Combined Genome-Wide Association Studies (GWAS) and Linkage Mapping Identifies Genomic Regions Associated with Seedling Root System Architecture (RSA) under Different Nitrogen Conditions in Wheat (Triticum aestivum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Experimental Design and Trail Management
2.3. Trait Measurements
2.4. GWAS
2.5. Linkage Analysis
3. Results
3.1. Phenotypic Evaluation
3.2. GWAS Analysis
3.3. Linkage Mapping
3.4. Colocalized Gene Regions
4. Discussion
4.1. Effect of RSA on NUE
4.2. Linkage Analysis and GWAS Together Offer a Novel Method for Identifying the Genes Causing RSA
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Langridge, P.; Alaux, M.; Almeida, N.F.; Ammar, K.; Baum, M.; Bekkaoui, F.; Bentley, A.R.; Beres, B.L.; Berger, B.; Braun, H. Meeting the challenges facing wheat production: The strategic research agenda of the Global Wheat Initiative. Agronomy 2022, 12, 2767. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, J.; Liu, C.; Jia, D.; Liu, P.; Wang, Y. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.). Acta Agron. Sin. 2021, 47, 394–404. [Google Scholar] [CrossRef]
- Maccaferri, M.; El-Feki, W.; Nazemi, G.; Salvi, S.; Canè, M.A.; Colalongo, M.C.; Stefanelli, S.; Tuberosa, R. Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. J. Exp. Bot. 2016, 67, 1161–1178. [Google Scholar] [CrossRef] [PubMed]
- de Dorlodot, S.; Forster, B.; Pagès, L.; Price, A.; Tuberosa, R.; Draye, X. Root system architecture: Opportunities and constraints for genetic improvement of crops. Trends Plant Sci. 2007, 12, 474–481. [Google Scholar] [CrossRef]
- Kabir, M.R.; Liu, G.; Guan, P.; Wang, F.; Khan, A.A.; Ni, Z.; Yao, Y.; Hu, Z.; Xin, M.; Peng, H. Mapping QTLs associated with root traits using two different populations in wheat (Triticum aestivum L.). Euphytica 2015, 206, 175–190. [Google Scholar] [CrossRef]
- Bishopp, A.; Lynch, J.P. The hidden half of crop yields. Nat. Plants 2015, 1, 15117. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, Y.; Tan, Y.; Zhang, M.; Zhu, L.; Xu, G.; Fan, X. Agronomic nitrogen-use efficiency of rice can be increased by driving Os NRT 2.1 expression with the Os NAR 2.1 promoter. Plant Biotechnol. J. 2016, 14, 1705–1715. [Google Scholar] [CrossRef]
- Ruffel, S.; Gojon, A.; Lejay, L. Signal interactions in the regulation of root nitrate uptake. J. Exp. Bot. 2014, 65, 5509–5517. [Google Scholar] [CrossRef]
- Paez-Garcia, A.; Motes, C.M.; Scheible, W.; Chen, R.; Blancaflor, E.B.; Monteros, M.J. Root traits and phenotyping strategies for plant improvement. Plants 2015, 4, 334–355. [Google Scholar] [CrossRef]
- Osmont, K.S.; Sibout, R.; Hardtke, C.S. Hidden branches: Developments in root system architecture. Annu. Rev. Plant Biol. 2007, 58, 93–113. [Google Scholar] [CrossRef]
- Ju, C.; Buresh, R.J.; Wang, Z.; Zhang, H.; Liu, L.; Yang, J.; Zhang, J. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crop Res. 2015, 175, 47–55. [Google Scholar] [CrossRef]
- Duncan, E.G.; O’Sullivan, C.A.; Roper, M.M.; Palta, J.; Whisson, K.; Peoples, M.B. Yield and nitrogen use efficiency of wheat increased with root length and biomass due to nitrogen, phosphorus, and potassium interactions. J. Plant Nutr. Soil Sci. 2018, 181, 364–373. [Google Scholar] [CrossRef]
- Ping, W.; Wang, Z.; Cai, R.; Yong, L.I.; Chen, X.; Yin, Y. Physiological and molecular response of wheat roots to nitrate supply in seedling stage. Agric. Sci. China 2011, 10, 695–704. [Google Scholar] [CrossRef]
- Zhan, A.; Lynch, J.P. Reduced frequency of lateral root branching improves N capture from low-N soils in maize. J. Exp. Bot. 2015, 66, 2055–2065. [Google Scholar] [CrossRef]
- Saengwilai, P.; Strock, C.; Rangarajan, H.; Chimungu, J.; Salungyu, J.; Lynch, J.P. Root hair phenotypes influence nitrogen acquisition in maize. Ann. Bot. 2021, 128, 849–858. [Google Scholar] [CrossRef]
- Neumann, K.; Kobiljski, B.; Denčić, S.; Varshney, R.K.; Börner, A. Genome-wide association mapping: A case study in bread wheat (Triticum aestivum L.). Mol. Breed. 2011, 27, 37–58. [Google Scholar] [CrossRef]
- Korte, A.; Farlow, A. The advantages and limitations of trait analysis with GWAS: A review. Plant Methods 2013, 9, 29. [Google Scholar] [CrossRef]
- Li, F.; Xie, J.; Zhu, X.; Wang, X.; Zhao, Y.; Ma, X.; Zhang, Z.; Rashid, M.A.; Zhang, Z.; Zhi, L. Genetic basis underlying correlations among growth duration and yield traits revealed by GWAS in rice (Oryza sativa L.). Front. Plant Sci. 2018, 9, 650. [Google Scholar] [CrossRef]
- Li, X.; Guo, T.; Wang, J.; Bekele, W.A.; Sukumaran, S.; Vanous, A.E.; McNellie, J.P.; Tibbs-Cortes, L.E.; Lopes, M.S.; Lamkey, K.R. An integrated framework reinstating the environmental dimension for GWAS and genomic selection in crops. Mol. Plant 2021, 14, 874–887. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Z.; Ding, J.; Wu, Y.; Zhou, B.; Wang, R.; Ma, J.; Wang, S.; Zhang, X.; Xia, Z. Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize. Front. Plant Sci. 2016, 7, 833. [Google Scholar] [CrossRef]
- Bo, K.; Wei, S.; Wang, W.; Miao, H.; Dong, S.; Zhang, S.; Gu, X. QTL mapping and genome-wide association study reveal two novel loci associated with green flesh color in cucumber. BMC Plant Biol. 2019, 19, 243. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wu, D.; Wei, D.; Fu, Y.; Cui, Y.; Dong, H.; Tan, C.; Qian, W. GWAS, QTL mapping and gene expression analyses in Brassica napus reveal genetic control of branching morphogenesis. Sci. Rep. 2017, 7, 15971. [Google Scholar] [CrossRef]
- Guo, J.; Guo, J.; Li, L.; Bai, X.; Huo, X.; Shi, W.; Gao, L.; Dai, K.; Jing, R.; Hao, C. Combined linkage analysis and association mapping identifies genomic regions associated with yield-related and drought-tolerance traits in wheat (Triticum aestivum L.). Theor. Appl. Genet. 2023, 136, 250. [Google Scholar] [CrossRef] [PubMed]
- Sallam, A.; Eltaher, S.; Alqudah, A.M.; Belamkar, V.; Baenziger, P.S. Combined GWAS and QTL mapping revealed candidate genes and SNP network controlling recovery and tolerance traits associated with drought tolerance in seedling winter wheat. Genomics 2022, 114, 110358. [Google Scholar] [CrossRef]
- Yang, X.; Pan, Y.; Singh, P.K.; He, X.; Ren, Y.; Zhao, L.; Zhang, N.; Cheng, S.; Chen, F. Investigation and genome-wide association study for Fusarium crown rot resistance in Chinese common wheat. BMC Plant Biol. 2019, 19, 153. [Google Scholar] [CrossRef]
- Basnet, B.R.; Singh, R.P.; Ibrahim, A.; Herrera-Foessel, S.A.; Huerta-Espino, J.; Lan, C.; Rudd, J.C. Characterization of Yr54 and other genes associated with adult plant resistance to yellow rust and leaf rust in common wheat Quaiu 3. Mol. Breed. 2014, 33, 385–399. [Google Scholar] [CrossRef]
- Ponce-Molina, L.J.; Huerta-Espino, J.; Singh, R.P.; Basnet, B.R.; Alvarado, G.; Randhawa, M.S.; Lan, C.X.; Aguilar-Rincón, V.H.; Lobato-Ortiz, R.; García-Zavala, J.J. Characterization of leaf rust and stripe rust resistance in spring wheat ‘Chilero’. Plant Dis. 2018, 102, 421–427. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Circular. Calif. Agric. Exp. Stn. 1950, 347, 39. [Google Scholar]
- Zhao, Y.; Yan, X.; Zeng, Z.; Zhao, D.; Chen, P.; Wang, Y.; Chen, F.; Wang, C. Integrated genome-wide association study and QTL mapping reveals qSa-3A associated with English grain aphid, Sitobion avenae (Fabricius) resistance in wheat. Pest. Manag. Sci. 2023, 79, 3970–3978. [Google Scholar] [CrossRef]
- Lv, G.; Dong, Z.; Wang, Y.; Geng, J.; Li, J.; Lv, X.; Sun, C.; Ren, Y.; Zhang, J.; Chen, F. Identification of genetic loci of black point in Chinese common wheat by genome-wide association study and linkage mapping. Plant Dis. 2020, 104, 2005–2013. [Google Scholar] [CrossRef]
- Niaz, M.; Zhang, L.; Lv, G.; Hu, H.; Yang, X.; Cheng, Y.; Zheng, Y.; Zhang, B.; Yan, X.; Htun, A. Identification of TaGL1-B1 gene controlling grain length through regulation of jasmonic acid in common wheat. Plant Biotechnol. J. 2023, 21, 979–989. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Chen, M.; Gao, L.; Wang, Y.; Bai, Y.; Yan, H.; Xu, C.; Zhou, Y.; Xu, Z.; Chen, J. Genome-wide association study of agronomic traits related to nitrogen use efficiency in wheat. Theor. Appl. Genet. 2022, 135, 4289–4302. [Google Scholar] [CrossRef]
- Storey, J.; Bass, A.; Dabney, A.; Robinson, D. Package ‘qvalue’. Medicine 2011, 344, 539–548. [Google Scholar]
- Liu, J.; He, Z.; Rasheed, A.; Wen, W.; Yan, J.; Zhang, P.; Wan, Y.; Zhang, Y.; Xie, C.; Xia, X. Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.). BMC Plant Biol. 2017, 17, 220. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Qian, Y.; Xu, Y.; Zou, C.; Liu, D.; Zhao, X.; Zhang, A.; Tong, Y. Characterization of QTLs for root traits of wheat grown under different nitrogen and phosphorus supply levels. Front. Plant Sci. 2017, 8, 2096. [Google Scholar] [CrossRef]
- Yang, M.; Wang, C.; Hassan, M.A.; Wu, Y.; Xia, X.; Shi, S.; Xiao, Y.; He, Z. QTL mapping of seedling biomass and root traits under different nitrogen conditions in bread wheat (Triticum aestivum L.). J. Integr. Agric. 2021, 20, 1180–1192. [Google Scholar] [CrossRef]
- Mapchart, V.E. softwarefortheGraphical PresentationofLinkageMapsandQTLs. J. Hered. 2002, 93, 77r–78r. [Google Scholar]
- McCouch, S.R.; CGSNL (Committee on Gene Symbolization, Nomenclature and Linkage, Rice Genetics Cooperative). Gene nomenclature system for rice. Rice 2008, 1, 72–84. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, J.; Liu, H.; Li, T.; Wang, K.; Hao, C.; Liu, H.; Zhang, X. TaBT1, affecting starch synthesis and thousand kernel weight, underwent strong selection during wheat improvement. J. Exp. Bot. 2019, 70, 1497–1511. [Google Scholar] [CrossRef]
- Kong, D.L.; Wang, J.J.; Kardol, P.; Wu, H.F.; Zeng, H.; Deng, X.B.; Deng, Y. Economic strategies of plant absorptive roots vary with root diameter. Biogeosciences 2016, 13, 415–424. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, W.; Liu, D.; Yue, S.; Cui, Z.; Chen, X.; Zou, C. Effects of nitrogen management on root morphology and zinc translocation from root to shoot of winter wheat in the field. Field Crop Res. 2014, 161, 38–45. [Google Scholar] [CrossRef]
- Zhang, H.; Jennings, A.; Barlow, P.W.; Forde, B.G. Dual pathways for regulation of root branching by nitrate. Proc. Natl. Acad. Sci. USA 1999, 96, 6529–6534. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Guo, H.; Zhou, C.; Guo, X.; Xie, Y.; Zhao, L.; Gu, J.; Zhao, S.; Ding, Y.; Liu, L. A combined association mapping and t-test analysis of SNP loci and candidate genes involving in resistance to low nitrogen traits by a wheat mutant population. PLoS ONE 2019, 14, e211492. [Google Scholar] [CrossRef] [PubMed]
- An, D.; Su, J.; Liu, Q.; Zhu, Y.; Tong, Y.; Li, J.; Jing, R.; Li, B.; Li, Z. Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil 2006, 284, 73–84. [Google Scholar] [CrossRef]
- Erenoglu, E.B.; Kutman, U.B.; Ceylan, Y.; Yildiz, B.; Cakmak, I. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytol. 2011, 189, 438–448. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, H.; Zhang, S.; Jie, H. Root Morphological and Physiological Characteristics in Rice Genotypes with Different N Use Efficiencies. Acta Agron. Sin. 2008, 429–436. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, W.; Zhang, N.; Chen, M.; Zheng, S.; Zhao, C.; Han, J.; Liu, J.; Zhang, X.; Song, L. Identification of QTL regions for seedling root traits and their effect on nitrogen use efficiency in wheat (Triticum aestivum L.). Theor. Appl. Genet. 2018, 131, 2677–2698. [Google Scholar] [CrossRef]
- Zuo, W.; Chao, Q.; Zhang, N.; Ye, J.; Tan, G.; Li, B.; Xing, Y.; Zhang, B.; Liu, H.; Fengler, K.A. A maize wall-associated kinase confers quantitative resistance to head smut. Nat. Genet. 2015, 47, 151–157. [Google Scholar] [CrossRef]
- Zandipour, M.; Majidi Hervan, E.; Azadi, A.; Khosroshahli, M.; Etminan, A. A QTL hot spot region on chromosome 1B for nine important traits under terminal drought stress conditions in wheat. Cereal Res. Commun. 2020, 48, 17–24. [Google Scholar] [CrossRef]
- Tura, H.; Edwards, J.; Gahlaut, V.; Garcia, M.; Sznajder, B.; Baumann, U.; Shahinnia, F.; Reynolds, M.; Langridge, P.; Balyan, H.S. QTL analysis and fine mapping of a QTL for yield-related traits in wheat grown in dry and hot environments. Theor. Appl. Genet. 2020, 133, 239–257. [Google Scholar] [CrossRef]
- Zhang, Q.; Wei, W.; Zuansun, X.; Zhang, S.; Wang, C.; Liu, N.; Qiu, L.; Wang, W.; Guo, W.; Ma, J. Fine mapping of the leaf rust resistance gene Lr65 in spelt Wheat ‘Altgold’. Front. Plant Sci. 2021, 12, 666921. [Google Scholar] [CrossRef] [PubMed]
- Hitz, K.; Clark, A.J.; Van Sanford, D.A. Identifying nitrogen-use efficient soft red winter wheat lines in high and low nitrogen environments. Field Crop Res. 2017, 200, 1–9. [Google Scholar] [CrossRef]
- Cui, F.; Zhao, C.; Ding, A.; Li, J.; Wang, L.; Li, X.; Bao, Y.; Li, J.; Wang, H. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor. Appl. Genet. 2014, 127, 659–675. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, J.; Ravel, C.; Pageau, K.; Heumez, E.; Dubois, F.; Hirel, B.; Le Gouis, J. A quantitative genetic study for elucidating the contribution of glutamine synthetase, glutamate dehydrogenase and other nitrogen-related physiological traits to the agronomic performance of common wheat. Theor. Appl. Genet. 2009, 119, 645–662. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Kong, F.; Xu, Y.; Zhao, Y.; Liang, X.; Wang, Y.; An, D.; Li, S. QTL mapping for seedling traits in wheat grown under varying concentrations of N, P and K nutrients. Theor. Appl. Genet. 2012, 124, 851–865. [Google Scholar] [CrossRef]
- Ren, D.; Fang, X.; Jiang, P.; Zhang, G.; Hu, J.; Wang, X.; Meng, Q.; Cui, W.; Lan, S.; Ma, X. Genetic architecture of nitrogen-deficiency tolerance in wheat seedlings based on a nested association mapping (NAM) population. Front. Plant Sci. 2018, 9, 845. [Google Scholar] [CrossRef]
- Saini, D.K.; Chopra, Y.; Pal, N.; Chahal, A.; Srivastava, P.; Gupta, P.K. Meta-QTLs, ortho-MQTLs and candidate genes for nitrogen use efficiency and root system architecture in bread wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants 2021, 27, 2245–2267. [Google Scholar] [CrossRef]
- Yang, Y.; Amo, A.; Wei, D.; Chai, Y.; Zheng, J.; Qiao, P.; Cui, C.; Lu, S.; Chen, L.; Hu, Y. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. Theor. Appl. Genet. 2021, 134, 3083–3109. [Google Scholar] [CrossRef]
- Liu, H.; Mullan, D.; Zhang, C.; Zhao, S.; Li, X.; Zhang, A.; Lu, Z.; Wang, Y.; Yan, G. Major genomic regions responsible for wheat yield and its components as revealed by meta-QTL and genotype–phenotype association analyses. Planta 2020, 252, 65. [Google Scholar] [CrossRef]
- Zhang, H.; Forde, B.G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 1998, 279, 407–409. [Google Scholar] [CrossRef]
- Remans, T.; Nacry, P.; Pervent, M.; Filleur, S.; Diatloff, E.; Mounier, E.; Tillard, P.; Forde, B.G.; Gojon, A. The Arabidopsis NRT1. 1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc. Natl. Acad. Sci. USA 2006, 103, 19206–19211. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Miao, Z.; Qi, G.; Wu, J.; Cai, X.; Mao, J.; Xiang, C. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals. Mol. Plant 2014, 7, 1653–1669. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Li, G.; Zhang, H.; Powers, C.; Fang, T.; Chen, Y.; Wang, S.; Zhu, X.; Carver, B.F.; Yan, L. Nitrogen use efficiency is regulated by interacting proteins relevant to development in wheat. Plant Biotechnol. J. 2018, 16, 1214–1226. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, P.; Liu, Q.; Li, G.; Di, D.; Xia, G.; Kronzucker, H.J.; Fang, S.; Chu, J.; Shi, W. TaANR1-TaBG1 and TaWabi5-TaNRT2s/NARs link ABA metabolism and nitrate acquisition in wheat roots. Plant Physiol. 2020, 182, 1440–1453. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Qu, B.; Li, W.; Zhao, X.; Teng, W.; Ma, W.; Ren, Y.; Li, B.; Li, Z.; Tong, Y. The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield. Plant Physiol. 2015, 169, 1991–2005. [Google Scholar] [CrossRef]
- Craig, A.; Ewan, R.; Mesmar, J.; Gudipati, V.; Sadanandom, A. E3 ubiquitin ligases and plant innate immunity. J. Exp. Bot. 2009, 60, 1123–1132. [Google Scholar] [CrossRef]
- Park, G.; Park, J.; Yoon, J.; Yu, S.; An, G. A RING finger E3 ligase gene, Oryza sativa Delayed Seed Germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Mol. Biol. 2010, 74, 467–478. [Google Scholar] [CrossRef]
Macronutrients | Trait | Trace Elements | Trait | ||
---|---|---|---|---|---|
NN (mmol/L) | LN (mmol/L) | NN (mmol/L) | LN (mmol/L) | ||
KCl | 1.8 | 1.8 | H3BO3 | 1 × 10−3 | 1 × 10−3 |
CaCl2 | 1.5 | 2.1 | ZnSO4 | 1 × 10−3 | 1 × 10−3 |
Ca(NO3)2 | 1 | 0.4 | MnSO4 | 1 × 10−3 | 1 × 10−3 |
(NH4)2SO4 | 1 | 0 | CuSO4 | 0.5 × 10−3 | 0.5 × 10−3 |
MgSO4 | 0.5 | 0.5 | Fe-EDTA | 0.1 | 0.1 |
KH2PO4 | 0.2 | 0.2 | (NH4)6Mo7O24 | 1.0 × 10−4 | 1.0 × 10−4 |
Treatment | Trait | GWAS Panel | RIL Population | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Min. | Max. | Average | Standard Deviation | CV (%) | Min. | Max. | Average | Standard Deviation | CV (%) | ||
NN nutrient solution | TRL (cm) | 60.07 | 372.1 | 143.72 ** | 57.09 | 39.72 | 58.19 | 279.43 | 132.28 * | 53.46 | 40.41 |
TRS (cm2) | 14.13 | 135.1 | 51.73 ** | 19.59 | 37.87 | 19.29 | 209.41 | 45.27 | 22.16 | 48.95 | |
ARD (mm) | 0.67 | 1.62 | 1.15 * | 0.13 | 11.39 | 0.84 | 2.3 | 1.08 ** | 0.15 | 14.29 | |
TRV (cm3) | 0.25 | 3.9 | 1.5 ** | 0.58 | 38.95 | 0.45 | 2.52 | 1.18 | 1.08 | 37.14 | |
NRT | 38 | 293 | 91 ** | 35.6 | 39.2 | 23 | 214 | 81 | 33.16 | 41.15 | |
LN nutrient solution | TRL (cm) | 80.12 | 474.4 | 237.38 | 89.54 | 37.72 | 66.91 | 290.3 | 146.09 | 55.6 | 44.09 |
TRS (cm2) | 20.3 | 159.3 | 77.71 | 27.42 | 35.29 | 18 | 232.67 | 44.35 | 24.43 | 55.09 | |
ARD (mm) | 0.23 | 2.31 | 1.11 | 0.29 | 26.36 | 0.84 | 2.55 | 1.13 | 0.19 | 16.39 | |
TRV (cm3) | 0.09 | 4.54 | 1.91 | 0.85 | 44.62 | 0.38 | 2.48 | 1.17 | 1.32 | 40 | |
NRT | 43 | 457 | 134 | 72 | 54.19 | 29 | 171 | 82 | 33 | 39.88 | |
Relative ratio | RTRL | 0.93 | 5.68 | 1.8 | 0.83 | 45.88 | 0.31 | 2.45 | 1.05 | 0.46 | 44.34 |
RTRS | 0.79 | 5.68 | 1.62 | 0.69 | 42.8 | 0.34 | 2.42 | 1.06 | 0.46 | 42.95 | |
RARD | 0.2 | 2.22 | 0.98 | 0.29 | 29.24 | 0.69 | 1.64 | 1.06 | 0.16 | 14.78 | |
RTRV | 0.06 | 5.61 | 1.4 | 0.78 | 55.72 | 0.36 | 2.66 | 1.1 | 0.5 | 45.57 | |
RNRT | 0.73 | 5.58 | 1.56 | 0.82 | 52.26 | 0.27 | 3.02 | 1.13 | 0.53 | 46.62 |
Trait Name | QTL | Position (MB) | Left Marker | Right Marker | LOD | PVE (%) | Add |
---|---|---|---|---|---|---|---|
RTRL | QRtrl.haust-3A | 3418 | DarT3934005 | DarT4005016 | 5.16 | 15.05 | −0.2315 |
RTRL | QRtrl.haust-3D | 57 | DarT2260219 | DarT1145273 | 3.15 | 7.58 | −0.142 |
RTRL | QRtrl.haust-7D | 1322 | DarT2245918 | DarT100437414 | 4.76 | 11.23 | 0.1876 |
RTRS | QRtrs.haust-3A | 3416 | DarT3934005 | DarT4005016 | 4.16 | 15.92 | −0.2275 |
RTRS | QRtrs.haust-7D | 1322 | DarT2245918 | DarT100437414 | 3.71 | 10.22 | 0.1725 |
RARD | QRard.haust-4B | 1292 | SNP1215980 | SNP100022040 | 3.95 | 13.72 | −0.0572 |
RARD | QRard.haust-6B | 417 | SNP100562446 | SNP100562447 | 2.52 | 8.16 | −0.0441 |
RTRV | QRtrv.haust-2B | 1149 | SNP2263629 | SNP100542876 | 2.96 | 9.71 | 0.156 |
RTRV | QRtrv.haust-7D | 1323 | DarT100437414 | DarT3034325 | 2.93 | 9.93 | 0.1743 |
RNRT | QRtrl.haust-5A | 249 | SNP100260537 | SNP1722105 | 2.89 | 10.27 | −0.176 |
Trait Name | Chr | Loci | Physical Interval (Mb) | PVE (%) |
---|---|---|---|---|
RTRL | 3D | AX-95160997/QRtrl.haust-3D | 39.61–43.74 | 7.58–9.14 |
RNRT | 5A | AX-109592379/QRnrt.haust-5A | 649.97–661.55 | 10.27–10.81 |
RTRL, RTRS | 7D | AX-110924288/QRtrl.haust-7D/QRtrs.haust-7D | 592.44–605.36 | 9.95–11.22 |
QTL | Gene | Position(Mb) | Gene Annotation or Coding Protein |
---|---|---|---|
qRtrl-3D | TraesCS3D02G083600 | 40.0397–40.4099 | F-box protein PP2-B11 |
TraesCS3D02G087200 | 42.06815–42.07455 | Rab GTPase-activating protein | |
TraesCS3D02G088200 | 42.92659–42.93343 | E3 ubiquitin-protein ligase ATL41 | |
TraesCS3D02G088300 | 42.92979–42.93343 | Probable LRR receptor-like serine/threonine-protein kinase At3g47570 | |
TraesCS3D02G088900 | 42.97653–42.97697 | Histone H2B.1 | |
TraesCS3D02G090300 | 43.79470–43.79640 | MADS-box transcription factor 29 | |
qRnrt-5A | TraesCS5A02G515500 | 649.19444–649.20657 | MADS-box transcription factor 50 |
TraesCS5A02G519300 | 651.00397–651.00821 | NAC domain-containing protein 86 | |
qRtrl-7D | TraesCS7D02G521500 | 592.53732–649.75623 | Programmed cell death protein 2 |
TraesCS7D02G529200 | 598.08138–598.08266 | Transcription factor bHLH93 | |
TraesCS7D02G533900 | 601.2191–601.22013 | BTB/POZ and MATH domain-containing protein 2 | |
TraesCS7D02G538000 | 603.54478–603.54565 | E3 ubiquitin-protein ligase ATL15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Y.; Xu, N.; Zhang, J.; Ren, K.; Wu, J.; Wang, C.; Huang, M.; Li, Y. Combined Genome-Wide Association Studies (GWAS) and Linkage Mapping Identifies Genomic Regions Associated with Seedling Root System Architecture (RSA) under Different Nitrogen Conditions in Wheat (Triticum aestivum L.). Agriculture 2024, 14, 1652. https://doi.org/10.3390/agriculture14091652
Jia Y, Xu N, Zhang J, Ren K, Wu J, Wang C, Huang M, Li Y. Combined Genome-Wide Association Studies (GWAS) and Linkage Mapping Identifies Genomic Regions Associated with Seedling Root System Architecture (RSA) under Different Nitrogen Conditions in Wheat (Triticum aestivum L.). Agriculture. 2024; 14(9):1652. https://doi.org/10.3390/agriculture14091652
Chicago/Turabian StyleJia, Yulin, Ninglu Xu, Jun Zhang, Kaiming Ren, Jinzhi Wu, Chunping Wang, Ming Huang, and Youjun Li. 2024. "Combined Genome-Wide Association Studies (GWAS) and Linkage Mapping Identifies Genomic Regions Associated with Seedling Root System Architecture (RSA) under Different Nitrogen Conditions in Wheat (Triticum aestivum L.)" Agriculture 14, no. 9: 1652. https://doi.org/10.3390/agriculture14091652
APA StyleJia, Y., Xu, N., Zhang, J., Ren, K., Wu, J., Wang, C., Huang, M., & Li, Y. (2024). Combined Genome-Wide Association Studies (GWAS) and Linkage Mapping Identifies Genomic Regions Associated with Seedling Root System Architecture (RSA) under Different Nitrogen Conditions in Wheat (Triticum aestivum L.). Agriculture, 14(9), 1652. https://doi.org/10.3390/agriculture14091652