. Int. J. Agric. Sustain. 2011, 9, 100–109. [Google Scholar] [CrossRef]
- Kebede, G.; Assefa, G.; Feyissa, F.; Mengistu, A. Forage Legumes in Crop-Livestock Mixed Farming Systems—A Review. Int. J. Livest. Res. 2016, 6, 1–18. [Google Scholar] [CrossRef]
- St-Pierre, N.R. Invited review. Integrating quantitative findings from multiple studies using mixed model methodology. J. Dairy Sci. 2001, 84, 741–755. [Google Scholar] [CrossRef]
- Saha, U.; Sonon, L.; Hancock, D.; Hill, N.; Stewart, L.; Heusner, G.; Kissel, D.E. Common Terms Used in Animal Feeding and Nutrition; University of Georgia: Athens, GA, USA, 2010; pp. 17–24. [Google Scholar]
- Glasser, F.; Doreau, M.; Maxin, G.; Baumont, R. Fat and fatty acid content and composition of forages: A meta-analysis. Anim. Feed Sci. Technol. 2013, 185, 19–34. [Google Scholar] [CrossRef]
- John, W. Exploratory Data Analysis. In The Concise Encyclopedia of Statistics; Springer: New York, NY, USA, 1977; pp. 1–711. [Google Scholar]
- Castro-Montoya, J.; Dickhoefer, U. Effects of tropical legume silages on intake, digestibility and performance in large and small ruminants: A review. Grass Forage Sci. 2018, 73, 26–39. [Google Scholar] [CrossRef]
- Kronqvist, C.; Kongamanila, D.; Wredle, E. Effects of Replacing Grass with Foliage on Growth Rate and Feed Intake in Goats—A Systematic Review and Meta-Analysis. Animals 2021, 11, 3163. [Google Scholar] [CrossRef]
- Sauvant, D.; Schmidely, P.; Daudin, J.J.; St-Pierre, N.R. Meta-analyses of experimental data in animal nutrition. Animal 2008, 2, 1203–1214. [Google Scholar] [CrossRef]
- Papanastasis, V.P.; Yiakoulaki, M.D.; Decandia, M.; Dini-papanastasi, O. Integrating woody species into livestock feeding in the Mediterranean areas of Europe. Anim. Feed Sci. Technol. 2008, 140, 1–17. [Google Scholar] [CrossRef]
- Gina, T.G. Indigenous Multipurpose Fodder Trees of Wolayta Zone, Ethiopia; [Haramaya]: LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2013. [Google Scholar]
- Welay, K.; Nigatu, L.; Animut, G. Traditional Utilization and Chemical Composition of Major Browse Species in Range Lands of Mieso, Ethiopia. J. Agric. Res. 2018, 3, 000197. [Google Scholar]
- Birhane, E.; Balehegn, M.; Kiros, D.; Tsegaye, D. Distribution, animal preference and nutritive value of browse species in rangelands of Afar, northern Ethiopia. Ethiop. J. Biol. Sci. 2014, 13, 135–148. [Google Scholar]
- Aregawi, T.; Melaku, S.; Nigatu, L. Management and utilization of browse species as livestock feed in semi-arid district of North Ethiopia. Livest. Res. Rural. Dev. 2008, 20, 86. [Google Scholar]
- Atsbha, T.; Wayu, S. Utilization of indigenous tree and shrub species as animal feed resources in South Tigray, north Ethiopia, and implication for sustainable livestock production. Amaz. J. Plan. Res. 2020, 4, 594–608. [Google Scholar] [CrossRef]
- Gebeyew, K. Review on the Nutritive Value of Some Selected Acacia Species for Livestock Production in Dryland Areas. Adv. Dairy Res. 2015, 3, 139. [Google Scholar] [CrossRef]
- Gebremeskel, K.; Mezgebe, K.; Gesesse, A. Chemical composition and digestibility of Acacia species provenances in Tigray, Northern Ethiopia. Livest. Res. Rural. Dev. 2020, 31, 60. [Google Scholar]
- Mekonnen, K.; Glatzel, G.; Sieghardt, M. Assessments of fodder values of 3 indigenous and 1 exotic woody plant species in the highlands of Central Ethiopia. Mt. Res. Dev. 2009, 29, 135–142. [Google Scholar] [CrossRef]
- Ayenew, A.; Tolera, A.; Nurfeta, A.; Assefa, G. Farmers’ preference and knowledge on indigenous multipurpose browse species towards their feed value in north western Ethiopia. Trop. Subtrop. Agroecosyst. 2021, 24, 1–11. [Google Scholar] [CrossRef]
- Mengistu, A.; Kebede, G.; Assefa, G.; Feyissa, F.; Adane, T.; and Mekuria, S. Production, management and utilization of the indigenous multipurpose fodder tree chibha (Ficus thonningii) in Ethiopia. Acad. Res. J. Agri. Sci. Res. 2017, 5, 380–390. [Google Scholar]
- Balehegn, M. Forage and Multipurpose Uses of Ficus thonnings in Northern Ethiopia; Norwegien University of Life Sciences: As, Norway, 2012. [Google Scholar]
- Mengistu, S.; Feyissa, F.; Kebede, G. Progress of Forage Legumes Breeding and Genetics Research in Ethiopia: A review. Ethiop. J. Crop Sci. 2018, 1, 153–178. [Google Scholar]
- Tefera, S.; Asmare, B.; Tegegne, F.; Zone, S.G. Farmers’ utilization practice, yield and chemical composition of selected improved forages grown in natural resource management areas of Farta Farmers’ utilization practice, yield and chemical composition of selected improved. Cogent Food Agric. 2019, 5, 1686961. [Google Scholar] [CrossRef]
- Melaku, S.; Peters, K.J.; Tegegne, A. In vitro and in situ evaluation of selected multipurpose trees, wheat bran and Lablab purpureus as potential feed supplements to tef (Eragrostis tef) straw. Anim. Feed Sci. Technol. 2003, 108, 159–179. [Google Scholar] [CrossRef]
- Derero, A.; Kitaw, G. Nutritive values of seven high priority indigenous fodder tree species in pastoral and agro-pastoral areas in Eastern Ethiopia. Agric. Food Secur. 2018, 7, 68. [Google Scholar] [CrossRef]
- Castro-Montoya, J.M.; Dickhoefer, U. The nutritional value of tropical legume forages fed to ruminants as affected by their growth habit and fed form: A systematic review. Anim. Feed Sci. Technol. 2020, 269, 114641. [Google Scholar] [CrossRef]
- Ondiek, J.O.; Abdulrazak, S.A.; Njoka, E.N. Nutritive value and palatability rating of fifteen selected indigenous Kenyan browse species fed to small east African goats. Livest. Res. Rural. Dev. 2017, 29, 115. [Google Scholar]
- Coleman, S.W.; Moore, J.E. Feed quality and animal performance. Field Crops Res. 2003, 84, 17–29. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant Final.pdf, 2nd ed.; Cornell University: Ithaca, NY, USA, 1982. [Google Scholar]
- Waghorn, G.C.; Clark, D.A. Feeding value of pastures for ruminants. N. Z. Vet. J. 2004, 52, 320–331. [Google Scholar] [CrossRef]
- Melesse, A.; Steingass, H.; Schollenberger, M. Screening of common tropical grass and legume forages in Ethiopia for their nutrient composition and methane production profile in vitro. Trop. Grassl. 2017, 5, 163–175. [Google Scholar] [CrossRef]
- Meissner, H.H.; Koster, H.H.; Nieuwoudt, S.H.; Coertze, R.J. Effect of Energy Supplementation on Intake and Digestion of Early and Mid-Season Ryegrass and Panicum Smuts Finger Hay, and on Insacco Disappearance of Various Forage Species. S. Afr. J. Anim. Sci. 1991, 21, 33–42. [Google Scholar]
- Atumo, T.T.; Kauffman, R.; Talore, D.G.; Tesfaye, T.; Tunkala, B.Z.; Zeleke, M. Adaptability, forage yield and nutritional quality of alfalfa (Medicago sativa) genotypes. Sustain. Environ. 2021, 7, 1895475. [Google Scholar] [CrossRef]
- Gashaw, M.; Mengistu, A.; Geleti, D. Biomass yield dynamics and nutritional quality of alfalfa (Medicago sativa) cultivars at Debre Zeit, Ethiopia. J. Harmoniz. Res. Appl. Sci. 2015, 3, 241–251. [Google Scholar]
- Jabessa, T.; Bekele, K. Evaluation of Alfalfa (Medicago sativa) Cultivars at Highland and Midland of Guji Zone of Oromia. Biochem. Mol. Biol. 2021, 6, 1–6. [Google Scholar] [CrossRef]
- Kebede, G.; Assefa, G.; Feyissa, F.; Mengistu, A. Biomass Yield Potential and Herbage Quality of Alfalfa (Medicago sativa L.) Genotypes in the Central Highland of Ethiopia. Int. J. Res. Stud. Agric. Sci. 2017, 3, 14–26. [Google Scholar]
- Atsbha, T.; Wayu, S.; Gebretsadkan, N.; Giday, T. Exclosure land management for restoration of herbaceous species in degraded communal grazing lands in Southern Tigray. Ecosyst. Health Sustain. 2020, 6, 1829993. [Google Scholar] [CrossRef]
- Tulu, A.; Temesgen, W.; Diribsa, M.; Keba, W.; Fekede, G. Herbage yield potential, crude protein yield and feeding value of selected Lablab purpureus cultivars grown under sub-humid climatic condition of western Oromia, Ethiopia. Int. J. Adv. Agric. Res. 2018, 6, 93–100. [Google Scholar]
- Hidosa, D.; Biru, S.K.; Guyita, B.B. Evaluation of Pigeon pea (Cajanus cajan) for Dry Matter Yield and Chemical Composition on Station of Jinka Agricultural Research Center, South Omo. Am. J. Agric. Environ. Sci. 2020, 20, 129–136. [Google Scholar]
- Jabessa, T.; Bekele, K. Evaluation of Improved Pigeon pea (Cajanus cajan) Varieties at Adola, Guji Zone of Oromia. Adv. Biochem. 2021, 9, 1–5. [Google Scholar] [CrossRef]
- Desalegn, K.; Hassen, W. Evaluation of Biomass Yield and Nutritional Value of Different Species of Vetch (Vicia). Acad. J. Nutr. 2015, 4, 99–105. [Google Scholar]
- Jabessa, T.; Amare, Z.; Dejene, G. Performance Evaluation of Vetch Varieties/Genotypes for Their Agronomic Performance and Nutritive Value in Selected Midland of East Guji Zone, Ethiopia. Asian J. Adv. Res. Rep. 2020, 9, 54–59. [Google Scholar] [CrossRef]
- Kebede, G.; Feyissa, F.; Mohammed, H.; Assefa, G.; Alemayehu, M.; Mengistu, A.; Tesfaye, M. Yield performance and nutritive values of vetch species grown on Nitosol and Vertisol conditions in central Highlands of Ethiopia. Int. J. Sci. 2019, 2, 60–81. [Google Scholar] [CrossRef]
- Bezabih, M.; Pellikaan, W.F.; Tolera, A.; Khan, N.A.; Hendriks, W.H. Chemical composition and in vitro total gas and methane production of forage species from the Mid Rift Valley grasslands of Ethiopia. Grass Forage Sci. 2013, 69, 635–643. [Google Scholar] [CrossRef]
- Melesse, A.; Steingass, H.; Schollenberger, M.; Holstein, J.; Rodehutscord, M. Nutrient compositions and in vitro methane production profiles of leaves and whole pods of twelve tropical multipurpose tree species cultivated in Ethiopia. Agrofor. Syst. 2019, 93, 135–147. [Google Scholar] [CrossRef]
- Debela, E.; Tolera, A. Nutritive value of botanical fractions of Moringa oleifera and Moringa stenopetala grown in the mid-Rift Valley of southern Ethiopia. Agrofor. Syst. 2013, 87, 1147–1155. [Google Scholar] [CrossRef]
- Debela, E.; Tolera, A.; Eik, L.O.; Salte, R. Nutritive Value of Morphological Fractions of Sesbania sesban and Desmodium intortum. Trop. Subtrop. Agroecosyst. 2011, 14, 793–805. [Google Scholar]
- Abebe, A.; Tolera, A.; Holand, Ø.; Ådnøy, T.; Eika, L.O. Seasonal Variation in Nutritive Value of Some Browse and Grass Species in Borana Rangeland, Southern Ethiopia. Trop. Subtrop. Agroecosyst. 2012, 15, 261–271. [Google Scholar]
- Andualem, D.; Gelgele, M.; Bayssa, M. In vitro gas production kinetics of selected multipurpose tree browses in Gelana rangelands. Livest. Prod. 2021, 33, 18. [Google Scholar]
- Hassen, A.; Kelkay, T.Z.; Tolera, A. Seasonal variations in chemical composition, in vitro digestibility and ruminal degradation of browse species in the Rift Valley of Ethiopia. Livest. Res. Rural. Dev. 2017, 29, 112. [Google Scholar]
- Fulgueira, C.L.; Amigot, S.L.; Gaggiotti, M.; Romero, L.A. Forage Quality: Techniques for Testing Forage Quality: Techniques for Testing. Fresh Prod. 2007, 1, 121–131. [Google Scholar]
- Wallau, M.O.; Adesogan, A.T.; Sollenberger, L.E.; Vendramini, J.M.B.; Dubeux, J.C.B. Factors Affecting Forage Quality; University of Florida Institute of Food and Agricultural Sciences: Gainesville, FL, USA, 2018; pp. 2–6. [Google Scholar]
- Berhanu, Y.; Olav, L.; Nurfeta, A.; Angassa, A.; Aune, J.B. Methane Emissions from Ruminant Livestock in Ethiopia: Promising Forage Species to Reduce CH4 Emissions. Agriculture 2019, 9, 130. [Google Scholar] [CrossRef]
- Owen, E.; Jayasuriya, M.C.N. Use of crop residues as animal feeds in developing countries. Res. Dev. Agric. 1989, 6, 129–138. [Google Scholar]
- Yang, C.; Gao, P.; Hou, F.; Yan, T.; Chang, S.; Chen, X.; Wang, Z. Relationship between chemical composition of native forage and nutrient digestibility by Tibetan sheep on the Qinghai—Tibetan Plateau. J. Anim. Sci. 2018, 96, 1140–1149. [Google Scholar] [CrossRef]
- Mengistu, G.; Bezabih, M.; Hendriks, W.H.; Pellikaan, W.F. Preference of goats (Capra hircus L.) for tanniniferous browse species available in semi-arid areas in Ethiopia. Anim. Physiol. Anim. Nutr. 2017, 101, 1286–1296. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Review article. Anim. Nutr. 2018, 4, 137–150. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 2010, 71, 1198–1222. [Google Scholar] [CrossRef]
- Mueller-Harvey, I. Unravelling the conundrum of tannins in animal nutrition and health †. J. Sci. Food Agric. 2006, 86, 2010–2037. [Google Scholar] [CrossRef]
- Frutos, P.; Hervás, G.; Giráldez, F.J.; Mantecón, A.R. Tannins: Tannins and ruminant nutrition. Span. J. Agric. Res. 2004, 2, 191–202. [Google Scholar] [CrossRef]
- Macadam, J.W.; Villalba, J.J. Beneficial Effects of Temperate Forage Legumes that Contain Condensed Tannins. Agriculture 2015, 5, 475–491. [Google Scholar] [CrossRef]
- Getachew, G.; Makkar, H.P.S.; Becker, K. Effect of polyethylene glycol on in vitro degradability of nitrogen and microbial protein synthesis from tannin-rich browse and herbaceous legumes. Br. J. Nutr. 2000, 84, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Debela, E.; Tolera, A.; Olav, L.; Salte, R. Condensed tannins from Sesbania sesban and Desmodium intortum as a means of Haemonchus contortus control in goats. Trop. Anim. Health Prod. 2012, 44, 1939–1944. [Google Scholar] [CrossRef]
- Bhat, T.K.; Kannan, A.; Singh, B.; Sharma, O.P. Value Addition of Feed and Fodder by Alleviating the Antinutritional Effects of Tannins. Agric. Res. 2013, 2, 189–206. [Google Scholar] [CrossRef]
- Melaku, S.; Aregawi, T.; Nigatu, L. Chemical composition, in vitro dry matter digestibility and in sacco degradability of selected browse species used as animal feeds under semi-arid conditions in Northern Ethiopia. Agrofor. Syst. 2010, 80, 173–184. [Google Scholar] [CrossRef]
- Ali, A.; Tegegne, F.; Asmare, B.; Mekuriaw, Z. On farm evaluation of sun-dried Ziziphus spina-christi leaves substitution for natural pasture hay on feed intake and body weight change of Bati goat breeds in Ethiopia. Trop. Anim. Health Prod. 2019, 51, 457–463. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Mengesha, M.; Bezabih, M.; Mekonnen, K.; Adie, A.; Duncan, A.J.; Thorne, P. Tagasaste (Chamaecytisus palmensis) leaf supplementation to enhance nutrient intake and production performance of sheep in the Ethiopian highlands. Trop. Anim. Health Prod. 2017, 49, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Mekuriaw, Y.; Asmare, B. Nutrient intake, digestibility and growth performance of Washera lambs fed natural pasture hay supplemented with graded levels of Ficus thonningii (Chibha) leaves as replacement for concentrate mixture. Agric. Food Secur. 2018, 7, 30. [Google Scholar] [CrossRef]
- Yisehak, K.; Biruk, K.; Abegaze, B. Growth of sheep fed tannin-rich Albizia gummifera with or without polyethylene glycol. Trop. Anim. Health Prod. 2014, 46, 1113–1118. [Google Scholar] [CrossRef]
- Tolera, A.; Sundstøl, F. Supplementation of graded levels of Desmodium intortum hay to sheep feeding on maize stover harvested at three stages of maturity: 1. Feed intake, digestibility and body weight change. Anim. Feed Sci. Technol. 2000, 85, 239–257. [Google Scholar] [CrossRef]
- Abate, D.; Melaku, S. Effect of supplementing urea-treated barley straw with lucerne or vetch hays on feed intake, digestibility and growth of Arsi Bale Sheep. Trop. Anim. Health Prod. 2009, 41, 579–586. [Google Scholar] [CrossRef]
- Yayneshet, T.; Eik, L.O.; Moe, S.R. Feeding Acacia etbaica and Dichrostachys cinerea fruits to smallholder goats in northern Ethiopia improves their performance during the dry season. Livest. Sci. 2008, 119, 31–41. [Google Scholar] [CrossRef]
- Balehegn, M.; Eik, L.O.; Tesfay, Y. Replacing commercial concentrate by Ficus thonningii improved productivity of goats in Ethiopia. Trop. Anim. Health Prod. 2014, 46, 889–894. [Google Scholar] [CrossRef]
Forage Categories | N (S) | Selected Species from Each Category | R |
---|---|---|---|
Herbaceous forage legumes | 33 (10) | Medicago sativa | 8 |
Lablab purpurea | 6 | ||
Desmodium intortum (Greenleaf) | 5 | ||
Desmodium uncinatum (Silverleaf) | 6 | ||
Vicia species | 7 | ||
Multipurpose fodder tree/shrub species | 22 (6) | Cajanus cajan (Pigeon pea) | 10 |
Tree lucerne (Tagasaste) | 7 | ||
Sesbania sesban | 11 | ||
Leucaena species | 6 | ||
Indigenous browse species | 53 (148) | Acacia species (17 different types) | 19 |
Vernonia amygdalina | 12 | ||
Balanites aegyptiaca | 8 | ||
Cordia africana | 7 | ||
Ficus species (Four different types) | 7 | ||
Rhus natalensis | 7 | ||
Grewia species (Six different types) | 7 |
Parameters | Herbaceous Forage Legumes | Multipurpose Fodder Tree/Shrub Species | Indigenous Browse Species | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Blooming Stage | Vegetative Stage | Overall | * Foliage | Leaves | Twigs | Mean | * Foliage | Leaves | Pods | Overall | ||
DM% | Mean ± SD | 90.7 ± 2.3 (n = 84) | 91.6 ± 2.0 (n = 9) | 90.7 ± 2.3 (n = 93) | 90.8 ± 2.7 (n = 23) | 92.5 ± 2.0 (n = 33) | - | 91.8 ± 2.5 (n = 56) | 92.4 ± 2.5 (n = 126) | 92.0 ± 2.3 (n = 194) | 90.5 ± 1.7 (n = 14) | 92.1 ± 2.4 (n = 334) |
Range | 81.7–96.2 | 88.1–95.0 | 81.7–96.2 | 84.0–95.8 | 88.5–95.4 | - | 84.0–95.8 | 87.4–98.5 | 83.2–96.8 | 87–93.2 | 83.2–98.5 | |
Ash %DM | Mean ± SD | 10.3 ± 2.3 (n = 89) | 10.6 ± 2.2 (n = 15) | 10.4 ± 2.2 (n = 104) | 9.1 ± 1.6 (n = 37) | 7.8 ± 2.6 (n = 35) | 8.5 ± 2.2 (n = 72) | 9.2 ± 2.8 (n = 115) | 10.4 ± 3.2 (n = 278) | 6.5 ± 3.2 (n = 20) | 9.9 ± 3.3 (n = 420 | |
Range | 5.4–14.5 | 5.8–15.1 | 5.4–15.1 | 4.9–13.8 | 4.3–13.7 | 4.3–13.8 | 4.2–16.9 | 4.1–18.9 | 2.0–15.5 | 2.0–18.9 | ||
CP (%DM) | Mean ± SD | 19.8 ± 3.5 (n = 101) | 22.7 ± 4.1 (n = 17) | 20.3 ± 3.7 (n = 118) | 21.7 ± 3.6 (n = 39) | 22.8 ± 3.2 (n = 41) | 18.8 ± 0.6 (n = 4) | 22.1 ± 3.4 (n = 84) | 16.3 ± 3.6 (n = 128) | 18.0 ± 5.0 (n = 360) | 15.3 ± 2.3 (n = 20) | 17.6 ± 4.8 (n = 514) |
Range | 11.3–30.1 | 13.3–29.1 | 11.3–30.1 | 14.9–30.6 | 16.2–30.9 | 18.1–19.4 | 14.9–30.9 | 8.8–25.5 | 7.8–30.0 | 10.3–18.5 | 7.8–30.0 | |
NDF (%DM | Mean ± SD | 47.7 ± 9.4 (n = 104) | 46.9 ± 10.3 (n = 19) | 47.6 ± 9.5 (n = 123) | 48.7 ± 10.0 (n = 38) | 41.6 ± 14.0 (n = 39) | 58.3 ± 7.2 (n = 4) | 45.8 ± 12.7 (n = 81) | 44.8 ± 10.1 (n = 133) | 40.1 ± 12.9 (n = 345) | 40.2 ± 8.5 (n = 190 | 41.4 ± 12.2 (n = 498) |
Range | 29.3–72.0 | 25.8–65.1 | 25.8–72 | 23.8–68.6 | 20.0–66.8 | 47.9–63.2 | 20.0–68.6 | 27.1–68.8 | 12.8–71.0 | 18.4–51.5 | 12.8–710 | |
ADF (%DM) | Mean ± SD | 33.6 ± 7.8 (n = 106) | 33.1 ± 7.8 (n = 19) | 33.5 ± 7.8 (n = 125) | 33.9 ± 7.6 (n = 37) | 28.0 ± 10.6 (n = 37) | 42.4 ± 2.0 (n = 4) | 31.6 ± 9.7 (n = 78) | 30.4 ± 7.6 (n = 133) | 27.6 ± 10.4 (n = 353) | 30.4 ± 10.0 (n = 18) | 28.6 ± 10.0 (n = 507) |
Range | 13.7–55.0 | 14.7–43.7 | 13.7–55.0 | 16.6–45.9 | 13.1–48.8 | 40.1–44.6 | 13.1–48.8 | 15.2–49.9 | 8.5–53.3 | 12.0–46.5 | 8.5–58.9 | |
ADL (%DM) | Mean ± SD | 7.4 ± 2.8 (n = 93) | 7.5 ± 2.8 (n = 16) | 7.4 ± 2.8 (n = 109) | 12.0 ± 5.7 (n = 30) | 8.0 ± 3.1 (n = 26) | - | 10.1 ± 5.0 (n = 57) | 9.5 ± 3.3 (n = 118) | 11.4 ± 5.4 (n = 256) | 8.1 ± 3.3 (n = 13) | 10.9 ± 5.0 (n = 395) |
Range | 2.2–15.8 | 2.0–13.3 | 2.0–15.8 | 4.6–20.7 | 2.7–13.8 | 2.7–20.7 | 3.4–18.1 | 2.3–34.6 | 3.9–14.4 | 2.3–34.6 | ||
IVOMD (%) | Mean ± SD | 63.1 ± 11.2 (n = 29) | 65.1 ± 9.3 (n = 6) | 63.5 ± 10.8 (n = 35) | 58.5 ± 13.1 (n = 17) | 66.4 ± 7.1 (n = 15) | 53.0 ± 6.9 (n = 4) | 61.2 ± 11.2 (n = 36) | 70.1 ± 10.8 (n = 20) | 60.5 ± 12.3 (n = 145) | 59.4 ± 10.8 (n = 4) | 61.6 ± 12.4 (n = 170) |
Range | 42.2–82.0 | 50.5–79.5 | 42.2–82.0 | 51.6–92.4 | 51.3–76.0 | 49.1–63.3 | 49.1–92.4 | 51.1–84.8 | 33.2–95.6 | 45.7–72.0 | 33.2–95.6 | |
ME (MJ/kg DM) | Mean ± SD | 8.9 ± 1.72 (n = 26) | 8.9 ± 0.82 (n = 9) | 8.9 ± 1.5 (n = 35) | 8.0 ± 1.4 (n = 17) | 8.9 ± 1.2 (n = 20) | 7.3 ± 1.0 (n = 4) | 8.4 ± 1.4 (n = 41) | 7.3 ± 1.7 (n = 20) | 8.3 ± 1.6 (n = 116) | 8.4 ± 1.0 (n = 4) | 8.2 ± 1.6 (n = 191) |
Range | 5.7–11.3 | 7.7–10.2 | 5.7–11.3 | 7.1–10.6 | 7.1–10.8 | 6.8–8.9 | 6.8–10.8 | 4.9–11.6 | 4.1–12.4 | 7.7–9.9 | 4.1–12.4 |
Parameters | Medicago sativa | Vicia Species | Lablab purpurea | Desmodium intortum | Desmodium uncinatum | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fresh | Hay | Overall | Fresh | Hay | Overall | Fresh | Hay | Overall | Fresh | Hay | Overall | Fresh | Hay | Overall | ||
DM% | Mean ± SD | 90.6 ± 1.0 (n = 32) | 91.8 ± 4.4 (n = 3) | 90.7 ± 1.5 (n = 35) | 89.9 ± 1.4 (n = 15) | 88.8 ± 2.3 (n = 11) | 89.4 ± 1.9 (n = 26) | 92.7 ± 1.1 (n = 12) | 91.3 ± 2.6 (n = 9) | 92.1 ± 1.9 (n = 21) | - | - | 92.3 ± 2.9 (n = 3) | 92.7 ± 1.5 (n = 5) | 88.7 ± 6.4 (n = 3) | 91.2 ± 4.2 (n = 8) |
Range | 88.2–92.1 | 87.5–96.2 | 87.5–96.2 | 88.1–92.1 | 85.0–92.7 | 85.0–92.7 | 91.1–94.7 | 87.2–95.8 | 87.2–95.8 | - | - | 89.2–95 | 90.7–94.2 | 81.7–94.4 | 81.7–94.4 | |
Ash %DM | Mean ± SD | 11.7 ± 1.7 (n = 46) | 12.9 ± 0.3 (n = 2) | 11.8 ± 1.6 (n = 48) | 9.1 ± 1.2 (n = 16) | 10.2 ± 1.7 (n = 6) | 9.4 ± 1.4 (n = 22) | 6.4 ± 1.4 (n = 12) | 10.0 ± 1.4 (n = 9) | 8.0 ± 2.3 (n = 21) | 8.6 ± 2.3 (n = 7) | - | 8.6 ± 2.3 (n = 7) | 10.9 ± 2.9 (n = 6) | 11.6 ± 0.6 (n = 2) | 11.1 ± 2.5 (n = 8) |
Range | 8.0–15.1 | 12.7–13.1 | 8.0–15.1 | 6.7–11.2 | 8.0–11.8 | 6.7–11.8 | 3.8–8.8 | 7.9–11.9 | 3.8–11.9 | 3.8–10.6 | - | 3.8–10.6 | 5.8–14.4 | 11.1–12.0 | 5.8–14.4 | |
CP %DM | Mean ± SD | 20.8 ± 3.5 (n = 3.5) | 17.0 ± 3.3 (n = 3) | 20.6 ± 3.6 (n = 46) | 21.4 ± 5.0 (n = 26) | 18.6 ± 1.7 (n = 10) | 20.6 ± 4.5 (n = 36) | 19.5 ± 4.3 (n = 11) | 20.2 ± 2.5 (n = 9) | 19.8 ± 3.5 (n = 20) | 22.5 ± 4.7 (n = 7) | 14.7 ± 1.2 (n = 2) | 20.7 ± 5.4 (n = 9) | 19.8 ± 3.1 (n = 6) | 15.3 ± 1.1 (n = 3) | 18.3 ± 3.4 (n = 9) |
Range | 11.3–30.1 | 13.6–20.1 | 11.3–30.1 | 10.4–34.6 | 14.9–21.1 | 10.4–34.6 | 15.0–26.5 | 16.1–24.0 | 15.0–26.5 | 13.3–27.5 | 13.8–15.5 | 13.3–27.5 | 15.3–24.6 | 14.1–16.3 | 14.1–24.6 | |
NDF %DM | Mean ± SD | 45.9 ± 11.1 (n = 50) | 47.6 ± 5.5 (n = 3) | 46.0 ± 10.9 (n = 53) | 45.9 ± 9.7 (n = 25) | 48.2 ± 7.1 (n = 11) | 46.6 ± 9.0 (n = 36) | 54.3 ± 4.5 (n = 11) | 46.2 ± 3.5 (n = 7) | 51.2 ± 5.7 (n = 18) | 47.5 ± 8.9 (n = 6) | 52.6 ± 1.1 (n = 2) | 48.8 ± 7.9 (n = 8) | 50.2 ± 6.5 (n = 6) | 61.7 ± 5.7 9n = 2) | 53.1 ± 7.9 (n = 8) |
Range | 25.8–72.0 | 41.4–51.1 | 25.8–72.0 | 29.3–66.4 | 36.5–58.4 | 29.3–66.4 | 44.0–59.4 | 41.0–51.3 | 41.0–59.4 | 39.6–64.9 | 51.8–53.3 | 39.6–64.9 | 42.0–60.3 | 57.6–65.7 | 42.02–65.7 | |
ADF %DM | Mean ± SD | 31.8 ± 8.3 (n = 50) | 27.9 ± 13.6 (n = 3) | 31.6 ± 8.5 (n = 53) | 33.5 ± 6.5 (n = 26) | 36.6 ± 6.3 (n = 11) | 34.5 ± 6.5 (n = 37) | 30.8 ± 6.7 (n = 12) | 36.1 ± 8.1 (n = 8) | 32.9 ± 7.6 (n = 20) | 37.3 ± 4.8 (n = 5) | 38.3 ± 4.5 (n = 2) | 37.6 ± 4.3 (n = 7) | 41.2 ± 7.1 (n = 6) | 35.1 ± 4.1 (n = 2) | 39.7 ± 6.8 (n = 8) |
Range | 14.7–49.5 | 13.7–40.9 | 13.7–49.5 | 21.6–46.0 | 27.1–48.2 | 21.6–48.2 | 24.2–47.3 | 24.4–46.3 | 24.2–47.3 | 31.9–43.9 | 35.1–41.4 | 31.9–43.7 | 35.6–55.0 | 32.2–38.0 | 32.2–55.0 | |
ADL %DM | Mean ± SD | 7.3 ± 3.4 (n = 47) | 6.5 ± 2.4 (n = 3) | 7.2 ± 3.3 (n = 50) | 9.3 ± 3.0 (n = 20) | 7.9 ± 3.3 (n = 11) | 8.8 ± 3.2 (n = 31) | 4.0 ± 1.9 (n = 11) | 6.7 ± 1.7 (n = 8) | 5.1 ± 2.2 (n = 19) | 9.4 ± 1.5 (n = 5) | 10.9 ± 1.8 (n = 2) | 9.9 ± 1.6 (n = 7) | 8.5 ± 2.0 (n = 5) | 11.7 ± 2.6 (n = 2) | 9.4 ± 2.5 (n = 7) |
Range | 1.9–16.7 | 4.2–9.0 | 1.9–16.7 | 5.7–18.1 | 4.6–16.6 | 4.6–18.1 | 1.7–8.3 | 4.4–9.7 | 1.7–9.7 | 7.3–11.4 | 9.7–12.2 | 7.3–12.2 | 6.6–10.8 | 9.8–13.5 | 6.6–13.5 | |
IVOMD % | Mean ± SD | 73.3 ± 4.1 (n = 11) | - | 72.7 ± 4.5 (n = 12) | 70.5 ± 7.9 (n = 4) | 66.3 ± 2.4 (n = 2) | 69.1 ± 6.5 (n = 6) | 50.5 ± 7.9 (n = 8) | - | 51.2 ± 7.7 (n = 9) | 60.5 ± 4.5 (n = 6) | - | 58.5 ± 6.9 (n = 7) | - | - | - |
Range | 68.9–79.5 | - | 65.8–79.5 | 64.6–82.0 | 64.6–68.0 | 64.6–82.0 | 42.2–68.7 | - | 42.2–68.7 | 55.0–64.9 | - | 46.1–64.9 | - | - | - | |
ME MJ/kg DM | Mean ± SD | 12.9 ± 2.0 (n = 30) | - | 10.2 ± 0.66 (n = 12) | 11.0 ± 1.1 (n = 15) | 10.6 ± 1.3 (n = 3) | 9.7 ± 0.73 (n = 6) | 7.0 ± 1.2 (n = 8) | - | 7.1 ± 1.2 (n = 9) | - | - | 9.3 ± 0.85 (n = 7) | - | - | - |
Range | - | - | 9.3–11.3 | - | - | 5.7–11.97 | - | - | 5.7–9.7 | - | - | 6.9–9.1 | - | - | - |
Parameters | Cajanus cajan | Leucaena Species | Sesbania sesban | Tree lucerne | ||||
---|---|---|---|---|---|---|---|---|
* Foliage | Leaves | Twigs | Overall Mean | * Foliage | * Foliage | * Foliage | ||
DM% | Mean ± SD | 90.5 ± 2.0 (n = 13) | 90.8 ± 2.4 (n = 6) | - | 90.6 ± 2.1 (n = 19) | 91.9 ± 4.0 (n = 10) | 92.1 ± 1.9 (n = 13) | 92.9 ± 1.4 (n = 14) |
Range | 87.9–95.8 | 88.5–94.4 | 87.9–95.8 | 84.0–95.4 | 89.0–95.3 | 90.0–94.2 | ||
Ash (%DM) | Mean ± SD | 8.8 ± 1.2 (n = 24) | 7.8 ± 1.7 (n = 8) | - | 8.6 ± 1.4 (n = 32) | 9.3 ± 2.3 (n = 9) | 10.4 ± 1.9 (n = 14) | 6.3 ± 2.0 (n = 17) |
Range | 6.7–11.1 | 5.1–10.1 | 5.1–11.1 | 6.2–13.8 | 6.3–13.7 | 4.3–11.1 | ||
CP (%DM) | Mean ± SD | 21.1 ± 3.0 (n = 24) | 23.4 ± 4.0 (n = 12) | 18.5 ± 0.6 (n = 3) | 21.6 ± 3.5 (n = 39) | 21.8 ± 3.3 (n = 11) | 23.6 ± 4.0 (n = 16) | 22.0 ± 2.4 (n = 18) |
Range | 17.5–30.4 | 17.0–30.9 | 18.1–19.2 | 17.0–30.9 | 14.9–27.6 | 15.3–30.6 | 16.2–25.1 | |
NDF (%DM) | Mean ± SD | 51.8 ± 7.7 (n = 24) | 48.9 ± 7.8 (n = 12) | 61.7 ± 2.3 (n = 3) | 51.7 ± 8.0 (n = 39) | 42.6 ± 16.5 (n = 9) | 32.7 ± 11.3 (n = 15) | 45.4 ± 12.1 (n = 18) |
Range | 37.6–68.6 | 36.3–60.3 | 59.0–63.2 | 36.3–68.6 | 23.0–64.5 | 20.0–47.9 | 27.3–66.8 | |
ADF (%DM) | Mean ± SD | 36.6 ± 6.2 (n = 24) | 33.1 ± 5.6 (n = 12) | 43.2 ± 1.6 (n = 3) | 36.1 ± 6.3 (n = 39) | 29.7 ± 12.1 (n = 8) | 25.2 ± 9.9 (n = 14) | 27.4 ± 10.7 (n = 17) |
Range | 18.7–45.9 | 28.7–47.5 | 41.5–44.6 | 18.7–47.5 | 14.0–45.7 | 13.1–40.1 | 17.8–48.8 | |
ADL (%DM) | Mean ± SD | 14.9 ± 5.5 (n = 18) | 12.6 ± 1.3 (n = 4) | - | 14.5 ± 5.1 (n = 22) | 8.7 ± 2.6 (n = 8) | 6.3 ± 2.7 (n = 12) | 7.5 ± 1.4 (n = 15) |
Range | 5.2–20.7 | 10.8–13.8 | - | 5.2–20.7 | 5.4–12.6 | 2.7–11.1 | 5.8–10.0 | |
IVOMD (%) | Mean ± SD | 51.9 ± 0.3 (n = 10) | 61.0 ± 6.6 (n = 6) | 49.6 ± 0.5 (n = 3) | 54.4 ± 5.8 (n = 19) | 70.9 ± 11.0 (n = 6) | 73.0 ± 7.6 (n = 8) | 52.6 ± 0.9 (n = 3) |
Range | 51.6–52.6 | 51.3–68.9 | 49.1–50.1 | 49.1–68.9 | 62.2–92.4 | 63.3–87.3 | 51.9–53.6 | |
ME (MJ/kg DM) | Mean ± SD | 7.2 ± 0.1 (n = 10) | 8.4 ± 0.8 (n = 7) | 6.8 ± 0.1 (n = 3) | 7.6 ± 0.8 (n = 20) | 9.3 ± 1.1 (n = 6) | 10.3 ± 0.6 (n = 6) | 7.6 ± 0.5 (n = 7) |
Range | 7.1–7.3 | 7.1–9.7 | 6.8–6.9 | 6.8–9.7 | 7.5–10.6 | 8.9–10.8 | 7.2–8.5 |
Parameters | Acacia asak | Acacia nilótica | Acacia saligna | Acacia seyal | Acacia tortilis | Balanites aegyptiaca | Cordia africana | Ficus thonningii | Grewia ferrugínea | Grewia tembensis | Millettia ferruginea | Prosofis juliflora | Rhus natelensis | Vernonia amygadalina | Ziziphus spina-christi | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DM% | Mean ± SD | 91.9 ± 2.1 (n = 4) | 91.2 ± 1.7 (n = 5) | - | 93.6 ± 2.4 (n = 4) | 91.9 ± 0.8 (n = 5) | 93.0 ± 2.8 (n = 6) | 93.9 ± 2.6 (n = 11) | 90.9 ± 1.2 (n = 5) | 92.1 ± 3.1 (n = 3) | - | - | - | - | 93.3 ± 2.2 (n = 9) | 91.3 ± 1.9 |
Range | 90.1–94.6 | 89.0–93.5 | - | 91.0–96.8 | 91.0–92.7 | 90.0–97.3 | 90.7–98.2 | 89.5–92.5 | 89.4–95.5 | - | - | - | - | 89.0–95.5 | 89.7–94.4 | |
Ash (%DM) | Mean ± SD | 11.9 ± 4.3 (n = 4) | 5.6 ± 2.2 (n = 7) | 10.3 ± 2 (n = 12) | 8.3 ± 1.6 (n = 5) | 7.3 ± 1.7 (n = 11) | 13.1 ± 3 (n = 9) | 12.9 ± 2 (n = 10) | 12.3 ± 5.1 (n = 6) | 12.3 ± 3.1 (n = 5) | 11.1 ± 5.1 (n = 6) | 8.9 ± 3.7 (n = 5) | 10.2 ± 2.5 (n = 5) | 9.5 ± 1.6 (n = 6) | 12.8 ± 1.9 (n = 14) | - |
Range | 9.2–18.3 | 2.8–8.8 | 7.9–14.1 | 6.5–10.1 | 5.2–10.4 | 10.0–16.9 | 9.2–15.5 | 2.4–16.10 | 9.1–16.6 | 2.0–17.1 | 4.3–12.3 | 6.8–12.9 | 7.9–11.8 | 9.4–17.3 | - | |
CP (%DM) | Mean ± SD | 11.7 ± 5.5 (n = 4) | 15.4 ± 1.4 (n = 7) | 22.6 ± 3.6 (n = 12) | 17.5 ± 3.5 (n = 8) | 16.7 ± 3.8 (n = 10) | 17.4 ± 3.4 (n = 10) | 17.7 ± 4.3 (n = 13) | 18.0 ± 4.5 (n = 7) | 13.9 ± 4.6 (n = 5) | 14.8 ± 4.2 (n = 6) | 20.6 ± 4.0 (n = 5) | 17.9 ± 6.2 (n = 6) | 14.3 ± 4.1 (n = 10) | 21.9 ± 5.1 (n = 15) | 17.8 ± 4.5) |
Range | 6.72–18.8 | 12.6–16.1 | 16.4–28.3 | 13.0–22.1 | 10.3–21.8 | 13.8–23.5 | 10.7–24.3 | 12.1–24.5 | 8.1–19.4 | 9.76–19.6 | 16.6–26.4 | 7.82–26.1 | 10.2–21.6 | 14.4–31.9 | 13.5–22.8 | |
NDF (%DM) | Mean ± SD | 45.1 ± 7.1 (n = 4) | 26.7 ± 13 (n = 7) | 33.4 ± 3.1 (n = 12) | 29.9 ± 11.8 (n = 8) | 31.7 ± 12.2 (n = 11) | 35.1 ± 7.9 (n = 10) | 52.7 ± 12.3 (n = 13) | 51.8 ± 12.6 (n = 7) | 48.9 ± 17.2 (n = 5) | 54.1 ± 15.9 (n= 4) | 49.3 ± 4.9 (n = 5) | 36.4 ± 8.8 (n = 6) | 38.9 ± 7.4 (n = 10) | 42.2 ± 13.6 (n = 15) | 35.5 ± 16.3 |
Range | 40.3–55.6 | 12.8–44.1 | 29.9–37.1 | 14.0–47.3 | 18.4–55.1 | 25.2–49.6 | 34.4–75.2 | 32.9–67.8 | 23.8–66.7 | 40.2–75.1 | 40.8–52.8 | 23.8–47.8 | 24.6–50.0 | 20.9–61.4 | 24.5–63.7 | |
ADF (%DM) | Mean ± SD | 25.1 ± 4.1 (n = 4) | 22.5 ± 14.4 (n = 7) | 28.7 ± 4 (n = 12) | 20.1 ± 8 (n = 8) | 22.8 ± 10 (n = 8) | 21.0 ± 5.4 (n = 10) | 36.7 ± 7.1 (n = 13) | 37.8 ± 10.4 (n = 7) | 29.4 ± 10.7 (n = 5) | 26.0 ± 2.4 (n = 6) | 33.4 ± 8.5 (n = 5) | 28.7 ± 12.1 (n = 6) | 26.7 ± 7.6 (n = 10) | 30.2 ± 12.5 (n = 15) | 21.3 ± 10.9 |
Range | 20.7–30.6 | 8.47–48.1 | 24.2–36.2 | 9.39–32.4 | 12.6–41.3 | 9.87–28.5 | 29.0–50.6 | 23.5–52.7 | 10.7–36.2 | 23.8–29.8 | 22.4–41.9 | 10.7–42.0 | 16.7–42.2 | 12.1–47.8 | 11.2–38.2 | |
ADL (%DM) | Mean ± SD | 8.2 ± 2.1 (n = 4) | 8.8 ± 3.9 (n = 3) | 3.9 ± 0.6 (n = 12) | 9.4 ± 3.8 (n = 4) | 9.4 ± 4.8 (n = 5) | 10.6 ± 1.3 (n = 5) | 17.3 ± 4.5 (n = 10) | 14.5 ± 5.9 (n = 5) | 13.8 ± 5 (n = 5) | 10.1 ± 3.9 (n = 4) | 12.4 ± 4.7 (n = 6) | 9.6 ± 4.4 (n = 6) | 13.7 ± 3.5 (n = 6) | 14.4 ± 8.1 (n = 13) | 10.3 ± 8.5 |
Range | 6.2–10.7 | 4.3–11.1 | 3.34–4.9 | 5.4–14.4 | 1.8–14.8 | 8.6–12.0 | 9.7–23.6 | 6.9–22.8 | 5.7–18.9 | 6.4–14.4 | 7.4–17.6 | 3.2–14.8 | 8.0–18.4 | 3.7–25.3 | 5.7–25.5 | |
IVOMD (%) | Mean ± SD | - | 55.5 ± 23.7 (n = 3) | 66.1 ± 2.3 (n = 12) | 63.2 ± 11.7 (n = 3) | 53.8 ± 10.6 (n = 5) | 51.0 ± 8.9 (n = 5) | 59.0 ± 19.5 (n = 6) | 70.0 ± 2.9 (n = 3) | - | - | 46.8 ± 8.0 (n = 5) | 46.8 ± 11.2 (n = 4) | 61.0 ± 6.9 (n = 4) | 55.5 ± 9.4 (n = 6) | - |
Range | - | 34.1–81.0 | 62.9–70.5 | 51.5–74.9 | 44.1–72.0 | 38.6–60.4 | 33.7–82.8 | 67.3–73.2 | - | - | 39.7–60.5 | 33.2–59.6 | 51.0–67.0 | 41.4–65.0 | - | |
ME (MJ/kg DM) | Mean ± SD | - | 9.7 ± 3.5 (n = 3) | 9.9 ± 0.4 (n = 12) | 7.9 ± 0.35 (n = 3) | 8.7 ± 1.2 (n = 4) | 7.3 ± 1.2 (n = 5) | 8.6 ± 0.76 (n = 3) | 7.3 ± 2.8 (n = 2) | - | - | 7.1 ± 1.2 (n = 4) | 7.3 ± 1.4 (n = 3) | 8.7 ± 0.4 (n = 5) | 7.2 ± 1.7 (n = 7) | 8.2 ± 1.1 |
Range | - | 7.3–12.2 | 9.4–10.6 | 7.7–8.2 | 7.0–9.9 | 5.6–8.6 | 7.8–9.3 | 5.3–9.3 | - | - | 5.8–8.4 | 5.7–8.3 | 8.1–9.1 | 7.4–9.0 | 7.4–9.0 |
Forage Species | Forage Category | Unit | Condensed Tannin | |
---|---|---|---|---|
Mean | Range | |||
Desmodium intortum | Herbaceous forage legume | CT ab/g NDF | 64.4 | 54.1–78.6 |
Cajanus cajan | Multipurpose fodder tree/shrub | CT ab/g NDF | 4.62 | 2.29–7.77 |
Sesbania sesban | Multipurpose fodder tree/shrub | CT ab/g NDF | 82.65 | 48.90–121.10 |
Tree lucerne | Multipurpose fodder tree/shrub | CT ab/g NDF | 10.22 | 8.76–11.68 |
Acacia asak | Indigenous browse species | CT ab/g NDF | 100.30 | 98.6–102 |
Acacia nilotica | Indigenous browse species | g/kg DM | 80.57 | 14.7–114.9 |
Acacia seyal | Indigenous browse species | g/kg DM | 121.97 | 34.0–211 |
Acacia tortilis | Indigenous browse species | CT ab/g NDF | 184.65 | 30.0–332 |
Albizia amara | Indigenous browse species | CT ab/g NDF | 84.5 | 82.5–86.5 |
Balanites aegyptieca | Indigenous browse species | g/kg DM | 19.13 | 1.20–92.0 |
Cordia africana | Indigenous browse species | g/kg DM | 9.23 | 3.0–13.4 |
Dichrostmachys cinerea | Indigenous browse species | CT ab/g NDF | 29.6 | 27.6–31.6 |
Ficus thonningii | Indigenous browse species | g/kg DM | 5.42 | 5.20–5.64 |
Grewia bicolour | Indigenous browse species | g/kg DM | 123.35 | 111–136 |
Grewia tembesis | Indigenous browse species | g/kg DM | 40.6 | 2.00–79.2 |
Millettia ferruginea | Indigenous browse species | g/kg DM | 17.55 | 5.37–33.0 |
Prosofis juliflora | Indigenous browse species | g/kg DM | 44.24 | 0.10–111 |
Rhus natelensis | Indigenous browse species | g/kg DM | 176.17 | 78–254 |
Vernonia amygadalina | Indigenous browse species | g/kg DM | 3.68 | 2.00–4.79 |
Ziziphus spina christi | Indigenous browse species | CT ab/g NDF | 47.7 | 32.0–57.9 |
Variables | N | Control Treatment | Forage-Supplemented Treatment | p-Value | AIC | RMSE | Covariable |
---|---|---|---|---|---|---|---|
Apparent digestibility | |||||||
DM% | 15 (55) | 55.3 ± 1.9 | 63.6 ± 1.8 | <0.0001 | 339.8 | 4.06 | - |
CP% | 15 (54) | 54.7 ± 3.2 | 67.6 ± 2.9 | <0.0001 | 372.8 | 6.64 | - |
NDF% | 15 (55) | 56.3 ± 2.1 | 62.7 ± 1.7 | 0.0015 | 372.1 | 6.259 | - |
Intake parameters | Body weight | ||||||
DMI (g) | 26 (91) | 547.2 ± 21.3 | 692 ± 18.2 | <0.0001 | 1046.9 | 66.37 | <0.0001 |
CPI (g) | 24 (85) | 49.0 ± 4.3 | 83.6 ± 3.6 | <0.0001 | 716.5 | 14.05 | 0.0005 |
NDFI (g) | 21 (78) | 377.8 ± 18.8 | 420.8 ± 17.8 | <0.0001 | 834.9 | 40.06 | 0.0430 |
MEI (MJ) | 7 (23) | 4.95 ± 0.71 | 7.11 ± 0.70 | <0.0001 | 66.4 | 0.620 | 0.2068 |
Production Parameters | |||||||
ADG (g) | 26(95) | 11.6 ± 5.47 | 40.3 ± 4.99 | <0.0001 | 831.8 | 14.84 | - |
FCE (g ADG/g DMI) | 26 (95) | 0.011 ± 0.006 | 0.051 ± 0.006 | <0.0001 | −417.3 | 0.0153 | - |
Carcass DP | 10 (33) | 44.2 ± 2.3 | 48.9 ± 2.3 | 0.0218 | 164.0 | 1.44 | - |
Variables | N | Forage Supplemented Treatment | * Forage-Concentrate Supplemented Treatment | Concentrate Supplemented Treatment | p-Value | RMSE | AIC | Covariable |
---|---|---|---|---|---|---|---|---|
Apparent digestibility | ||||||||
DM% | 11 (48) | b 62.6 ± 2.4 | a 65.7 ± 2.3 | a 66.4 ± 2.4 | 0.0035 | 2.66 | 278 | - |
CP% | 11 (51) | c 62.0 ± 3.4 | b 67.2 ± 3.1 | a 71.1 ± 3.4 | 0.0005 | 5.15 | 334 | - |
NDF% | 11 (51) | c 55.4 ± 2.5 | b 60.7 ± 2.4 | a 64.8 ± 2.5 | <0.0001 | 3.82 | 306.1 | - |
Intake parameters | Body weight | |||||||
DMI (g/d) | 25 (109) | 701.7 ± 25.6 | 729.0 ± 23.4 | 717.8 ± 23.9 | 0.2347 | 32.31 | 1081.7 | 0.0237 |
CPI (g/d) | 29 (107) | 88.6 ± 5.1 | 95.0 ± 4.7 | 96.3 ± 4.8 | 0.0733 | 6.90 | 884.3 | 0.0179 |
NDFI (g/d) | 27 (114) | b 387.8 ± 15.9 | a 411.5 ± 15.1 | a 409.0 ± 15.2 | 0.0322 | 21.05 | 1135.3 | 0.0041 |
MEI (MJ/d) | 7 (32) | b 7.01 ± 0.48 | a 7.79 ± 0.45 | a 7.92 ± 0.47 | 0.0027 | 0.49 | 71.3 | 0.4273 |
Production parameters | ||||||||
ADG (g/d) | 17(76) | b 38.2 ± 6.5 | a 53.9 ± 5.9 | a 50.3 ± 6.1 | 0.0035 | 7.73 | 609.1 | - |
FCE (g-ADG/g DMI) | 16(72) | 0.057 ± 0.008 | 0.069 ± 0.008 | 0.069 ± 0.008 | 0.0685 | 0.0072 | −363.4 | - |
Carcass DP | 10(44) | 50.8 ± 1.6 | 51.5 ± 1.4 | 51.0 ± 1.5 | 0.7011 | 2.15 | 216.9 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belete, S.; Tolera, A.; Betsha, S.; Dickhöfer, U. Feeding Values of Indigenous Browse Species and Forage Legumes for the Feeding of Ruminants in Ethiopia: A Meta-Analysis. Agriculture 2024, 14, 1475. https://doi.org/10.3390/agriculture14091475
Belete S, Tolera A, Betsha S, Dickhöfer U. Feeding Values of Indigenous Browse Species and Forage Legumes for the Feeding of Ruminants in Ethiopia: A Meta-Analysis. Agriculture. 2024; 14(9):1475. https://doi.org/10.3390/agriculture14091475
Chicago/Turabian StyleBelete, Sisay, Adugna Tolera, Simret Betsha, and Uta Dickhöfer. 2024. "Feeding Values of Indigenous Browse Species and Forage Legumes for the Feeding of Ruminants in Ethiopia: A Meta-Analysis" Agriculture 14, no. 9: 1475. https://doi.org/10.3390/agriculture14091475
APA StyleBelete, S., Tolera, A., Betsha, S., & Dickhöfer, U. (2024). Feeding Values of Indigenous Browse Species and Forage Legumes for the Feeding of Ruminants in Ethiopia: A Meta-Analysis. Agriculture, 14(9), 1475. https://doi.org/10.3390/agriculture14091475