Safety Assessment of Honeys from Northern and Southern Algerian Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemicals and Reagents
2.3. Inorganic Elements
2.4. DMA-80 Analysis
2.5. Statistical Analysis
2.6. Assessment of Contaminant Exposure through Diet
3. Results and Discussions
3.1. Validation of the ICP-MS and DMA-80 Methods
3.2. Mineral Elements in Honey Samples
3.3. Macro-Elements
Sample Code | Geographical Origin | Ca | Mg | Na |
---|---|---|---|---|
EST | North Sahara | 108.16 ± 9.45 a | 55.17 ± 3.45 | 85.89 ± 6.99 |
MT,L | 100.85 ± 5.51 a,b,c | 57.57 ± 10.89 | 67.26 ± 21.59 | |
ZT,L | 96.63 ± 4.79 a,b,d | 68.12 ± 13.67 | 55.23 ± 15.42 | |
BMT | 105.27 ± 6.06 a | 46.29 ± 3.39 | 88.13 ± 8.52 | |
ET | 100.33 ± 5.57 a,b,c,d | 48.16 ± 3.45 | 82.24 ± 6.39 | |
EGL | 89.23 ± 6.19 b,c,d,f | 72.13 ± 8.12 | 42.78 ± 7.02 | |
EOL | 93.33 ± 7.41 a,b,d,f | 80.90 ± 5.85 | 43.93 ± 5.55 | |
TEL | 110.34 ± 10.42 a | 49.88 ± 3.12 | 42.39 ± 5.82 | |
ESTD | South Sahara | 75.03 ± 5.52 e,g | 54.75 ± 11.28 | 75.27 ± 2.89 |
EOTD | 84.14 ± 2.53 d,f | 51.17 ± 4.67 | 38.55 ± 1.62 | |
ETD | 101.34 ± 4.61 a,b,d | 49.50 ± 1.94 | 76.10 ± 2.46 | |
PHTD | 73.23 ± 2.15 e,g | 101.70 ± 3.16 | 92.11 ± 1.81 | |
p-Value | 0.000 | 0.493 | 0.302 |
3.4. Micro-Elements
Sample Code | Geographical Origin | Fe | Co | Cr | Cu | Mn | Ti | Zn |
---|---|---|---|---|---|---|---|---|
EST | North Sahara | 11.33 ± 2.92 | <LOQ | <LOQ | <LOQ | <LOQ | 0.94 ± 0.07 | 7.92 ± 0.40 |
MT,L | 17.53 ± 8.33 | 0.04 ± 0.01 | 0.32 ± 0.11 a,b,c,d,e,f | 0.72 ± 0.08 | 0.04 ± 0.01 | <LOQ | 14.57 ± 0.69 | |
ZT,L | 17.69 ± 5.51 | <LOQ | 0.17 ± 0.10 a,b,d,e,f | 0.47 ± 0.07 | 0.06 ± 0.01 | <LOQ | 8.45 ± 0.96 | |
BMT | 10.76 ± 3.25 | <LOQ | 0.30 ± 0.06 a | 1.03 ± 0.08 | 0.06 ± 0.02 | <LOQ | 10.31 ± 0.31 | |
ET | 12.45 ± 2.37 | <LOQ | 0.35 ± 0.07 a | 0.80 ± 0.04 | 0.05 ± 0.01 | <LOQ | 6.88 ± 0.20 | |
EGL | 18.54 ± 4.59 | <LOQ | 0.19 ± 0.05 a,b,d,e | 0.29 ± 0.08 | 0.05 ± 0.01 | <LOQ | 11.51 ± 0.20 | |
EOL | 20.29 ± 5.05 | <LOQ | 0.14 ± 0.04 a,b,d,e,f | <LOQ | <LOQ | <LOQ | 8.77 ± 0.39 | |
TEL | 14.31 ± 3.14 | <LOQ | 0.04 ± 0.01 a,c | <LOQ | <LOQ | <LOQ | 9.71 ± 0.17 | |
ESTD | South Sahara | 13.03 ± 3.60 | <LOQ | <LOQ | <LOQ | <LOQ | 0.52 ± 0.11 | 16.90 ± 2.60 |
EOTD | 18.52 ± 1.32 | <LOQ | 0.10 ± 0.03 a,b,d,e,f | <LOQ | <LOQ | <LOQ | 9.97 ± 0.37 | |
ETD | 13.93 ± 0.64 | <LOQ | 0.15 ± 0.04 a,b,d,e,f | 0.46 ± 0.07 | 0.06 ± 0.02 | <LOQ | 8.11 ± 0.51 | |
PHTD | 19.19 ± 0.34 | 0.03 ± 0.01 | 0.08 ± 0.03 a,b,d,e,f | 0.64 ± 0.04 | 0.28 ± 0.04 | <LOQ | 7.43 ± 0.27 | |
p-Value | 0.877 | - | 0.003 | 0.132 | 0.791 | - | 0.344 |
3.5. Toxic and Potentially Toxic Elements
Sample Code | Geographical Origin | As | Cd | Ni | Pb | Sb | Sn |
---|---|---|---|---|---|---|---|
EST | North Sahara | <LOQ | 0.29 ± 0.12 a | <LOQ | 0.17 ± 0.01 a | <LOQ | <LOQ |
MT,L | 0.21 ± 0.05 | 1.15 ± 0.85 a,d,e,f,g | 0.33 ± 0.03 | 0.67 ± 0.44 a,b,c,f | <LOQ | 0.34 ± 0.05 | |
ZT,L | 0.01 ± 0.00 | 1.10 ± 0.81 a,d,e,f,g | 0.27 ± 0.04 | 1.40 ± 0.12 d,e | <LOQ | 0.10 ± 0.03 | |
BMT | 1.09 ± 0.16 | 3.03 ± 0.19 b,c | <LOQ | 1.08 ± 0.08 a,b | 0.53 ± 0.05 | 0.51 ± 0.07 | |
ET | 1.57 ± 0.20 | 3.11 ± 0.16 b,c | <LOQ | 0.79 ± 0.06 a,c | 0.55 ± 0.08 | 0.50 ± 0.04 | |
EGL | <LOQ | 1.25 ± 0.12 a,d | 0.31 ± 0.04 | 1.38 ± 0.08 d,e | <LOQ | 0.34 ± 0.09 | |
EOL | <LOQ | 0.89 ± 0.12 a,e,g | 0.38 ± 0.07 | 0.17 ± 0.04 a | <LOQ | <LOQ | |
TEL | <LOQ | 0.36 ± 0.11 a | <LOQ | <LOQ | <LOQ | <LOQ | |
ESTD | South Sahara | <LOQ | 0.51 ± 0.06 a,f | <LOQ | 0.16 ± 0.02 a | <LOQ | <LOQ |
EOTD | <LOQ | 0.38 ± 0.06 a | 0.33 ± 0.03 | 0.21 ± 0.03 a,f | <LOQ | <LOQ | |
ETD | 1.13 ± 0.09 | 0.94 ± 0.13 a,e,g | <LOQ | 0.27 ± 0.05 a,f | <LOQ | 0.26 ± 0.05 | |
PHTD | 0.02 ± 0.01 | 0.04 ± 0.01 h | 0.17 ± 0.06 | 0.04 ± 0.01 g | <LOQ | <LOQ | |
p-Value | - | 0.010 | - | 0.038 | - | - |
3.6. Statistical Analysis
3.6.1. Geographical Origin
3.6.2. Botanical Origin
3.7. Uptake of Elements by Honey Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Available online: https://www.europarl.europa.eu/factsheets/it/sheet/293547/la-strategia-dal-produttore-al-consumatore-#:~:text=La%20strategia%20F2F%20consiste%20in,sostenibile%20e%20rispettoso%20dell’ambiente (accessed on 20 June 2024).
- Derrar, S.; Lo Turco, V.; Albergamo, A.; Sgrò, B.; Ayad, M.A.; Litrenta, F.; Saim, M.S.; Potortì, A.G.; Aggad, H.; Rando, R.; et al. Study of Physicochemical Quality and Organic Contamination in Algerian Honey. Foods 2024, 13, 1413. [Google Scholar] [CrossRef] [PubMed]
- Codex Alimentarius Commission. “Revised Codex Standard for Honey”. Codex STAN 12-1981, Rev. 1 (1987), Rev. 2, 2001. Available online: https://www.ihc-platform.net/codex2001.pdf (accessed on 20 June 2024).
- Council Directive of the European Union, Council Directive 2001/110/EC of 20 December 2001 relating to honey. Off. J. Eur. Communities 2002, L10, 47–52.
- Conti, M.E.; Canepari, S.; Finoia, M.G.; Mele, G.; Astolfi, M.L. Characterization of Italian multifloral honeys on the basis of their mineral content and some typical quality parameters. J. Food Compos. Anal. 2018, 74, 102–113. [Google Scholar] [CrossRef]
- Pallerano, R.G.; Unates, M.A.; Cantarelli, M.A.; Camina, J.M.; Marchevsky, E.J. Analysis of trace elements in multifloral Argentine honeys and their classification according to provenance. Food Chem. 2012, 134, 578–582. [Google Scholar] [CrossRef]
- Kędzierska-Matysek, M.; Teter, A.; Skałecki, P.; Topyła, B.; Domaradzki, P.; Poleszak, E.; Florek, M. Residues of pesticides and heavy metals in Polish varietal honey. Foods 2022, 11, 2362. [Google Scholar] [CrossRef]
- Kastrati, G.; Paçarizi, M.; Sopaj, F.; Tašev, K.; Stafilov, T.; Mustafa, M.K. Investigation of Concentration and Distribution of Elements in Three Environmental Compartments in the Region of Mitrovica, Kosovo: Soil, Honey and Bee Pollen. Int. J. Environ. Res. Public Health 2021, 18, 2269. [Google Scholar] [CrossRef]
- Di Bella, G.; Licata, P.; Potortì, A.G.; Crupi, R.; Nava, V.; Qada, B.; Rando, R.; Bartolomeo, G.; Dugo, G.; Lo Turco, V. Mineral content and physico-chemical parameters of honey from North regions of Algeria. Nat. Prod. Reaseach 2022, 36, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, M.M.; Tran, L.; McKee, C.G.; Polo, R.O.; Newman, T.; Lansing, L.; Griffiths, J.S.; Bilodeau, G.J.; Rott, M.; Guarna, M.M. Honey bees as biomonitors of environmental contaminants, pathogens, and climate change. Ecol. Indic. 2022, 134, 108457. [Google Scholar] [CrossRef]
- Jovetić, M.; Trifković, J.; Stanković, D.; Manojlović, D.; Milojković-Opsenica, D. Mineral content as a tool for the assessment of honey authenticity. J AOAC Int. 2017, 100, 862–870. [Google Scholar] [CrossRef]
- Lastra-Mejias, M.; Izquierdo, M.; Gonzalez-Flores, E.; Cancilla, J.C.; Izquierdo, J.G.; Torrecilla, J.S. Honey exposed to laser-induced breakdown spectroscopy for chaos-based botanical classification and fraud assessment. Chemom. Intell. Lab. Syst. 2020, 199, 103939. [Google Scholar] [CrossRef]
- Commission Regulation (EU). 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Foodstuffs and Repealing Regulation (EC) No 1881/2006. Available online: https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=CELEX%3A32023R0915 (accessed on 20 June 2024).
- Di Bella, G.; Potortì, A.G.; Beltifa, A.; Ben Mansour, H.; Nava, V.; Lo Turco, V. Discrimination of Tunisian Honey by Mineral and Trace Element Chemometrics Profiling. Foods 2021, 10, 724. [Google Scholar] [CrossRef] [PubMed]
- Karabagias, I.K.; Louppis, P.A.; Karabournioti, S.; Kontakos, S.; Papastephanou, C.; Kontominas, M.G. Characterization and classification of commercial thyme honeys produced in specific Mediterranean countries according to geographical origin, using physicochemical parameter values and mineral content in combination with chemometrics. Eur. Food Res. Technol. 2017, 243, 889–900. [Google Scholar] [CrossRef]
- Hungerford, N.L.; Tinggi, U.; Tan, B.L.L.; Farrell, M.; Fletcher, M.T. Mineral and Trace Element Analysis of Australian/Queensland Apis mellifera Honey. Int. J. Environ. Res. Public Health 2020, 17, 6304. [Google Scholar] [CrossRef] [PubMed]
- Ghorab, A.; Rodríguez-Flores, M.S.; Nakib, R.; Escuredo, O.; Haderbache, L.; Bekdouche, F.; Seijo, M.C. Sensorial, Melissopalynological and Physico-Chemical Characteristics of Honey from Babors Kabylia’s Region (Algeria). Foods 2021, 10, 225. [Google Scholar] [CrossRef] [PubMed]
- Tamali, H.S.; Ozkirim, A. Beekeeping Activities in Turkey and Algeria. Mellifera 2019, 19, 30–40. [Google Scholar]
- Haouam, L.; Tahar, A.; Dailly, H.; Lahrichi, A.; Chaqroune, A.; Abdennour, C. Physicochemical properties and major elements contents of Algerian honeys from semi-arid regions. Emir. J. Food Agric. 2016, 28, 107–115. [Google Scholar] [CrossRef]
- Haderbache, L.; Mohammedi, A. Characterization and Chemometrics Based-Approach to Classify Some Algerian Blossom Honeys. J. Agric. Sci. Technol. A 2014, 4, 576–584. [Google Scholar]
- Nabti, D.; Lazhari, T. Chemical composition, biological activity and factors influencing the quality of Algerian bee-honey. South Asian J. Exp. Biol. 2022, 12, 1–11. [Google Scholar] [CrossRef]
- Kheira, D.; Jinane-Baya, H.; Nesrine, O.; Badis, B. Characterization of honeys from Algeria according to climatic origin based on physicochemical properties. Rev. Agrobiol. 2020, 10, 1940–1949. [Google Scholar]
- Nouar, B.; Maamar, B.; Berrabah, H.; Souddi, M.; Hasnaoui, O.; Nouar, A. Diversity and floristic composition of Djebel Nessara region (Tiare-Algeria). Biodivers. J. 2021, 12, 729–732. [Google Scholar] [CrossRef]
- Massous, A.; Ouchbani, T.; Lo Turco, V.; Litrenta, F.; Nava, V.; Albergamo, A.; Potortì, A.G.; Di Bella, G. Monitoring Moroccan Honeys: Physicochemical Properties and Contamination Pattern. Foods 2023, 12, 969. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, G.; Lo Vecchio, G.; Albergamo, A.; Nava, V.; Bartolomeo, G.; Macrì, A.; Bacchetta, L.; Lo Turco, V.; Potortì, A.G. Chemical characterization of Sicilian dried nopal [Opuntia ficus-indica (L.) Mill.]. J. Food Compos. Anal. 2022, 106, 104307. [Google Scholar] [CrossRef]
- Nava, V.; Albergamo, A.; Bartolomeo, G.; Rando, R.; Litrenta, F.; Lo Vecchio, G. Monitoring Cannabinoids and the Safety of the Trace Element Profile of Light Cannabis sativa L. from Different Varieties and Geographical Origin. Toxics 2022, 10, 758. [Google Scholar] [CrossRef]
- Crupi, R.; Lo Turco, V.; Gugliandolo, E.; Nava, V.; Potortì, A.G.; Cuzzocrea, S.; Di Bella, G.; Licata, P. Mineral Composition in Delactosed Dairy Products: Quality and Safety Status. Foods 2022, 11, 139. [Google Scholar] [CrossRef]
- U.S. EPA. Principles of Environmental Impact Assessment Review: Appendix A: Environmental Impact Assessment Checklist; U.S. EPA: Washington, DC, USA, 1998.
- Nava, V.; Di Bella, G.; Fazio, F.; Potortì, A.G.; Lo Turco, V.; Licata, P. Hg Content in EU and Non-EU Processed Meat and Fish Foods. Appl. Sci. 2023, 13, 793. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization Statistic Database. 2013. Available online: http://faostat3.fao.org/faostatgateway/go/to/home/E (accessed on 8 January 2024).
- European Communities Commission. Regulation (EU). No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004 Text with EEA Relevance. Available online: http://data.europa.eu/eli/reg/2011/1169/2018-01-01 (accessed on 20 June 2024).
- EFSA (European Food Safety Authority). Dietary reference values for nutrients Summary report. EFSA Support. Publ. 2017, 14, e15121E. [Google Scholar]
- EFSA (European Food Safety Authority). Scientific opinion on arsenic in food. EFSA J. 2009, 7, 1351. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Scientific opinion on lead in food. EFSA J. 2010, 8, 1570. [Google Scholar]
- EFSA (European Food Safety Authority). Cadmium dietary exposure in the European population. EFSA J. 2012, 10, 2551. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985. [Google Scholar]
- EFSA (European Food Safety Authority). Scientific opinion on safety and efficacy of cobalt compounds (E3) as feed additives for all animal species: Cobaltous acetate tetrahydrate, basic cobaltous carbonate monohydrate and cobaltous sulphate heptahydrate, based on a dossier submitted by TREACEEIG. EFSA J. 2012, 10, 2971. [Google Scholar]
- EFSA (European Food Safety Authority). Scientific Opinion on the risks to public health related to the presence of nickel in food and drinking water. EFSA J. 2015, 13, 4002. [Google Scholar]
- JECFA (Joint FAO/WHO Expert Committee on Food Additives). Summary and Conclusions—Fifty-Third Meeting of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 1999.
- WHO (World Health Organization). Arsenic. Joint Expert WHO/FAO Expert Committee on Food Additives and Contaminants; Food Additives Series No. 24; WHO: Geneva, Switzerland, 1988.
- WHO (World Health Organization). Lead. In Safety Evaluation of Certain Food Additives and Contaminants. Fiftythird Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); WHO Food Additives Series No. 44; WHO: Geneva, Switzerland, 2000. [Google Scholar]
- WHO (World Health Organization). Cadmium. In Safety Evaluation of Certain Food Additives and Contaminants. Sixtyfirst Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); WHO Food Additives Series No. 52; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- WHO (World Health Organization). Nickel in Drinking-Water. Background Document for Development of WHO Guidelines for Drinking-Water Quality. 2005. Available online: http://www.who.int/water_sanitation_health/gdwqrevision/nickel2005.pdf (accessed on 8 January 2024).
- USEPA (United States Environmental Protection Agency). Risk-Based Concentration Table. 2010. Available online: https://archive.epa.gov/region9/superfund/web/html/index-23.html (accessed on 9 January 2024).
- Bertil, M.; Örnemark, U. The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics; LGC: Teddington, UK, 2014. [Google Scholar]
- Tomczyk, M.; Zagula, G.; Puchalski, C.; Dzugan, M. Transfer of some toxic metals from soil to honey depending on bee habitat conditions. Acta Univ. Cibiniensis. Ser. E Food Technol. 2020, 24, 49–59. [Google Scholar] [CrossRef]
- Bereksi-Reguig, D.; Allali, H.; Bouchentouf, S.; Adamczuk, A.; Kowalska, G.; Kowalski, R. Analysis of trace-elements and toxic heavy metals in honeys from Tlemcen Province, north-western Algeria. Agric. Conspec. Sci. 2020, 85, 367–374. [Google Scholar]
- Bereksi-Reguig, D.; Bouchentouf, S.; Allali, H.; Adamczuk, A.; Kowalska, G.; Kowalski, R. Trace Elements and Heavy Metal Contents in West Algerian Natural Honey. J. Anal. Methods Chem. 2022, 7890856. [Google Scholar] [CrossRef]
- Zerrouk, S.; Seijo, M.C.; Escuredo, O.; Rodriguez-Flores, M.S. Characterization of Ziziphus lotus (jujube) honey produced in Algeria. J. Apic. Res. 2017, 57, 166–174. [Google Scholar] [CrossRef]
- Perna, A.M.; Grassi, G.; Gambacorta, E.; Simonetti, A. Minerals content in Basilicata region (southern Italy) honeys from areas with different anthropic impact. Int. J. Food Sci. Technol. 2021, 56, 4465–4472. [Google Scholar] [CrossRef]
- Mehdi, Y.; Mutlaq, A.; Al-Balas, Q.; Azzi, E.; Bouadjela, L.; Taibi, N.; Dakiche, H.; Touati, L.; Boudriche, L.; Bachari, K. Physicochemical characterization and determination of chloramphenicol residues and heavy metals in Algerian honeys. Environ. Sci. Pollut. Res. 2018, 25, 33322–33333. [Google Scholar] [CrossRef]
- Spirić, D.; Ćirić, J.; Đorđević, V.; Nikolić, D.; Janković, S.; Nikolić, A.; Petrović, Z.; Katanić, N.; Teodorović, V. Toxic and essential element concentrations in different honey types. Int. J. Environ. Anal. Chem. 2019, 99, 474–485. [Google Scholar] [CrossRef]
- Habati, M.; Gherib, A.; Bakchiche, B.; Benmebarek, A.A. Study on the physicochemical, antioxidant properties and mineral content of five honeys produced in the central region of Algeria. Chem. Chem. Eng. Biotechnol. Food Ind. 2017, 18, 121–134. [Google Scholar]
- Sakac, M.B.; Jovanov, P.T.; Maric, A.Z.; Pezo, L.L.; Kevresan, Z.S.; Novakovic, A.R.; Nedeljkovic, N.M. Physicochemical proerties and mineral content of honey samples from Vojvodina (Republic of Serbia). Food Chem. 2019, 276, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Malhat, F.; Kasiotis, K.M.; Hassanin, A.S.; Shokr, S.A. An MIP-AES study of heavy metals in Egyptian honey: Toxicity assessment and potential health hazards to consumers. J. Elem. 2019, 24, 473–488. [Google Scholar] [CrossRef]
- Tahboub, Y.R.; Al-Ghzawi, A.A.M.A.; Al-Zayafdneh, S.S.; AlGhotani, M.S. Levels of trace elements and rare earth elements in honey from Jordan. Environ. Sci. Pollut. Res. 2022, 29, 11469–11480. [Google Scholar] [CrossRef]
- Meli, M.A.; Fagiolino, I.; Desideri, D.; Roselli, C. Essential and toxic elements in honeys consumed in Italy. J. Toxicol. Environ. Health 2018, 81, 1123–1134. [Google Scholar] [CrossRef] [PubMed]
- Roman, A.; Madras-Majewska, B.; Popiela-Pleban, E. Comparative study of selected toxic elements in propolis and honey. J. Apic. Sci. 2011, 55, 97–106. [Google Scholar]
- Latifa, H.; Mouna, B.; Arezki, M. Ziziphus Lotus and Euphorbia bupleuroides Algerian Honeys. World Appl. Sci. J. 2013, 24, 1536–1543. [Google Scholar] [CrossRef]
- Demaku, S.; Aliu, A.; Sylejmani, D.; Ahmetaj, B.; Halili, J. Determination of Heavy Metals in Bee Honey as a Bioindicator in the Istog, Drenas and Kastriot Regions. J. Ecol. Eng. 2023, 24, 191–200. [Google Scholar] [CrossRef]
- Girotti, S.; Ghini, S.; Ferri, E.; Bolelli, L.; Colombo, R.; Serra, G.; Porrini, C.; Sangiorgi, S. Bioindicators and biomonitoring: Honeybees and hive products as pollution impact assessment tools for the Mediterranean area. Euro-Mediterr. J. Environ. Integr. 2020, 5, 62. [Google Scholar] [CrossRef]
- Šereviciene, V.; Zigmontiené, A.; Paliulis, D. Heavy Metals in Honey Collected from Contaminated Locations: A Case of Lithuania. Sustainability 2022, 14, 9196. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A.; Wargocka, B.; Jachimowicz, K.; Baranowska-Wojcik, E.; Kwiatkowska, K.; Kwiecien, M. Evaluation of consumer safety of Polish honey-the content of Cd and Pb in multifloral, monofloral and honeydew honeys. Biol. Trace Elem. Res. 2021, 199, 4370–4383. [Google Scholar] [CrossRef]
- Zaric, N.M.; Braeuer, S.; Goessler, W. Arsenic speciation analysis in honey bees for environmental monitoring. J. Hazard. Mater. 2022, 432, 128614. [Google Scholar] [CrossRef] [PubMed]
- Zenunovic, A.; Keran, H.; Srabovic, E. Content of Heavy Metals in Different Types of Honey. Int. J. Res. Appl. Sci. Biotechnol. 2020, 7, 277–280. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press (US): Washington, DC, USA, 2001; Volume 11, Molybdenum. Available online: https://www.ncbi.nlm.nih.gov/books/NBK222301/ (accessed on 20 June 2024).
- Schrauzer, G.N. Lithium: Occurrence, Dietary Intakes, Nutritional Essentiality. J. Am. Coll. Nutr. 2002, 21, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.; Haris, P.I.; Brima, E.I. Estimated dietary intake of essential elements from four selected staple foods in Najran City, Saudi Arabia. BMC Chem. 2019, 13, 73. [Google Scholar] [CrossRef] [PubMed]
Area | Code Samples | N. of Samples | Geographical Origin | Botanical Origin |
---|---|---|---|---|
North Algeria | EST | 3 | Tiaret | Eruca sativa |
MT,L | 9 | Tiaret/Laghouat | Multifloral | |
ZT,L | 9 | Tiaret/Laghouat | Ziziphus lotus | |
BMT | 3 | Tiaret | Bunium mauritanicum | |
ET | 3 | Tiaret | Echinops ssp. | |
EGL | 3 | Laghouat | Eucaliptus globulus | |
EOL | 6 | Laghouat | Euphorbia orientalis | |
TEL | 3 | Laghouat | Tamarix L. and Euphorbia orientalis | |
South Algeria | ESTD | 6 | Tindouf | Eruca sativa |
EOTD | 3 | Tindouf | Euphorbia orientalis | |
ETD | 3 | Tindouf | Echinops spp. | |
PHTD | 3 | Tindouf | Peganum harmala | |
Total | 54 |
EDI (mg/d or µg/d *) | RDA [31] (mg/d or µg/d *) | AI [32] (mg/d) | AR [32] (mg/d) | PRI [32] (mg/d) | UL [32] (mg/d) | % RDA or AI | % UL | |||
---|---|---|---|---|---|---|---|---|---|---|
North Sahara | South Sahara | |||||||||
Mg | Europe | 9.54 × 10−2 | 1.15 × 10−1 a | 375 a | 350 | 250 a | 0.03 | 0.05 | ||
North Africa | 1.59 × 10−2 | 1.92 × 10−2 a | 0.01 | 0.01 | ||||||
Ca | Europe | 1.82 × 10−1a | 1.49 × 10−1 | 800 a | 860 | 1000 | 2500 a | 0.02 | 0.01 | |
North Africa | 3.03 × 10−2a | 2.49 × 10−2 | 0.00 | 0.00 | ||||||
Na | Europe | 1.15 × 10−1 | 1.28 × 10−1 a | 2000 a | 0.01 | |||||
North Africa | 1.92 × 10−2 | 2.13 × 10−2 a | 0.00 | |||||||
Fe | Europe | 2.70 × 10−2 | 2.88 × 10−2 a | 14 a | 6 | 11 | 0.21 | |||
North Africa | 4.50 × 10−3 | 4.80 × 10−3 a | 0.03 | |||||||
Cu | Europe | 1.19 × 10−3a | 9.90 × 10−4 | 1 a | 1.6 | 5 a | 0.12 | 0.02 | ||
North Africa | 1.98 × 10−4a | 1.65 × 10−4 | 0.02 | 0.00 | ||||||
Cr | Europe | 3.78 × 10−1a* | 1.98 × 10−1 * | 40 a* | 0.95 | |||||
North Africa | 6.30 × 10−2 a* | 3.30 × 10−2 * | 0.16 | |||||||
Mn | Europe | 9.00 × 10−5 | 3.06 × 10−4 a | 2 a | 3 | 0.01 | ||||
North Africa | 1.50 × 10−5 | 5.10 × 10−5 a | 0.00 | |||||||
Zn | Europe | 1.76 × 10−2 | 1.98 × 10−2 a | 10 a | 7.5-9.3-11-12.7 b | 9.4-11.7-14-16.3 b | 25 a | 0.20 | 0.08 | |
North Africa | 2.93 × 10−3 | 3.30 × 10−3 a | 0.03 | 0.01 | ||||||
Mo | Europe | n.d. | n.d. | 45 * [66] | 2 [66] | |||||
North Africa | n.d. | n.d. | ||||||||
Li | Europe | n.d. | n.d. | 1 [67] | ||||||
North Africa | n.d. | n.d. |
EDI (µg/kgb.w./d) | TDI (µg/kgb.w./d) | TWI (µg/kgb.w./w) | BMDL01 (µg/kgb.w./d) | PTWI (µg/kgb.w./w) | UI (µg/kgb.w./w) | PMTDI (µg/kgb.w./d) | % TDI or TWI or BMDL01 or PTWI | % UI or PMTDI | |||
---|---|---|---|---|---|---|---|---|---|---|---|
North Sahara | South Sahara | ||||||||||
As | Europe | 2.57 × 10−2 a | 1.54 × 10−2 | 0.3 a–8 [33] | 15 [40] | 8.57 | |||||
North Africa | 4.30 × 10−3 a | 2.60 × 10−3 | 1.43 | ||||||||
Be | Europe | n.d. | n.d. | no reference values | |||||||
North Africa | n.d. | n.d. | |||||||||
Cd | Europe | 3.60 × 10−2 a | 1.21 × 10−2 | 2.5 a [35] | 7 [42] | 10.08 | |||||
North Africa | 6.00 × 10−3 a | 2.01 × 10−3 | 1.68 | ||||||||
Co | Europe | 1.03 × 10−3 a | 7.71 × 10−4 | 1.6 a [37] | 0.45 | ||||||
North Africa | 1.71 × 10−4 a | 1.29 × 10−4 | 0.07 | ||||||||
Cu | Europe | 2.57 × 10−2 a | 1.54 × 10−2 | 3500 a [68] | 500 a [68] | 0.005 | 0.005 | ||||
North Africa | 4.29 × 10−3 a | 2.36 × 10−3 | 0.001 | 0.001 | |||||||
Mn | Europe | 1.29 ×10−3 | 4.37 × 10−3 a | 2500 a [68] | 360 a [68] | 0.001 | 0.001 | ||||
North Africa | 2.14 × 10−4 | 7.29 × 10−4 a | 0.0002 | 0.0002 | |||||||
Ni | Europe | 8.23 × 10−3 a | 6.43 × 10−3 | 22 a [43] | 2.8 a [38] | 0.04 | 2.06 | ||||
North Africa | 1.37 × 10−3 a | 1.07 × 10−3 | 0.01 | 0.34 | |||||||
Pb | Europe | 2.08 × 10−2 a | 4.37 × 10−3 | 0.5 a [34] | 25 [41] | 4.16 | |||||
North Africa | 3.47 × 10−3 a | 7.29 × 10−4 | 0.69 | ||||||||
Sb | Europe | 1.39 × 10−2 a | n.d. | 6 a | 1.62 | ||||||
North Africa | 2.31 × 10−3 a | n.d. | 0.27 | ||||||||
Sn | Europe | 9.26 × 10−3 | 6.69 × 10−3 | no reference values | |||||||
North Africa | 1.54 × 10−3 | 1.11 × 10−3 | |||||||||
Ti | Europe | 2.42 × 10−2 | 1.34 × 10−2 | no reference values | |||||||
North Africa | 4.03 × 10−3 | 2.23 × 10−3 | |||||||||
Zn | Europe | 2.52 × 10−1 | 2.73 × 10−1 a | 7000 a [68] | 1000 a [68] | 0.03 | 0.03 | ||||
North Africa | 4.20 × 10−2 | 4.54 × 10−2 a | 0.005 | 0.005 | |||||||
Hg | Europe | n.d. | n.d. | 4 [36] | 5 [39] | ||||||
North Africa | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derrar, S.; Nava, V.; Ayad, M.A.; Saim, M.S.; Aggad, H.; Spanò, I.M.; Litrenta, F.; Leonardi, M.; Albergamo, A.; Lo Turco, V.; et al. Safety Assessment of Honeys from Northern and Southern Algerian Regions. Agriculture 2024, 14, 1503. https://doi.org/10.3390/agriculture14091503
Derrar S, Nava V, Ayad MA, Saim MS, Aggad H, Spanò IM, Litrenta F, Leonardi M, Albergamo A, Lo Turco V, et al. Safety Assessment of Honeys from Northern and Southern Algerian Regions. Agriculture. 2024; 14(9):1503. https://doi.org/10.3390/agriculture14091503
Chicago/Turabian StyleDerrar, Sofiane, Vincenzo Nava, Mohamed Amine Ayad, Mohamed Said Saim, Hebib Aggad, Irene Maria Spanò, Federica Litrenta, Michelangelo Leonardi, Ambrogina Albergamo, Vincenzo Lo Turco, and et al. 2024. "Safety Assessment of Honeys from Northern and Southern Algerian Regions" Agriculture 14, no. 9: 1503. https://doi.org/10.3390/agriculture14091503
APA StyleDerrar, S., Nava, V., Ayad, M. A., Saim, M. S., Aggad, H., Spanò, I. M., Litrenta, F., Leonardi, M., Albergamo, A., Lo Turco, V., Potortì, A. G., & Di Bella, G. (2024). Safety Assessment of Honeys from Northern and Southern Algerian Regions. Agriculture, 14(9), 1503. https://doi.org/10.3390/agriculture14091503