Primary Assessment of Grapevine Cultivars’ Bud Fertility with Diverse Ancestry Following Spring Frost Under Central Poland Environmental Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Grapevine and Cultivar Characteristics
2.2. Spring Frost Damage
2.3. Assessment of Inflorescence Occurrence as a Fertility Parameter
2.4. Yield Assessment
2.5. Statistical Analysis
3. Results
3.1. Actual Fertility Parameters
3.1.1. Actual Fertility Parameters in Cultivars
- The Percentage of Fertile Buds (PF)
Cultivar and Color of Berry Skin * | Country of Origin of the Cultivar | The Percentage of Fertile Buds (PF) (%) | ||
---|---|---|---|---|
Secondary | Basal | Latent | ||
Vitis vinifera | ||||
Chardonnay (B) | France | 7.3 ± 0.58 b | 12.2 ± 3.51 b | 0.0 ± 0 a |
Chasselas Dore (B) | France | 12.4 ± 4.16 c | 18.0 ± 2.64 bcd | 8.0 ± 1.00 bc |
Dornfelder (N) | Germany | 7.6 ± 1.15 b | 14.6 ± 2.52 bc | 0.0 ± 0 a |
Merlot (N) | France | 21.9 ± 3.00 def | 20.3 ± 2.08 cde | 0.0 ± 0 a |
Muscat Ottonel (B) | France | 17.3 ± 2.31 cd | 23.0 ± 2.00 d–g | 8.6 ± 2.08 bcd |
Nektar (B) | Hungary | 0.0 ± 0 a | 12.9 ± 3.00 b | 11.9 ± 2.65 cde |
Pinot Blanc (B) | France | 38.3 ± 3.51 ij | 40.0 ± 2.00 j | 8.6 ± 2.08 bcd |
Pinot Gris (R) | France | 21.9 ± 4.00 def | 17.3 ± 3.10 bcd | 0.0 ± 0 a |
Pinot Noir (N) | France | 16.6 ± 2.52 cd | 26.6 ± 4.16 e–h | 7.3 ± 0.58 b |
Riesling (B) | Germany | 22.3 ± 4.00 def | 40.0 ± 2.00 j | 8.6 ± 2.08 bcd |
Rubinet (N) | Czechia | 25.6 ± 4.73 efg | 88.9 ± 4.12 v–y | 0.0 ± 0 a |
Sauvignon Blanc (B) | France | 17.9 ± 4.00 cd | 21.9 ± 4.00 def | 7.3 ± 0.58 b |
Siegerrebe (R) | Germany | 32.6 ± 3.52 ghi | 41.3 ± 3.21 j | 0.0 ± 0 a |
Traminer Rot (R) | Germany | 7.6 ± 0.56 b | 28.0 ± 3.00 fgh | 0.0 ± 0 a |
Turan (N) | Hungary | 26.9 ± 5.57 efg | 53.7 ± 4.93 k | 12.9 ± 3.46 def |
Zweigeltrebe (N) | Austria | 21.0 ± 2.00 de | 27.6 ± 3.51 fgh | 9.3 ± 1.15 bcd |
Interspecific hybrids | ||||
Aurore (B) | France | 62.0 ± 4.00 lmn | 74.7 ± 3.10 o–r | 31.0 ± 3.61 kl |
Bianca (B) | Hungary | 70.8 ± 5.13 op | 85.3 ± 5.57 t–w | 62.7 ± 3.06 q |
Concord (N) | USA | 29.2 ± 6.86 fgh | 28.6 ± 3.05 fgh | 8.6 ± 2.08 bcd |
Frontenac (N) | USA | 41.3 ± 3.06 j | 80.4 ± 4.04 r–u | 12.3 ± 2.08 def |
Leon Millot (N) | France | 52.3 ± 3.79 k | 68.0 ± 3.00 mno | 52.0 ± 4.00 no |
Marechal Foch (N) | France | 31.6 ± 3.51 ghi | 71.0 ± 3.61 m–p | 34.6 ± 4.16 kl |
Marquette (N) | USA | 37.0 ± 4.58 hij | 73.0 ± 2.65 n–q | 28.6 ± 3.05 jk |
Seyval Blanc (B) | France | 66.1 ± 5.00 m–p | 82.7 ± 3.05 stu | 80.4 ± 3.51 st |
St. Pepin (B) | USA | 73.7 ± 4.51 pq | 84.0 ± 2.00 tuv | 78.0 ± 3.00 st |
Swenson Red (R) | USA | 67.0 ± 3.61 nop | 63.4 ± 3.51 lm | 19.2 ± 4.04 ghi |
Vidal Blanc (B) | France | 66.1 ± 4.58 m–p | 82.1 ± 4.00 stu | 62.0 ± 4.00 q |
Inter-intraspecific or intra-interspecific hybrids | ||||
Accent (N) | Germany | 79.9 ± 5.69 qr | 80.0 ± 6.11 wxy | 82.7 ± 3.05 t |
Allegro (N) | Germany | 65.8 ± 6.81 m–p | 76.7 ± 4.16 p–s | 36.0 ± 4.00 l |
Baron (N) | Germany | 67.4 ± 5.03 nop | 72.1 ± 4.00 n–q | 60.7 ± 4.04 pq |
Bolero (N) | Germany | 52.3 ± 5.13 k | 66.0 ± 4.00 lmn | 37.0 ± 3.65 l |
Cabernet Cantor (N) | Germany | 51.3 ± 3.51 k | 86.2 ± 4.00 u–x | 47.3 ± 4.16 mn |
Cabernet Cortis (N) | Germany | 27.2 ± 4.73 efg | 43.7 ± 3.79 j | 0.0 ± 0 a |
Calandro (N) | Germany | 55.7 ± 1.53 kl | 86.3 ± 5.00 u–x | 55.0 ± 6.24 op |
Felicia (B) | Germany | 58.0 ± 5.57 klm | 67.4 ± 4.16 mno | 55.3 ± 3.06 op |
Helios (B) | Germany | 63.0 ± 5.00 l–o | 82.4 ± 3.21 stu | 75.7 ± 3.51 s |
Hibernal (B) | Germany | 52.0 ± 6.56 k | 84.4 ± 2.08 tuv | 75.7 ± 4.04 s |
Johanniter (B) | Germany | 22.9 ± 4.58 def | 42.0 ± 3.00 j | 14.6 ± 3.21 efg |
Monarch (N) | Germany | 38.3 ± 6.03 ij | 91.1 ± 2.65 xy | 35.6 ± 5.51 l |
Muscaris (B) | Germany | 0.0 ± 0 a | 7.3 ± 0.58 a | 0.0 ± 0 a |
Orion (B) | Germany | 69.1 ± 5.57 nop | 64.1 ± 6.00 lm | 21.2 ± 5.03 hi |
Prior (N) | Germany | 14.0 ± 2.00 c | 32.0 ± 2.00 hi | 0.0 ± 0 a |
Reberger (N) | Germany | 35.6 ± 6.03 hij | 38.0 ± 4.00 ij | 16.9 ± 3.61 fgh |
Regent (N) | Germany | 82.1 ± 4.00 r | 82.7 ± 3.10 stu | 78.4 ± 3.51 st |
Roesler (N) | Austria | 36.9 ± 5.57 hij | 52.7 ± 3.05 k | 11.7 ± 1.15 cde |
Rondo (N) | Germany | 26.9 ± 4.36 efg | 25.9 ± 4.00 e–h | 23.3 ± 2.31 ij |
Saphira (B) | Germany | 55.3 ± 4.16 kl | 59.4 ± 5.03 kl | 44.6 ± 5.51 m |
Solaris (B) | Germany | 69.4 ± 3.06 nop | 78.8 ± 4.51 q–t | 70.2 ± 7.81 r |
Souvignier Gris (R) | Germany | 7.3 ± 0.58 b | 30.3 ± 2.08 gh | 7.3 ± 0.58 b |
Villaris (B) | Germany | 81.1 ± 3.00 r | 91.6 ± 4.04 y | 90.2 ± 3.46 u |
- 2.
- Fruitfulness Index (FI)
3.1.2. Actual Fertility Parameters in Groups of Cultivars (PF and FI)
3.2. Yield
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kryza, M.; Szymanowski, M.; Błaś, M.; Migała, K.; Werner, M.; Sobik, M. Observed changes in SAT and GDD and the climatological suitability of the Poland-Germany-Chech Republic transboundary region for wine grapes cultivation. Theor. Appl. Climatol. 2014, 122, 207–218. [Google Scholar] [CrossRef]
- Koźmiński, C.; Mąkosza, A.; Michalska, B.; Nidzgorska-Lencewicz, J. Thermal conditions for viticulture in Poland. Sustainability 2020, 12, 5665. [Google Scholar] [CrossRef]
- Leolini, L.; Moriondo, M.; Fila, G.; Costafreda-Aumedes, S.; Ferrise, R.; Bindi, M. Late spring frost impacts on future grapevine distribution in Europe. Field Crops Res. 2018, 222, 197–208. [Google Scholar] [CrossRef]
- Sgubin, G.; Swingedouw, D.; Dayon, G.; García de Cortázar-Atauri, I.; Ollat, N.; Pagé, C.; van Leeuven, C. The risk of tardive frost damage in French vineyards in a changing climate. Agric. For. Meteorol. 2018, 250–251, 226–242. [Google Scholar] [CrossRef]
- Montague, T.; Graff, E.; Kar, S. Secondary bud gas exchange, growth, and fruitfulness of Vitis vinifera L. cultivars, ‘Grenache’ and ‘Cabernet Sauvignon’ grown on the Texas High Plains. Vitic. Data J. 2020, 2, e60430. [Google Scholar] [CrossRef]
- Trought, M.C.T.; Howell, G.S.; Cherry, N. Practical Considerations for Reducing Frost Damage in Vineyards; Report to New Zealand Winegrowers; Lincoln University: Canterbury, New Zealand, 1999; Available online: https://researcharchive.lincoln.ac.nz/server/api/core/bitstreams/046b1e55-3931-4900-a883-a4a871fe7e06/content (accessed on 24 October 2024).
- Winkler, A.J.; Cook, J.A.; Kliewer, W.M.; Lider, L.A. General Viticulture; University of California Press: Berkeley, CA, USA, 1974; 710p. [Google Scholar]
- Hellman, E.W. Oregon Viticulture; Oregon State University Press: Corvallis, OR, USA, 2003; 272p. [Google Scholar]
- Sanchez, L.A.; Dokoozlian, N.K. Bud microclimate and fruitfulness in Vitis vinifera L. Am. J. Enol. Vitic. 2005, 56, 319–329. Available online: https://www.researchgate.net/publication/277845936_Bud_Microclimate_and_Fruitfulness_in_Vitis_vinifera_L (accessed on 24 October 2024). [CrossRef]
- Khanduja, S.D.; Balasubrahmanyam, V.R. Fruitfulness of grape vine buds. Econ. Bot. 1972, 26, 280–294. [Google Scholar] [CrossRef]
- Epee, P.; Schelezki, O.; Trought, M.C.T.; Werner, A.; Hofmann, R.W.; Almond, P.; Charters, S.; Parker, A. Effects of cane-and spur-retained node numbers on the pre-flowering vegetative growth of cane-pruned Sauvignon blanc. OENO One 2022, 56, 157–171. [Google Scholar] [CrossRef]
- Srinivasan, C.; Mullins, M. Physiology of flowering in the grapevine—A review. Am. J. Enol. Vitic. 1981, 32, 47–63. [Google Scholar] [CrossRef]
- Ferrara, G.; Mazzeo, A. Potential and actual bud fruitfulness: A tool for predicting and managing the yield of table grape varieties. Agronomy 2021, 11, 841. [Google Scholar] [CrossRef]
- Monteiro, A.I.; Malheiro, A.C.; Bacelar, E.A. Morphology, physiology and analysis techniques of grapevine bud fruitfulness: A Review. Agriculture 2021, 11, 127. [Google Scholar] [CrossRef]
- Monteiro, A.I.; Ferreira, H.; Ferreira-Cardoso, J.V.; Malheiro, A.C.; Bacelar, E.A. Assessment of bud fruitfulness of three grapevine varieties grown in northwest Portugal. OENO One 2022, 56, 385–395. [Google Scholar] [CrossRef]
- Nikov, M.; Jonev, S.; Cholakov, T.; Malenin, I.; Todorov, I.; Monov, I. Spravochnik po Lozarstvo; Christo G. Danov Printing Co.: Plovdiv, Bulgaria, 1983; 280p. [Google Scholar]
- Martinson, T.; Lakso, A.; Bates, T. Grapes 101 Report: Bud Fruitfulness and Yield; Cornell University: Ithaca, NY, USA, 2012; Available online: https://cals.cornell.edu/news/2012/05/grapes-101-bud-fruitfulness-and-yield (accessed on 24 October 2024).
- Del Zozzo, F.; Canavera, G.; Pagani, S.; Gatti, M.; Poni, S.; Frioni, T. Post-spring frost canopy recovery, vine balance, and fruit composition in cv. Barbera grapevines. Aus. J. Grape Wine Res. 2022, 2022, 6596021. [Google Scholar] [CrossRef]
- Friend, A.P.; Trought, M.C.T.; Stushnoff, C.; Wells, G.H. Effect of delaying budburst on shoot development and yield of Vitis vinifera L. Chardonnay ‘Mendoza’ after a spring freeze event. Aust. J. Grape Wine Res. 2011, 17, 378–382. [Google Scholar] [CrossRef]
- Evans, K.J.; Bricher, P.K.; Foster, S.D. Impact of frost injury incidence at nodes of Pinot Noir on fruitfulness and growth-stage lag. Aus. J. Grape Wine Res. 2019, 25, 201–211. [Google Scholar] [CrossRef]
- Kasimatis, A.N.; Kissler, J.J. Responses of grapevines to shoot break-out following injury by spring frost. Am. J. Enol. Vitic. 1974, 25, 17–20. Available online: https://www.lodigrowers.com/download/Kasimatis_SpringFrostInjury_1974.pdf (accessed on 24 October 2024). [CrossRef]
- Wolpert, J.A.; Howell, G.S.; Mansfield, T.K. Sampling Vidal blanc grapevines. I. Effect of training systems, pruning severity, shoot exposure, shoot origin and cluster thinning on cluster weight and fruit quality. Am. J. Enol. Vitic. 1983, 34, 72–76. [Google Scholar] [CrossRef]
- Howell, G.S. Factors Related to Spring Frost Damage: What Are the Options. Michigan State University. 2003. Available online: https://www.canr.msu.edu/grapes/uploads/files/factors-related.pdf (accessed on 24 October 2024).
- Frioni, T.; Green, A.; Emling, E.J.; Zhuang, S.; Palliotti, A.; Sivilotti, P.; Falchi, R.; Sabbatini, P. Impact of spring freeze on yield, vine performance and fruit quality of Vitis interspecfic hybrid Marquette. Sci. Hortic. 2017, 219, 302–309. [Google Scholar] [CrossRef]
- Centinari, M.; Gardner, D.M.; Smith, D.E.; Smith, M.S. Impact of amigo oil and KDL on grapevine postbudburst freeze damage, yield components, and fruit and wine composition. Am. J. Enol. Vitic. 2017, 69, 77–88. [Google Scholar] [CrossRef]
- Proebsting, E.L.; Brummund, V.P. Yield and maturity of ‘Concord’ grapes following spring frost. HortScience 1978, 13, 541–543. [Google Scholar] [CrossRef]
- Theocharis, A.; Hand, P.; Pole, J.; Cevik, V.; Fisarakis, I.; Henderson, J. Study of genetic diversity among inter-intraspecific hybrids and original grapevine varieties using AFLP molecular markers. Aust. J. Crop Sci. 2010, 4, 1–8. Available online: https://researchportal.bath.ac.uk/en/publications/study-of-genetic-diversity-among-inter-intraspesific-hybrids-and- (accessed on 29 October 2024).
- Vitis International Variety Catalogue. Available online: www.vivc.de (accessed on 24 October 2024).
- Lott, H.; Pfaff, F.; Prior, B. Taschenbuch der Rebsorten; 14 Auflage; Fachverlag Dr. Fraund GmbH: Mainz, Gemany, 2010; 385p. [Google Scholar]
- Coombe, B.G. Adoption of a system for identifying grapevine growth stages. Austr. J. Grape Wine Res. 1995, 1, 104–110. [Google Scholar] [CrossRef]
- Pospišilová, D. Ampelografia ČSSR; Priroda: Bratislava, Slovakia, 1981; 350p. [Google Scholar]
- Stepanchenko, V.I. Fruitfulness of basal buds of grapevine. Sadov. Vinograd. Vinod. Moldav. 1965, 8, 27–29. [Google Scholar]
- Van Leeuwen, C.; Darriet, P. The impact of climate change on viticulture and wine quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef]
- Duchêne, É. How can grapevine genetics contribute to the adaptation to climate change? OENO One 2016, 50, 113–124. [Google Scholar] [CrossRef]
- De Rosa, V.; Vizzotto, G.; Falchi, R. Cold hardiness dynamics and spring phenology: Climate-driven changes and new molecular insights into grapevine adaptive potential. Front. Plant Sci. 2021, 12, 644528. [Google Scholar] [CrossRef] [PubMed]
- Alleweldt, G.; Spiegel-Roy, P.; Reisch, B.I. Grapes (Vitis). Acta Hortic. 1991, 290, 291–337. [Google Scholar] [CrossRef]
- Lisek, A.; Lisek, J. Assessment of genetic diversity and relationships among grapevine cultivars originating in Central and Eastern Europe and North America using ISSR markers. Acta Sci. Pol. Hortorum Cultus 2019, 18, 141–152. [Google Scholar] [CrossRef]
Cultivar | Fruitfulness Index (FI—Mean Number of Inflorescences per Bud) | Ability for Compensatory Yielding * | ||
---|---|---|---|---|
Secondary | Basal | Latent | ||
Vitis vinifera | ||||
Chardonnay (B) | 0.07 ± 0.01 ab | 0.16 ± 0.05 ab | 0.0 ± 0 a | VL |
Chasselas Dore (B) | 0.24 ± 0.08 cde | 0.34 ± 0.05 cd | 0.16 ± 0.01 bcd | L |
Dornfelder (N) | 0.08 ± 0.01 ab | 0.16 ± 0.03 ab | 0.0 ± 0 a | L |
Merlot (N) | 0.35 ± 0.05 e–i | 0.39 ± 0.04 c–f | 0.0 ± 0 a | L |
Muscat Ottonel (B) | 0.23 ± 0.03 cd | 0.30 ± 0.03 c | 0.10 ± 0.02 bc | L |
Nektar (B) | 0.0 ± 0 a | 0.13 ± 0.03 ab | 0.12 ± 0.03 bcd | L |
Pinot Blanc (B) | 0.46 ± 0.04 ijk | 0.48 ± 0.02 fgh | 0.09 ± 0.02 bc | M |
Pinot Gris (R) | 0.22 ± 0.04 cd | 0.19 ± 0.04 b | 0.0 ± 0 a | L |
Pinot Noir (N) | 0.20 ± 0.03 c | 0.35 ± 0.05 cd | 0.08 ± 0.01 abc | L |
Riesling (B) | 0.22 ± 0.04 cd | 0.44 ± 0.02 d–g | 0.10 ± 0.02 bc | H |
Rubinet (N) | 0.33 ± 0.06 d–h | 1.60 ± 0.08 st | 0.0 ± 0 a | VH |
Sauvignon Blanc (B) | 0.22 ± 0.05 cd | 0.29 ± 0.05 c | 0.09 ± 0.01 bc | L |
Siegerrebe (R) | 0.39 ± 0.04 g–j | 0.54 ± 0.04 gh | 0.0 ± 0 a | M |
Traminer Rot (R) | 0.08 ± 0.01 ab | 0.36 ± 0.03 cde | 0.0 ± 0 a | L |
Turan (N) | 0.32 ± 0.07 d–g | 0.64 ± 0.06 i | 0.17 ± 0.02 cde | M |
Zweigeltrebe (N) | 0.27 ± 0.03 c–f | 0.39 ± 0.04 c–f | 0.12 ± 0.01 bcd | M |
Interspecific hybrids | ||||
Aurore (B) | 1.05 ± 0.07 q | 1.42 ± 0.06 pqr | 0.47 ± 0.07 g | VH |
Bianca (B) | 1.31 ± 0.10 u | 1.62 ± 0.11 st | 1.19 ± 0.06 mn | VH |
Concord (N) | 0.41 ± 0.08 g–j | 0.29 ± 0.03 c | 0.09 ± 0.01 bc | M |
Frontenac (N) | 0.54 ± 0.04 k | 1.21 ± 0.06 n | 0.13 ± 0.04 bcd | VH |
Leon Millot (N) | 0.94 ± 0.07 op | 1.29 ± 0.06 no | 0.94 ± 0.08 l | VH |
Marechal Foch (N) | 0.41 ± 0.05 g–j | 0.92 ± 0.05 jk | 0.52 ± 0.06 gh | H |
Marquette (N) | 0.44 ± 0.05 h–k | 0.88 ± 0.03 jk | 0.34 ± 0.04 f | H |
Seyval Blanc (B) | 0.92 ± 0.07 no | 1.57 ± 0.06 s | 1.21 ± 0.05 mno | VH |
St. Pepin (B) | 1.18 ± 0.08 rst | 1.34 ± 0.04 opq | 1.17 ± 0.05 mn | VH |
Swenson Red (R) | 0.87 ± 0.05 no | 0.82 ± 0.05 j | 0.19 ± 0.04 de | H |
Vidal Blanc (B) | 1.26 ± 0.09 tu | 1.56 ± 0.08 s | 1.18 ± 0.08 mn | VH |
Inter-intraspecific or intra-interspecific hybrids | ||||
Accent (N) | 1.04 ± 0.07 pq | 1.70 ± 0.11 tuv | 1.40 ± 0.05 q | VH |
Allegro (N) | 1.05 ± 0.11 q | 1.46 ± 0.08 r | 0.68 ± 0.07 jk | VH |
Baron (N) | 1.28 ± 0.10 tu | 1.37 ± 0.08 o–r | 1.15 ± 0.08 m | VH |
Bolero (N) | 0.68 ± 0.07 l | 0.86 ± 0.05 jk | 0.48 ± 0.07 g | H |
Cabernet Cantor (N) | 0.82 ± 0.06 mn | 1.38 ± 0.07 o–r | 0.76 ± 0.07 k | VH |
Cabernet Cortis (N) | 0.36 ± 0.06 f–i | 0.70 ± 0.06 i | 0.0 ± 0 a | M |
Calandro (N) | 1.06 ± 0.03 q | 1.63 ± 0.10 stu | 0.88 ± 0.09 l | VH |
Felicia (B) | 0.75 ± 0.07 lm | 0.88 ± 0.06 jk | 0.61 ± 0.04 ij | H |
Helios (B) | 1.13 ± 0.09 qrs | 1.56 ± 0.06 s | 1.36 ± 0.06 pq | VH |
Hibernal (B) | 0.88 ± 0.11 no | 1.43 ± 0.04 qr | 1.29 ± 0.07 op | VH |
Johanniter (B) | 0.25 ± 0.05 c–f | 0.46 ± 0.04 e–h | 0.17 ± 0.02 cde | M |
Monarch (N) | 0.65 ± 0.11 l | 1.73 ± 0.05 uv | 0.60 ± 0.09 hij | VH |
Muscaris (B) | 0.0 ± 0 a | 0.07 ± 0.01 a | 0.0 ± 0 a | VL |
Orion (B) | 1.10 ± 0.09 qr | 1.02 ± 0.10 lm | 0.25 ± 0.06 e | VH |
Prior (N) | 0.16 ± 0.03 bc | 0.38 ± 0.03 c–f | 0.0 ± 0 a | L |
Reberger (N) | 0.43 ± 0.07 g–k | 0.46 ± 0.05 e–h | 0.17 ± 0.04 cde | M |
Regent (N) | 1.31 ± 0.07 u | 1.32 ± 0.05 op | 1.25 ± 0.06 no | VH |
Roesler (N) | 0.48 ± 0.07 jk | 0.84 ± 0.05 j | 0.15 ± 0.04 bcd | H |
Rondo (N) | 0.32 ± 0.05 d–g | 0.29 ± 0.04 c | 0.26 ± 0.03 e | L |
Saphira (B) | 0.72 ± 0.05 lm | 0.95 ± 0.08 kl | 0.54 ± 0.08 ghi | H |
Solaris (B) | 1.04 ± 0.05 pq | 1.11 ± 0.07 m | 0.91 ± 0.09 l | VH |
Souvignier Gris (R) | 0.07 ± 0.01 ab | 0.55 ± 0.04 h | 0.07 ± 0.01 ab | L |
Villaris (B) | 1.22 ± 0.05 stu | 1.74 ± 0.08 v | 1.71 ± 0.07 r | VH |
Group of Cultivars | The Percentage of Fertile Buds (PF) (%) | ||
---|---|---|---|
Secondary | Basal | Latent | |
Vitis vinifera | 18.6 ± 1.10 a | 30.4 ± 0.46 a | 5.2 ± 0.60 a |
Interspecific hybrids | 54.3 ± 1.00 c | 72.1 ± 0.93 c | 42.7 ± 0.78 b |
Inter-intra or intra-interspecific hybrids | 48.3 ± 1.40 b | 63.0 ± 1.04 b | 40.9 ± 1.01 b |
Group of Cultivars | Fruitfulness Index (FI-Mean Number of Inflorescences per Bud) | ||
---|---|---|---|
Secondary | Basal | Latent | |
Vitis vinifera | 0.23 ± 0.02 a | 0.42 ± 0.01 a | 0.07 ± 0.01 a |
Interspecific hybrids | 0.85 ± 0.02 c | 1.18 ± 0.02 c | 0.68 ± 0.02 c |
Inter-intra or intra-interspecific hybrids | 0.73 ± 0.02 b | 1.04 ± 0.02 b | 0.64 ± 0.02 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisek, J. Primary Assessment of Grapevine Cultivars’ Bud Fertility with Diverse Ancestry Following Spring Frost Under Central Poland Environmental Conditions. Agriculture 2025, 15, 108. https://doi.org/10.3390/agriculture15010108
Lisek J. Primary Assessment of Grapevine Cultivars’ Bud Fertility with Diverse Ancestry Following Spring Frost Under Central Poland Environmental Conditions. Agriculture. 2025; 15(1):108. https://doi.org/10.3390/agriculture15010108
Chicago/Turabian StyleLisek, Jerzy. 2025. "Primary Assessment of Grapevine Cultivars’ Bud Fertility with Diverse Ancestry Following Spring Frost Under Central Poland Environmental Conditions" Agriculture 15, no. 1: 108. https://doi.org/10.3390/agriculture15010108
APA StyleLisek, J. (2025). Primary Assessment of Grapevine Cultivars’ Bud Fertility with Diverse Ancestry Following Spring Frost Under Central Poland Environmental Conditions. Agriculture, 15(1), 108. https://doi.org/10.3390/agriculture15010108