A Review of Discrete Element Method Applications in Soil–Plant Interactions: Challenges and Opportunities
Abstract
:1. Introduction
2. Seed–Soil Interaction
2.1. Challenges
2.2. Applications and Case Studies
2.3. Opportunities
2.4. Summary
3. Root–Soil Interaction
3.1. Challenges
3.2. Applications and Case Studies
3.3. Opportunities
3.4. Summary
4. Residue–Soil Interaction
4.1. Challenges
4.2. Applications and Case Studies
4.3. Opportunities
4.4. Summary
5. Opportunities and Challenges
5.1. Emerging Fields
5.2. Future Challenges
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zuo, Q.; Kuai, J.; Zhao, L.; Hu, Z.; Wu, J.; Zhou, G. The effect of sowing depth and soil compaction on the growth and yield of rapeseed in rice straw returning field. Field Crop. Res. 2017, 203, 47–54. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Y.; Sadek, M.A. Modelling of soil–seed contact using the Discrete Element Method (DEM). Biosyst. Eng. 2014, 121, 56–66. [Google Scholar] [CrossRef]
- Acquah, K.; Chen, Y. Discrete Element Modelling of Soil Compaction of a Press-Wheel. AgriEngineering 2021, 3, 278–293. [Google Scholar] [CrossRef]
- Brown, A.; Dexter, A.; Chamen, W.; Spoor, G. Effect of soil macroporosity and aggregate size on seed-soil contact. Soil Tillage Res. 1996, 38, 203–216. [Google Scholar] [CrossRef]
- Fan, C.C.; Lu, J.Z.; Chen, H.H. The pullout resistance of plant roots in the field at different soil water conditions and root geometries. Catena 2021, 207, 105593. [Google Scholar] [CrossRef]
- Cundall, P.A. A computer model for simulating progressive, large-scale movement in blocky rock system. Proc. Int. Symp. Rock Mech. 1971, 8, 129–136. [Google Scholar]
- Mao, Z.; Yang, M.; Bourrier, F.; Fourcaud, T. Evaluation of root reinforcement models using numerical modelling approaches. Plant Soil. 2014, 381, 249–270. [Google Scholar] [CrossRef]
- Gong, H.; Zeng, Z.; Qi, L. A discrete element model of seed-soil dynamics in soybean emergence. Plant Soil 2019, 437, 439–454. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, R.; Wang, Y.; Jiang, X.; Feng, W.; Wang, J. Simulation and analysis of the working process of soil covering and compacting of precision seeding units based on the coupling model of DEM with MBD. Processes 2022, 10, 1103. [Google Scholar] [CrossRef]
- Potyondy, D.O.; Cundall, P.A. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Sadrmanesh, V.; Chen, Y. Simulation of tensile behavior of plant fibers using the Discrete Element Method (DEM). Compos. Part A Appl. Sci. Manuf. 2018, 114, 196–203. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, G.; Zhou, Y.; Liu, H.; Tang, N.; Kang, Q.; Zhao, Z. Establishment of discrete element flexible model of the tiller taro plant and clamping and pulling experiment. Front. Plant Sci. 2022, 13, 1019017. [Google Scholar]
- Zhang, S.; Zhao, H.; Wang, X.; Dong, J.; Zhao, P.; Yang, F.; Chen, X.; Liu, F.; Huang, Y. Discrete element modeling and shear properties of the maize stubble-soil complex. Comput. Electron. Agric. 2023, 204, 107519. [Google Scholar] [CrossRef]
- Chen, Y.; Tessier, S.; Irvine, B. Drill and crop performances as affected by different drill configurations for no-till seeding. Soil Tillage Res. 2004, 7, 147–155. [Google Scholar] [CrossRef]
- Gong, H.; Chen, Y.; Wu, S.; Tang, Z.; Liu, C.; Wang, Z.; Fu, D.; Zhou, Y.; Qi, L. Simulation of canola seedling emergence dynamics under different soil compaction levels using the discrete element method (DEM). Soil Tillage Res. 2022, 223, 105461. [Google Scholar] [CrossRef]
- Lysych, M.N.; Bukhtoyarov, L.D.; Shabanov, M.L. Investigation of the impact interaction of pelleted seeds with the soil environment. IOP Conf. Ser. Earth Environ. Sci. 2021, 875, 012023. [Google Scholar] [CrossRef]
- Yan, D.; Yu, J.; Zhang, N.; Tian, Y.; Wang, L. Test and Simulation Analysis of Soybean Seed Throwing Process. Processes 2022, 10, 1731. [Google Scholar] [CrossRef]
- Yan, D.; Xu, T.; Yu, J.; Wang, Y.; Guan, W.; Tian, Y.; Zhang, N. Test and Simulation Analysis of the Working Process of Soybean Seeding Monomer. Agriculture 2022, 12, 1464. [Google Scholar] [CrossRef]
- Zeng, Z.; Chen, Y.; Qi, L. Simulation of cotyledon-soil dynamics using the discrete element method (DEM). Comput. Electron. Agric. 2020, 174, 105505. [Google Scholar] [CrossRef]
- Gong, H.; Zeng, Z.; Tessier, L.; Guzman, L.; Yuan, Z.; Li, S.; Zheng, W.; Chen, Y.; Qi, L. Survival on land: A dark-grown seedling searching for path. Front. Plant Sci. 2023, 14, 1110521. [Google Scholar] [CrossRef]
- Sun, X.; Sakai, M.; Yamada, Y. Three-dimensional Simulation of a Solid-liquid Flow by the DEM-SPH Method. J. Comput. Phys. 2013, 248, 147–176. [Google Scholar] [CrossRef]
- Thakur, S.C.; Morrissey, J.P.; Sun, J.; Chen, J.; Ooi, J.Y. Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model. Granul. Matter 2014, 16, 383–400. [Google Scholar] [CrossRef]
- Xu, T.; Yu, J.; Yu, Y.; Wang, Y. A modelling and verification approach for soybean seed particles using the discrete element method. Adv. Powder Technol. 2018, 29, 3274–3290. [Google Scholar] [CrossRef]
- Tekeste, M.Z.; Balvanz, L.R.; Hatfield, J.L.; Ghorbani, S. Discrete element modeling of cultivator sweep-to-soil interaction: Worn and hardened edges effects on soil-tool forces and soil flow. J. Terramechanics 2019, 82, 1–11. [Google Scholar] [CrossRef]
- Lei, X.; Hu, H.; Wu, W.; Liu, H.; Liu, L.; Yang, W.; Zhou, Z.; Ren, W. Seed motion characteristics and seeding performance of a centralised seed metering system for rapeseed investigated by DEM simulation and bench testing. Biosyst. Eng. 2021, 203, 22–33. [Google Scholar] [CrossRef]
- Tang, Z.; Gong, H.; Wu, S.; Zeng, Z.; Wang, Z.; Zhou, Y.; Fu, D.; Liu, C.; Cai, Y.; Qi, L. Modelling of paddy soil using the CFD-DEM coupling method. Soil Tillage Res. 2023, 226, 105591. [Google Scholar] [CrossRef]
- Le, T.; Liu, C.; Tang, C.; Zhang, X.; Shi, B. Numerical Simulation of Desiccation Cracking in Clayey Soil Using a Multifield Coupling Discrete-Element Model. J. Geotech. Geoenvironmental Eng. 2022, 148, 04021183. [Google Scholar] [CrossRef]
- Younes, N.; Wautire, A.; Wan, R.; Millet, O.; Nicot, F.; Bouchard, R. DEM-LBM Coupling for Partially Saturated Granular Assemblies. Comput. Geotech. 2023, 162, 105677. [Google Scholar] [CrossRef]
- Karunasena, H.C.P.; Senadeera, W.; Gu, Y.T.; Brown, R.J. A coupled SPH-DEM model for micro-scale structural deformations of plant cells during drying. Appl. Math. Model. 2014, 38, 3781–3801. [Google Scholar] [CrossRef]
- Kolb, E.; Legué, V.; Bogeat-Triboulot, M. Physical root–soil interactions. Phys. Biol. 2017, 14, 065004. [Google Scholar] [CrossRef]
- Colombi, T.; Walter, A. Root responses of triticale and soybean to soil compaction in the field are reproducible under controlled conditions. Funct. Plant Biol. 2016, 43, 114–128. [Google Scholar] [CrossRef]
- Starovoitov, V.I.; Starovoitova, O.A.; Manokhina, A.A. Physical and mechanical parameters of the soil and yield of tubers of food potato depending on the spacing width. IOP Conf. Ser. Earth Environ. Sci. 2022, 949, 012001. [Google Scholar] [CrossRef]
- Bordoloi, S.; Ng, C.W.W. The effects of vegetation traits and their stability functions in bio-engineered slopes: A perspective review. Eng. Geol. 2020, 275, 105742. [Google Scholar] [CrossRef]
- Das, G.K.; Hazra, B.; Garg, A.; Ng, C.W.W. Stochastic hydro-mechanical stability of vegetated slopes: An integrated copula based framework. Catena 2018, 160, 124–133. [Google Scholar] [CrossRef]
- Meng, S.; Zhao, G.; Yang, Y.; Ye, X. Impact of Plant Root Morphology on Rooted-Soil Shear Resistance Using Triaxial Testing. Adv. Civ. Eng. 2020, 2020, 8825828. [Google Scholar] [CrossRef]
- Kokutse, N.K.; Temgoua, A.G.T.; Kavazović, Z. Slope stability and vegetation: Conceptual and numerical investigation of mechanical effects. Ecol. Eng. 2016, 86, 146–153. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Zou, L.; Yuan, J.; Du, S. Analysis of the interaction between end-effectors, soil and asparagus during a harvesting process based on discrete element method. Biosyst. Eng. 2020, 196, 127–144. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, D.; Shang, S.; Hou, J.; He, X.; Gao, Z.; Xu, N.; Chang, Z.; Guo, P.; Zheng, X. Analysis of Cyperus esculentus–Soil Dynamic Behavior during Rotary Tillage Based on Discrete Element Method. Agriculture 2023, 13, 358. [Google Scholar] [CrossRef]
- Nakashima, H.; Fujita, Y.; Tanaka, H.; Miyasaka, J. A model of root elongation by dynamic contact interaction. Plant Root 2008, 2, 58–66. [Google Scholar] [CrossRef]
- Bourrier, F.; Kneib, F.; Chareyre, B.; Fourcaud, T. Discrete modeling of granular soils reinforcement by plant roots. Ecol. Eng. 2013, 61, 646–657. [Google Scholar] [CrossRef]
- Bai, H.; Li, R.; Wang, W.; Xie, K.; Wang, X.; Zhang, W. Investigation on Parameter Calibration Method and Mechanical Properties of Root-Reinforced Soil by DEM. Math. Probl. Eng. 2021, 2021, 6623489. [Google Scholar] [CrossRef]
- Li, J.; Xie, S.; Liu, F.; Guo, Y.; Liu, C.; Shang, Z.; Zhao, X. Calibration and Testing of Discrete Element Simulation Parameters for Sandy Soils in Potato Growing Areas. Appl. Sci. 2022, 12, 10125. [Google Scholar] [CrossRef]
- Hao, J.; Long, S.; Li, H.; Jia, Y.; Ma, Z.; Zhao, J. Development of discrete element model and calibration of simulation parameters for mechanically-harvested yam. Trans. Chin. Soc. Agric. Eng. 2019, 35, 34–42. [Google Scholar]
- Liu, Y.; Zhao, J.; Yin, B.; Ma, Z.; Hao, J.; Yang, X.; Feng, X.; Ma, Y. Discrete element modelling of the yam root–soil complex and its verification. Biosyst. Eng. 2022, 220, 55–72. [Google Scholar] [CrossRef]
- Wei, Z.; Su, G.; Li, X.; Wang, F.; Sun, C.; Meng, P. Parameter optimization and test of potato harvester wavy sieve based on EDEM. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2020, 51, 109–122. [Google Scholar]
- Colombi, T.; Keller, T. Developing strategies to recover crop productivity after soil compaction—A plant eco-physiological perspective. Soil Tillage Res. 2019, 191, 156–161. [Google Scholar] [CrossRef]
- Yuan, J.; Li, J.; Zou, L.; Liu, X. Optimal design of spinach root-cutting shovel based on discrete element method. Trans. CSAM 2020, 51, 85–98. [Google Scholar]
- Turmel, M.S.; Speratti, A.; Baudron, F.; Verhulst, N.; Govaerts, B. Crop residue management and soil health: A systems analysis. Agric. Syst. 2015, 134, 6–16. [Google Scholar] [CrossRef]
- Vyn, T.J.; Janovicek, K.; Carter, M. Tillage requirements for annual crop production in eastern Canada. Conserv. Tillage Temp. Agroecosystems 2017, 3, 47–71. [Google Scholar]
- Ahuja, L.R.; Ma, L.; Timlin, D.J. Trans-Disciplinary Soil Physics Research Critical to Synthesis and Modeling of Agricultural Systems. Soil Sci. Soc. Am. J. 2006, 70, 311–326. [Google Scholar] [CrossRef]
- Zeng, Z.; Ma, X.; Chen, Y.; Qi, L. Modelling residue incorporation of selected chisel ploughing tools using the discrete element method (DEM). Soil Tillage Res. 2020, 197, 104505. [Google Scholar] [CrossRef]
- Adajar, J.B.; Alfaro, M.; Chen, Y.; Zeng, Z. Calibration of discrete element parameters of crop residues and their interfaces with soil. Comput. Electron. Agric. 2021, 188, 106349. [Google Scholar] [CrossRef]
- Gao, Z.; Shang, S.; Nan, X.; Wang, D. Parameter calibration of discrete element simulation model of wheat straw-soil mixture in Huang Huai Hai production area. INMATEH-Agric. Eng. 2022, 66, 201–210. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, F.; Dong, J.; Chen, X.; Liu, Y.; Mi, G.; Wang, T.; Jia, X.; Huang, Y.; Wang, X. Calibration of Discrete Element Parameters of Maize Root and Its Mixture with Soil. Processes 2022, 10, 2433. [Google Scholar] [CrossRef]
- Pásthy, L.; Tamás, K. Modeling the Soil-Tool-Root or-Stem Interaction with Coupled Discrete Element and Mass-Spring Methods. 2023. Available online: https://real.mtak.hu/174614/1/ECMS_2023_Pasthy_Tamas.pdf (accessed on 25 September 2023).
- Yuan, B.; Liu, C.; Qin, Y.; Zhang, T.; Ma, X. A discrete element modeling of rock and soil material based on the machine learning. IOP Conf. Ser. Earth Environ. Sci. 2021, 861, 032015. [Google Scholar] [CrossRef]
- Cui, H.; Zhao, H.; Ji, S.; Zhang, X.; Awadalseed, W.; Tang, H. A machine learning model of liquid bridge force and its application in discrete element method. Constr. Build. Mater. 2024, 411, 134174. [Google Scholar] [CrossRef]
- Lu, L.; Gao, X.; Dietiker, J.F.; Shahnam, M.; Rogers, W.A. Machine learning accelerated discrete element modeling of granular flows. Chem. Eng. Sci. 2021, 245, 116832. [Google Scholar] [CrossRef]
- Liao, Z.; Yang, Y.; Sun, C.; Wu, R.; Duan, Z.; Wang, Y.; Li, X.; Xu, J. Image-based prediction of granular flow behaviors in a wedge-shaped hopper by combing DEM and deep learning methods. Powder Technol. 2021, 383, 159–166. [Google Scholar] [CrossRef]
- Tamás, K.; Bernon, L. Role of particle shape and plant roots in the discrete element model of soil–sweep interaction. Biosyst. Eng. 2021, 211, 77–96. [Google Scholar] [CrossRef]
- Poppa, L.; Frerichs, L.; Liu, J.; Böl, M. Development and Implementation of a Damage Model for Potato Tuber Blackspot in Discrete Element Method to Analyze Harvesting and Handling Processes. J. ASABE 2024, 67, 517–524. [Google Scholar] [CrossRef]
- Colombi, T.; Braun, S.; Keller, T.; Walter, A. Artificial macropores attract crop roots and enhance plant productivity on compacted soils. Sci. Total Environ. 2017, 574, 1283–1293. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, G.; Wang, H.; Liu, H.; Kang, Q.; Zhao, Z.; Pei, L.; Li, Z. Microscopic Deformation and Fragmentation Energy Consumption Characteristics of Soils with Various Moisture Contents Using Discrete Element Method. Soil Tillage Res. 2024, 241, 106131. [Google Scholar] [CrossRef]
- Aikins, K.A.; Ucgul, M.; Barr, J.B.; Awuah, E.; Antille, D.L.; Jensen, T.A.; Desbiolles, J.M.A. Review of Discrete Element Method Simulations of Soil Tillage and Furrow Opening. Agriculture 2023, 13, 541. [Google Scholar] [CrossRef]
Reference | Software | Soil Feature | Contact Model | Seed Type | Seed Model Feature | Figure |
---|---|---|---|---|---|---|
Yan et al., 2022 [18] | EDEM (2018) | Compressible and sticky soil | The Edinburgh Elasto-Plastic Adhesion Model | Soybean seed | 13-sphere model | |
Xu et al., 2022 [9] | EDEM (2018) | Sandy loam | Hertz–Mindlin with JKR | Soybean seed | 5-sphere model | |
Zhou et al., 2014 [2] | PFC3D (4.0) | Different soil density between bottom and upper soil | Stiffness model; slip model; contact bond model | Oilseed rape; wheat; soybean; pea; chickpea; maize; Canavalia ensiform; | Single sphere | |
Gong et al., 2019 [8] | EDEM (2018) | Silt clay with moisture content of 15% | Hertz–Mindlin with JKR | Soybean seed transform to cotyledon | Six ellipsoidal particles | |
Zeng et al., 2020 [19] | PFC3D (6.0) | Sand:70% Silt: 16% Clay: 14% Water: 26% | Linear parallel-bond model | Soybean seed (cotyledon) | Irregular shape | |
Gong et al., 2022 [15] | EDEM (2021) | Sand: 70% Silt: 16% Clay: 14% Water: 15.96% | Hertz–Mindlin with bond | Canola seed (seedling) | Single sphere | |
Gong et al., 2023 [20] | PFC3D (6.0) | Earth and lunar soil | Linear parallel-bond model | Cotyledon (soybean seed) | A clump of spherical particles |
Reference | Software | Soil Feature | Contact Model of Soil | Root Feature | Contact Model of Root | Research Objective | Figure |
---|---|---|---|---|---|---|---|
Nakashima et al., 2008 [39] | - | - | The Voigt model | Root elongates using internally accumulated energy | Compressed virtual spring | Simulate the root-growing process | |
Bourrier et al., 2013 [40] | Yade-DEM (1st ed.) | - | - | Roots with the same diameter | Law2 ScGeom6D CohFrictPhys CohesionMoment and ScGeom6D | The reinforcement mechanism of root on soil | |
Bai et al., 2021 [41] | PFC2D (-) | - | - | Single straight root | The parallel bond | The root can enhance the soil shear strength | |
Li et al., 2020 [37] | EDEM (-) | - | The Hertz–Mindlin (no slip) | - | The Hertz–Mindlin with bonding | Select the best harvesting scheme and the suitable range of driving forces | |
Liu et al., 2022 [12] | EDEM (-) | Sandy loam | Hertz–Mindlin with JKR | - | The Hertz–Mindlin with bonding | Investigate the taro harvesting process | |
Yuan et al., 2020 [42] | EDEM (-) | Granular soil; | The Hertz–Mindlin (no slip) | - | The Hertz–Mindlin with bonding | Investigate the spinach harvesting using a cutting shovel | |
Li et al., 2022 [43] | EDEM (2020) | Slabby soil agglomerates; granular soil; | The Hertz–Mindlin with bonding The Hertz–Mindlin with JKR | Rigid body | - | Simulate the potato separation process | |
Hao et al., 2019 [44] | EDEM (-) | Sandy loam soil | The Hertz–Mindlin with JKR | Homogenous and isotropic | The Hertz–Mindlin with bonding | Calibrate the contact parameters of the mixture model | |
Liu et al., 2022 [45] | EDEM (-) | Sand: 62% Silt: 24% Clay: 14% Moisture: 22% | The Hertz–Mindlin with bonding | - | The Hertz–Mindlin with bonding | Construct a yam–soil complex model for future research | |
Wei et al., 2020 [46] | EDEM (-) | lumpy soil | The Hertz–Mindlin with bonding | Rigid body | - | Simulate the potato separation process |
Reference | Software | Soil Feature | Contact Model of Soil | Residue Feature | Contact Model of Residue | Research Objective | Figure |
---|---|---|---|---|---|---|---|
Zeng et al., 2020 [51] | PFC3D (6.0) | Sandy loam | The parallel bond | Rigid body | The multi-particle | Investigate the working performance of different tools | |
Adajar et al., 2021 [52] | PFC3D (6.0) | Sandy loam | The parallel bond | Different crop residues | The built-in linear contact model (single sphere) | To determine the simulation parameters | |
Gao et al., 2022 [53] | EDEM (-) | High moisture content | The Hertz–Mindlin with JKR | Rigid body | The multi-particle | Calibrate the model of the wheat straw–soil mixture | |
Zhang et al., 2022 [54] | EDEM (2020) | - | The Hertz–Mindlin with JKR | Rigid body | The Hertz–Mindlin (no slip) | Calibrate the model of the maize root–soil mixture | |
Zhang et al., 2023 [13] | EDEM (2020) | Loamy soil | The Hertz–Mindlin with JKR | Dividing the root into four layers | The Hertz–Mindlin with bonding | The mechanical properties of maize residue–soil complex | |
Pasthy and Tamas, 2023 [55] | PFC3D (-) | - | The Hertz–Mindlin | - | The mass-spring method | Explore the soil–residue–tool interaction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Zeng, Z.; Xing, Y. A Review of Discrete Element Method Applications in Soil–Plant Interactions: Challenges and Opportunities. Agriculture 2024, 14, 1486. https://doi.org/10.3390/agriculture14091486
Tian Y, Zeng Z, Xing Y. A Review of Discrete Element Method Applications in Soil–Plant Interactions: Challenges and Opportunities. Agriculture. 2024; 14(9):1486. https://doi.org/10.3390/agriculture14091486
Chicago/Turabian StyleTian, Yuyuan, Zhiwei Zeng, and Yuan Xing. 2024. "A Review of Discrete Element Method Applications in Soil–Plant Interactions: Challenges and Opportunities" Agriculture 14, no. 9: 1486. https://doi.org/10.3390/agriculture14091486
APA StyleTian, Y., Zeng, Z., & Xing, Y. (2024). A Review of Discrete Element Method Applications in Soil–Plant Interactions: Challenges and Opportunities. Agriculture, 14(9), 1486. https://doi.org/10.3390/agriculture14091486