Sarcocornia fruticosa, a Potential Candidate for Saline Agriculture: Antioxidant Levels in Relation to Environmental Conditions in the Eastern Iberian Peninsula
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study
2.2. Climatic Analysis
2.3. Soil Analysis
2.4. Biochemical Analysis
2.5. Statistical Analysis
3. Results
3.1. Climatic Analysis
3.2. Soil Analysis
3.3. Biochemical Analysis
3.4. Principal Component and Correlation Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kadereit, G.; Mucina, L.; Freitag, H. Phylogeny of Salicornioideae (Chenopodiaceae): Diversification, biogeography, and evolutionary trends in leaf and flower morphology. Taxon 2006, 55, 617–642. [Google Scholar] [CrossRef]
- Kadereit, G.; Ball, P.; Beer, S.; Mucina, L.; Sokoloff, D.; Teege, P.; Yaprak, A.E.; Freitag, H. A taxonomic nightmare comes true: Phylogeny and biogeography of glassworts (Salicornia L., Chenopodiaceae). Taxon 2007, 56, 1143–1170. [Google Scholar] [CrossRef]
- Scott, A.J. Reinstatement and revision of Salicorniaceae J. Agardh (Caryophyllales). Bot. J. Linn. Soc. 1977, 75, 357–374. [Google Scholar] [CrossRef]
- Piirainen, M.; Liebisch, O.; Kadereit, G. Phylogeny, biogeography, systematics and taxonomy of Salicornioideae (Amaranthaceae/Chenopodiaceae)—A cosmopolitan, highly specialized hygrohalophyte lineage dating back to the Oligocene. Taxon 2017, 66, 109–132. [Google Scholar] [CrossRef]
- De la Fuente, V.; Rufo, L.; Sanchez-Mata, D.; Franco, A.; Amils, R. A study of Sarcocornia A.J. Scott (Chenopodiaceae) from Western Mediterranean Europe. Plant Biosyst. 2015, 150, 343–356. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef]
- Short, D.C.; Colmer, T.D. Salt tolerance in the halophyte Halosarcia pergranulata subsp. pergranulata. Ann. Bot. 1999, 83, 207–213. [Google Scholar] [CrossRef]
- Redondo-Gómez, S.; Wharmby, C.; Castillo, J.M.; Mateos-Naranjo, E.; Luque, C.J.; De Cires, A. Growth and photosynthetic responses to salinity in an extreme halophyte Sarcocornia fruticosa. Physiol. Plant. 2006, 128, 116–124. [Google Scholar] [CrossRef]
- Ungar, I.A. Ecophysiology of Vascular Halophytes; CRC Press: Boca Ratón, FL, USA, 1991. [Google Scholar]
- Castroviejo, S. Chenopodiaceae. In Flora Ibérica 2; Castroviejo, S., Laínz, M., López-González, G., Montserrat, P., Muñoz Garmedia, F., Pavia, J., Villar, L., Eds.; Real Jardín Botánico; CSIC: Madrid, Spain, 1990; pp. 476–553. [Google Scholar]
- Hernández-Gil, V.; Robledano, F. La comunidad de aves acuáticas del Mar Menor (Murcia, SE de España): Aproximación a su respuesta a las modificaciones ambientales en la laguna. In Actas de las XII Jornadas Ornitológicas Españolas. El Ejido-Almería, España, 15–19 September 1994; Instituto de Estudios Almerienses: Almería, Spain, 1997; pp. 109–121. [Google Scholar]
- Conesa, H.M.; Jiménez-Cárceles, F.J. The Mar Menor lagoon (SE Spain): A singular natural ecosystem threatened by human activities. Mar. Pollut. Bull. 2007, 54, 839–849. [Google Scholar] [CrossRef]
- Ventura, Y.; Eshel, A.; Pasterna, D.; Asterna, D.; Sagi, M. The development of halophyte-based agriculture: Past and present. Ann. Bot. 2014, 115, 529–540. [Google Scholar] [CrossRef]
- Glenn, E.P.; Brown, J.J.; Blumwald, E. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 1999, 18, 227–255. [Google Scholar] [CrossRef]
- Ventura, Y.; Sagi, M. Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environ. Exp. Bot. 2013, 92, 144–153. [Google Scholar] [CrossRef]
- García-Caparrós, P.; Llanderal, A.; Pestana, M.; Correia, P.J.; Lao, M.T. Nutritional and physiological responses of the dicotyledonous halophyte Sarcocornia fruticosa to salinity. Austr. J. Bot. 2017, 65, 573–581. [Google Scholar] [CrossRef]
- Custódio, L.; Rodrigues, M.J.; Pereira, C.G.; Castañeda-Loaiza, V.; Fernandes, E.; Standing, D.; Neori, A.; Shpigel, M.; Sagi, M. A review on Sarcocornia species: Ethnopharmacology, nutritional properties, phytochemistry, biological activities and propagation. Foods 2021, 10, 2778. [Google Scholar] [CrossRef]
- Curado, G.; Grewell, B.J.; Figueroa, E.; Castillo, J. Effectiveness of the aquatic halophyte Sarcocornia perennis spp. perennis as a biotool for ecological restoration of salt marshes. Water Air Soil Pollut. 2014, 225, 2108. [Google Scholar] [CrossRef]
- Said, O.B.; Moreira da Silva, M.; Hannier, F.; Beyrem, H.; Chícharo, L. Using Sarcocornia fruticosa and Saccharomyces cerevisiae to remediate metal contaminated sediments of the Ria Formosa lagoon (SE Portugal) Ecohydrol. Hydrobiol. 2019, 19, 588–597. [Google Scholar]
- Moreira da Silva, M.; Anibal, J.; Duarte, D.; Veloso, N.; Patrício, F.; Chícharo, L. Metals from human activities in a coastal lagoon saltmarsh—Sediment toxicity and phytoremediation by Sarcocornia fruticosa. J. Environ. Prot. Ecol. 2021, 22, 1441–1449. [Google Scholar]
- Castañeda-Loaiza, V.; Oliveira, M.; Santos, T.; Schüler, L.; Lima, A.R.; Gama, F.; Salazar, M.; Neng, N.R.; Nogueira, J.M.F.; Varela, J.; et al. Wild vs cultivated halophytes: Nutritional and functional differences. Food Chem. 2020, 333, 127536. [Google Scholar] [CrossRef]
- Lopes, M.; Sanches-Silva, A.; Castilho, M.; Cavaleiro, C.; Ramos, F. Halophytes as source of bioactive phenolic compounds and their potential applications. Crit. Rev. Food Sci. Nutr. 2021, 63, 1078–1101. [Google Scholar] [CrossRef]
- SIAR (Sistema de Información Agroclimática para Regadío). 2018. Available online: http://www.servicio.mapa.gob.es/websiar/ (accessed on 1 July 2024).
- Bouyoucos, G.J. Hydrometer method improved for making particle size analysis of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Blainski, A.; Lopes, G.C.; Pallazzo De Mello, J.C. Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules 2013, 18, 6852–6865. [Google Scholar] [CrossRef] [PubMed]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Hodges, D.M.; DeLong, J.M.; Forney, C.F.; Prange, R.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Taulavuori, E.; Hellström, E.; Taulavuori, K.; Laine, K. Comparison of two methods used to analyse lipid peroxidation from Vaccinium myrtillus (L.) during snow removal, reacclimation and cold acclimation. J. Exp. Bot. 2002, 52, 2375–2380. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil. 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils. In Agriculture Hand Book No. 60; United States Department of Agriculture, USDA: Washington, DC, USA, 1954. [Google Scholar]
- Rioja Molina, A. Apuntes de Fitotecnia General; E.U.I.T.A.: Ciudad Real, España, 2002. [Google Scholar]
- Rufo, L.; De la Fuente, V.; Sánchez-Mata, D. Sarcocornia plant communities of the Iberian Peninsula and the Balearic Islands. Phytocoenologia 2016, 46, 383–396. [Google Scholar] [CrossRef]
- Álvarez-Rogel, J.; Silla, R.; Alcaraz, F. Edaphic characterization and soil ionic composition influencing plant zonation in a semiarid Mediterranean salt marsh. Geoderma 2001, 99, 81–98. [Google Scholar] [CrossRef]
- Ghanem, A.-M.F.M.; Mohamed, E.; Kasem, A.M.M.A.; El-Ghamery, A.A. Differential Salt Tolerance Strategies in Three Halophytes from the Same Ecological Habitat: Augmentation of Antioxidant Enzymes and Compounds. Plants 2021, 10, 1100. [Google Scholar] [CrossRef]
- Calone, R.; Mircea, D.-M.; González-Orenga, S.; Boscaiu, M.; Lambertini, C.; Barbanti, L.; Vicente, O. Recovery from salinity and drought stress in the perennial Sarcocornia fruticosa vs. the annual Salicornia europaea and S. veneta. Plants 2022, 11, 1058. [Google Scholar] [CrossRef]
- Perez-Romero, J.A.; Barcia-Piedras, J.M.; Redondo-Gómez, S.; Naranjo, E. Sarcocornia fruticosa recovery capacity after exposure to co-existed water and salinity stress. Plant Stress 2023, 8, 100162. [Google Scholar] [CrossRef]
- Redondo, S.; Rubio-Casal, A.E.; Castillo, J.M.; Luque, C.J.; Álvarez, A.A.; Luque, T.; Figueroa, M.E. Influences of salinity and light on germination of three Sarcocornia taxa with contrasted habitats. Aquat. Bot. 2004, 78, 255–264. [Google Scholar] [CrossRef]
- González-Alcaraz, M.N.; Conesa, H.M.; Tercero, M.C.; Schulin, R.; Alvarez-Rogel, J.; Egea, C. The combined use of liming and Sarcocornia fruticosa development for phytomanagement of salt marsh soils polluted by mine wastes. J. Hazard. Mater. 2011, 186, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Moreira da Silva, M.; Anibal, J.; Duarte, D.; Chicharo, L. Sarcocornia fruticosa and Spartina maritima as heavy metals remediators in Southwestern European Salt Marsh (Ria Formosa, Portugal). J. Environ. Prot. Ecol. 2015, 16, 1468–1477. [Google Scholar]
- Ventura, Y.; Wuddineh, W.; Myrzabayev, M.; Alikulov, Z.; Khozin-Goldberg, I.; Shpigel, M.; Samocha, T.; Sagi, M. Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocomia halophytes as leafy vegetable crops. Sci. Hort. 2011, 128, 189–196. [Google Scholar] [CrossRef]
- Joshi, T.; Deepa, P.R.; Joshi, M.; Sharma, P.K. Matters of the desert: A perspective on achieving food and nutrition security through plants of the (semi) arid regions. J. Agric. Food Res. 2023, 14, 100725. [Google Scholar] [CrossRef]
- Navarro-Torre, S.; Garcia-Caparrós, P.; Nogales, A.; Abreu, M.M.; Santos, E.; Cortinhas, A.L.; Caperta, A.D. Sustainable agricultural management of saline soils in arid and semi-arid Mediterranean regions through halophytes, microbial and soil-based technologies. Environ. Exp. Bot. 2023, 212, 105397. [Google Scholar] [CrossRef]
- Barreira, L.; Resek, E.; Rodrigues, M.J.; Rocha, M.I.; Pereira, H.; Bandarra, N.; Moreira da Silva, M.; Varela, J.; Custódio, L. Halophytes: Gourmet food with nutritional health benefits? J. Food Compos. Anal. 2017, 59, 35–42. [Google Scholar] [CrossRef]
- Loconsole, D.; Cristiano, G.; De Lucia, B. Glassworts: From wild Salt marsh species to sustainable edible crops. Agriculture 2019, 9, 14. [Google Scholar] [CrossRef]
- Agudelo, A.; Carvajal, M.; Martinez-Ballesta, M.d.C. Halophytes of the Mediterranean Basin—Underutilized species with the potential to be nutritious crops in the scenario of the climate change. Foods 2021, 10, 119. [Google Scholar] [CrossRef]
- Swapnil, P.; Meena, M.; Singh, S.; Dhuldhaj, U.; Harish; Marwal, A. Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. Curr. Plant Biol. 2021, 26, 100203. [Google Scholar] [CrossRef]
- Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [PubMed]
- Ozgur, R.; Uzilday, B.; Sekmen, A.H.; Turkan, I. Reactive oxygen species regulation and antioxidant defence in halophytes. Funct. Plant Biol. 2013, 40, 832–847. [Google Scholar] [CrossRef]
- Del Rio, D.; Stewart, A.J.; Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. 2005, 15, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Mittler, R. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol. Plant. 2006, 126, 46–51. [Google Scholar] [CrossRef]
- Morales, M.; Munné-Bosch, S. Malondialdehyde: Facts and artifacts. Plant Physiol. 2019, 180, 1246–1250. [Google Scholar] [CrossRef] [PubMed]
- Fini, A.; Brunetti, C.; Di Ferdinando, M.; Ferrini, F.; Tattini, M. Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal Behav. 2011, 6, 709–711. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic compounds: Current industrial applications, limitations and future challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef]
- Ksouri, R.; Smaoui, A.; Isoda, H.; Abdelly, C. Utilization of halophyte species as new sources of bioactive substances. J. Arid Land Stud. 2014, 22, 41–44. [Google Scholar]
- González-Orenga, S.; Al Hassan, M.; Llinares, J.V.; Lisón, P.; López-Gresa, M.P.; Verdeguer, M.; Vicente, O.; Boscaiu, M. Qualitative and quantitative differences in osmolytes accumulation and antioxidant activities in response to water deficit in four Mediterranean Limonium species. Plants 2019, 8, 506. [Google Scholar] [CrossRef] [PubMed]
- González-Orenga, S.; Llinares, J.V.; Al Hassan, M.; Fita, A.; Collado, F.; Lisón, P.; Vicente, O.; Boscaiu, M. Physiological and morphological characterisation of Limonium species in their natural habitats: Insights into their abiotic stress responses. Plant Soil 2020, 449, 267–284. [Google Scholar] [CrossRef]
- Bose, J.; Rodrigo-Moreno, A.; Shabala, S. ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 2014, 65, 1241–1257. [Google Scholar] [CrossRef] [PubMed]
- Gil, R.; Bautista, I.; Boscaiu, M.; Lidón, A.; Wankhade, S.; Sánchez, H.; Llinares, J.; Vicente, O. Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB Plants 2014, 19, 6. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Maboud, M.; Elsharkawy, E. Ecophysiological responses of the genus Sarcocornia A. J. Scott growing at the Mediterranean Sea coast, Egypt. Pak. J. Bot. 2021, 53, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Szabados, L.; Savouré, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; Iodice d’Enza, A.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods Primers 2022, 2, 100. [Google Scholar] [CrossRef]
- Maggio, A.; De Pascale, S.; Fagnano, M.; Barbieri, G. Saline agriculture in Mediterranean environments. Ital. J. Agron. 2011, 6, 36–43. [Google Scholar] [CrossRef]
- Vicente, O.; Boscaiu, M. Flavonoids: Antioxidant compounds for plant defence. and for a healthy human diet. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 14–21. [Google Scholar] [CrossRef]
- Amor, N.; Jiménez, A.; Megdiche, W.; Lundqvist, M.; Sevilla, F.; Abdelly, C. Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima. Physiol. Plant. 2006, 126, 446–457. [Google Scholar] [CrossRef]
- Alhdad, G.; Seal, C.; Al-Azzawi, M.; Flowers, T. The effect of combined salinity and waterlogging on the halophyte Suaeda maritima: The role of antioxidants. Environ. Exp. Bot. 2013, 87, 120–125. [Google Scholar] [CrossRef]
- Gil, L.; Pinya, S.; Tejada, S.; Capó, X.; Sureda, A. Antioxidant defenses in wild growing halophyte Crithmum maritimum from inland and coastline populations. Chem. Biodivers. 2019, 16, e1800448. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, D.; Cornacchione, M.; Ferreira, J.; Suarez, D.L. Variable salinity responses of 12 alfalfa genotypes and comparative expression analyses of salt-response genes. Sci. Rep. 2017, 7, 42958. [Google Scholar] [CrossRef] [PubMed]
- Thabet, S.G.; Alomari, D.Z.; Alqudah, A.M. Exploring natural diversity reveals alleles to enhance antioxidant system in barley under salt stress. Plant Physiol. Biochem. 2021, 166, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Korekar, G.; Dolkar, P.; Srivastava, R.; Stobdan, T. Variability and the genotypic effect on antioxidant activity, total phenolics, carotenoids and ascorbic acid content in seventeen natural population of Seabuckthorn (Hippophae rhamnoides L.) from trans-Himalaya. Lebensm. Wiss. Technol. 2014, 55, 157–162. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
Province | Locality | Code | Latitude | Longitude |
---|---|---|---|---|
Castellón | Torreblanca | TB | 40 10 32.4834 N | 0 11 33.4948 E |
Castellón | Almenara | AL | 39 43 03.3302 N | 0 11 50.1489 W |
Valencia | Marjal del Moro | MM | 39 37 08.0000 N | 0 15 24.0000 W |
Valencia | Mallada Redona | MR | 39 22 11.2800 N | 0 19 26.7112 W |
Valencia | Mallada Llarga | ML | 39 21 06.8742 N | 0 19 04.2744 W |
Alicante | Aigua Amarga | AA | 38 17 10.3408 N | 0 31 21.5077 W |
Alicante | Clot de Galvany 1 | C1 | 38 14 58.4565 N | 0 31 55.5632 W |
Alicante | Clot de Galvany 2 | C2 | 38 14 40.1462 N | 0 32 23.8684 W |
Alicante | Fondo | FO | 38 12 27.3806 N | 0 45 59.9646 W |
Alicante | Salinas de Santa Pola | SP | 38 11 02.0012 N | 0 36 55.0732 W |
Alicante | Torrevieja | TV | 38 01 06.8000 N | 0 40 18.6000 W |
Meteorological Station | Area Code | T (°C) | Rad (MJ/m2) | P (mm) | PET (mm) |
---|---|---|---|---|---|
Benavites | AL | 17.36 | 16.80 | 466 | 1079 |
Ribera de Cabanes | TB | 17.28 | 16.02 | 481 | 1078 |
Sagunto | MM | 17.94 | 16.53 | 431 | 1177 |
Benifayo | ML, MR | 18.27 | 17.34 | 472 | 1348 |
Elche | C1, C2, AA, SP | 18.78 | 17.64 | 278 | 1191 |
Catral | FO | 17.91 | 16.65 | 298 | 1151 |
Pilar de la Horadada | TV | 19.07 | 18.23 | 355 | 1210 |
Code | Sand (%) | Silt (%) | Clay (%) | pH | EC (dSm−1) | OC (%) | OM (%) |
---|---|---|---|---|---|---|---|
AL | 67.00 ± 1.15 b | 33 ± 1.73 cd | 0.00 ± 0.00 d | 7.54 ± 0.29 b | 67.26 ± 1.15 c | 10.78 ± 0.58 a | 18.59 ± 1.15 a |
TB | 92.50 ± 0.86 a | 7.50 ± 0.86 e | 0.00 ± 0.00 d | 8.41 ± 0.25 a | 17.33 ± 2.32 de | 7.92 ± 0.02 e | 13.65 ± 0.03 e |
MM | 67.00 ± 0.58 b | 23.00 ± 0.58 d | 10.00 ± 0.00 a | 7.36 ± 0.11 b | 76.32 ± 0.05 bc | 8.98 ± 0.11 c | 15.47 ± 0.23 cd |
ML | 95.00 ± 1.29 a | 4.66 ± 1.09 d | 0.33 ± 0.22 cd | 8.60 ± 0.13 a | 25.46 ± 7.03 de | 8.01 ± 0.07 e | 13.82 ± 0.12 e |
MR | 94.66 ± 0.33 a | 5.33 ± 0.33 e | 0.00 ± 0.00 d | 8.29 ± 0.04 a | 10.93 ± 1.64 e | 8.33 ± 0.05 cd | 14.37 ± 0.08 de |
C1 | 58.33 ± 8.21 b | 41.67 ± 8.21 c | 0.00 ± 0.00 d | 7.37 ± 0.24 b | 80.29 ± 4.89 bc | 9.91 ± 0.28 ab | 17.09 ± 0.48 ab |
C2 | 30.67 ± 3.81 d | 67.00 ± 4.50 b | 2.33 ± 0.72 cd | 7.64 ± 0.06 b | 12.89 ± 1.57 e | 8.78 ± 0.34 c | 15.15 ± 0.60 d |
AA | 28.66 ± 17.1 c | 69.33 ± 15.5 b | 2.00 ± 2.00 cd | 7.47 ± 0.06 b | 43.09 ± 7.57 cd | 9.21 ± 0.38 bc | 15.88 ± 0.66 c |
SP | 10.00 ± 0.003 d | 85.00 ± 0.58 a | 5.00 ± 0.58 b | 7.26 ± 0.00 b | 100.65 ± 12.2 ab | 8.27 ± 0.06 de | 14.26 ± 0.11 de |
FO | 25.00 ± 0.58 d | 75.00 ± 0.58 ab | 0.00 ± 0.00 d | 7.41 ± 0.12 b | 116.18 ± 0.58 a | 9.58 ± 0.23 b | 16.52 ± 1.15 bc |
TV | 68.67 ± 1.33 b | 23.00 ± 1.00 de | 8.33 ± 1.12 a | 8.15 ± 0.11 a | 19.18 ± 5.44 de | 10.54 ± 0.48 a | 18.17 ± 0.82 a |
Chl a (mg g−1DW) | Chl b (mg g−1DW) | Caro (mg g−1DW) | Pro (μmol g−1DW) | |
---|---|---|---|---|
AL | 0.34 ± 0.07 | 0.21 ± 0.02 | 0.11 ± 0.02 | 1.13 ± 0.10 |
TB | 0.24 ± 0.05 | 0.18 ± 0.01 | 0.09 ± 0.01 | 1.32 ± 0.31 |
MM | 0.28 ± 0.07 | 0.20 ± 0.02 | 0.13 ± 0.02 | 1.08 ± 0.15 |
ML | 0.20 ± 0.04 | 0.18 ± 0.01 | 0.09 ± 0.01 | 0.96 ± 0.09 |
MR | 0.28 ± 0.07 | 0.21 ± 0.02 | 0.09 ± 0.01 | 0.95 ± 0.10 |
C1 | 0.46 ± 0.08 | 0.25 ± 0.02 | 0.10 ± 0.01 | 0.99 ± 0.05 |
C2 | 0.31 ± 0.07 | 0.24 ± 0.02 | 0.09 ± 0.03 | 1.09 ± 0.10 |
AA | 0.38 ± 0.13 | 0.24 ± 0.04 | 0.07 ± 0.02 | 0.95 ± 0.09 |
SP | 0.33 ± 0.08 | 0.23 ± 0.03 | 0.08 ± 0.02 | 1.53 ± 0.24 |
FO | 0.41 ± 0.06 | 0.26 ± 0.02 | 0.07 ± 0.02 | 0.92 ± 0.07 |
TV | 0.41 ± 0.11 | 0.23 ± 0.05 | 0.04 ± 0.02 | 1.13 ± 0.12 |
Variable | Component 1 | Component 2 |
---|---|---|
Sand | −0.313 | −0.059 |
Silt | 0.308 | 0.059 |
Clay | 0.076 | 0.012 |
pH | −0.268 | −0.294 |
EC | 0.179 | 0.371 |
OC | 0.194 | 0.210 |
OM | 0.195 | 0.210 |
T | 0.235 | −0.412 |
Rad | 0.217 | −0.408 |
P | −0.334 | 0.089 |
PET | 0.249 | 0.107 |
WC | −0.229 | 0.276 |
TF | −0.162 | −0.263 |
TPC | −0.127 | 0.147 |
Chl a | 0.304 | 0.082 |
Chl b | 0.345 | 0.010 |
Caro | −0.160 | 0.275 |
MDA | −0.101 | 0.229 |
Pro | 0.009 | 0.143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega Albero, N.; Vallejo Sardon, S.; Lupuţ, I.; Boscaiu, M.; Donat-Torres, M.P.; Fita, A.; González-Orenga, S. Sarcocornia fruticosa, a Potential Candidate for Saline Agriculture: Antioxidant Levels in Relation to Environmental Conditions in the Eastern Iberian Peninsula. Agriculture 2024, 14, 1657. https://doi.org/10.3390/agriculture14091657
Ortega Albero N, Vallejo Sardon S, Lupuţ I, Boscaiu M, Donat-Torres MP, Fita A, González-Orenga S. Sarcocornia fruticosa, a Potential Candidate for Saline Agriculture: Antioxidant Levels in Relation to Environmental Conditions in the Eastern Iberian Peninsula. Agriculture. 2024; 14(9):1657. https://doi.org/10.3390/agriculture14091657
Chicago/Turabian StyleOrtega Albero, Neus, Sara Vallejo Sardon, Ioan Lupuţ, Monica Boscaiu, Maria P. Donat-Torres, Ana Fita, and Sara González-Orenga. 2024. "Sarcocornia fruticosa, a Potential Candidate for Saline Agriculture: Antioxidant Levels in Relation to Environmental Conditions in the Eastern Iberian Peninsula" Agriculture 14, no. 9: 1657. https://doi.org/10.3390/agriculture14091657
APA StyleOrtega Albero, N., Vallejo Sardon, S., Lupuţ, I., Boscaiu, M., Donat-Torres, M. P., Fita, A., & González-Orenga, S. (2024). Sarcocornia fruticosa, a Potential Candidate for Saline Agriculture: Antioxidant Levels in Relation to Environmental Conditions in the Eastern Iberian Peninsula. Agriculture, 14(9), 1657. https://doi.org/10.3390/agriculture14091657