Research on the Control System for the Conveying and Separation Experimental Platform of Tiger Nut Harvester Based on Sensing Technology and Control Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Instrument Structure and Mechanism of Action
2.1.1. Instrument Structure
2.1.2. Mechanism of Operation
2.2. Design of Screw Conveyor Speed Control Module
2.2.1. Analysis of the Speed Range of Screw Conveyor
2.2.2. Screw Speed Control System
2.3. Torque Detection Module for Screw
2.3.1. Modal Analysis of Screw Structure
2.3.2. Torque Measuring System for Screw
2.4. Excitation Frequency Control System
2.5. Digging Depth Detection Module
2.5.1. Determination of Digging Depth Parameters
2.5.2. Digging Depth Detection System
2.5.3. B-PID-Based Nonlinear Excavation Depth Trajectory Tracking and Regulation System
Principle of the Control System
- Lyapunov stability theory
- 2.
- Barbalat’s lemma
- 3.
- PID control principle
Structure of the Control System
Simulation Experiment
3. Experiment and Results Analysis
3.1. Rotational Speed Measurement of Helical Screw
3.2. Excavation Depth Testing
3.3. Excitation Frequency Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, R.; Zhong, P.; Liu, Z.D.; Gao, H.J.; Wang, R.D.; Li, W.; You, H.Y.; Song, X.Y.; Wang, X.L. Research Progress on Stress Resistance of Tiger nut Under Abiotic Stress. Feed. Feed 2023, 5, 32–35. [Google Scholar]
- Wang, R.Y.; Wang, X.S.; Xiang, H. A multi-purpose novel oil crop—Tiger nuts. China Oils Fats 2019, 44, 1–4. [Google Scholar]
- Zhao, X.Q.; Liu, H.; Lu, Z.Y.; Cheng, Y.C.; Zhang, D.J.; Bai, F.F.; Fang, J.; Ren, Y.F. Cultivation technology of windbreak and sand fixation of Tiger nut on desertified and degraded land. Mod. Agric. 2019, 6, 12–13. [Google Scholar]
- Ding, L.; Guo, H.Q.; Wang, W.Z.; Lv, Z.J.; Lv, Y.L.; Zhang, R.K. Design and experiment of low-set hole metering device for Cyperus esculentus nest-eye metering wheel. Trans. Chin. Soc. Agric. Mach. 2022, 53, 86–97. [Google Scholar] [CrossRef]
- Yang, X.D.; Li, Z.Y. Tiger nut industry in China: Current status of development, potential and adaptive suggestions. Chin. J. Oil Crop Sci. 2022, 44, 712–717. [Google Scholar]
- Di, Z.F.; Li, Q.L.; Jiang, W.; Zhang, Z.Q.; Zhang, H.; Li, N.; Zhai, Z.K.; Zhou, J. Research advance and perspective of Tiger nut planting and harvesting machinery technology and equipment. J. Shanxi Agric. Univ. (Nat. Sci. Ed.) 2022, 42, 96–106. [Google Scholar]
- Zhao, Z.; He, X.N.; Wang, D.W.; Shang, S.Q.; Xu, N.; Zhu, H.; Zheng, X.S. Design and Test of Intermediate Conveying Device for Cyperus esculentus Combine Harvester. J. Agric. Mech. Res. 2023, 45, 172–176. [Google Scholar]
- He, X.; Lv, Y.; Qu, Z.; Wang, W.; Zhou, Z.; He, H. Parameters Optimization and Test of Caterpillar Self-Propelled Tiger Nut Harvester Hoisting Device. Agriculture 2022, 12, 1060. [Google Scholar] [CrossRef]
- Lv, Z.; Wang, W.; Yang, D.; He, X.; Qu, Z.; Jing, W.; Mei, Y.; Huang, H.; Su, B.; Zhuang, Y. Optimal Design and Tests of a Pulsating Roll-Cleaning Device for Tiger Nuts. Agriculture 2024, 14, 1673. [Google Scholar] [CrossRef]
- Pei, M.; An, S.; Chen, S.; Qi, J.; Li, Y. Analysis and experimentation of the crushing and separation process of the root-sand complex of harvested and excavated cyperus esculentus l. in deserts. Eng. Agrícola 2023, 43, e20220121. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, S.; Li, N.; Faheem, M.; Li, P. Development and field test of an autonomous strawberry plug seeding transplanter for use in elevated cultivation. Appl. Eng. Agric. 2019, 35, 1067–1078. [Google Scholar] [CrossRef]
- Ji, X.; Wei, X.; Wang, A.; Cui, B.; Song, Q. A novel composite adaptive terminal sliding mode controller for farm vehicles lateral path tracking control. Nonlinear Dyn. 2022, 110, 2415–2428. [Google Scholar] [CrossRef]
- Song, Z.; Du, C.; Chen, Y.; Han, D.; Wang, X. Development and test of a spring-finger roller-type hot pepper picking header. J. Agric. Eng. 2024, 55. [Google Scholar] [CrossRef]
- Du, C.; Fang, W.; Han, D.; Chen, X.; Wang, X. Design and Experimental Study of a Biomimetic Pod-Pepper-Picking Drum Based on Multi-Finger Collaboration. Agriculture 2024, 14, 314. [Google Scholar] [CrossRef]
- Du, C.; Han, D.; Song, Z.; Chen, Y.; Wang, X. Calibration of contact parameters for complex shaped fruits based on discrete element method: The case of pod pepper (Capsicum annuum). Biosyst. Eng. 2023, 226, 43–54. [Google Scholar] [CrossRef]
- Cheng, P.F. Research on Intelligent Control and Parameter Optimization of Potato Cleaning Equipment. Master’s Thesis, Shandong University of Technology, Zibo, China, 2017. Available online: https://kns.cnki.net/kcms2/article/abstract?v=D99zBTMMfgzoczYloN9MFxGmJuqcpx-TEJg-bK-WycMcPEtuxf78FlZVSOVLXRTX6YonB23ATSX8uK7mKQ1ZuasKcdoNIUwqjcbhHlokLuqPFo7uiXJXIFEnls8kgiUr72Gl7XKOAgqYqO2wRM4IQMvW4RT58OQFCMR38hYvYj2ph8mzJhumTSoQq0LC7dQhNbVlGDBhz4g=&uniplatform=NZKPT&language=CHS (accessed on 16 February 2018).
- Lou, X.; Li, M.; Du, Y.; Mao, E.; Fu, L. Design and Experiment of Cleaning Control System for Corn Combine Harvester. Chin. J. Agric. Mach. Chem. 2024, 45, 1–8. [Google Scholar]
- Wei, D.X. Research and Design of Online Monitoring System for Cleaning Loss of Corn Kernel Harvester. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2023. Available online: https://kns.cnki.net/kcms2/article/abstract?v=D99zBTMMfgwUkzLtQmKUzIbRTU_kdzZnvGfs8R1ewHmFkASnDnVM_ZDNpzyAANxCaFo7zjUgBYGlbCKKslVYYc2QlDRvyyLxEaorQoZjI4E95tEv8unVAR4gNL1OV2YuqBxCROkLXNpsQ8xCh2COUNnM9NcIuLTQIxKaupLgp5j4eUtJN3SMXf8MCUvn_T3I&uniplatform=NZKPT&language=CHS (accessed on 22 February 2024).
- Mirzazadeh, A.; Abdollahpour, S.; Hakimzadeh, M. Optimized Mathematical Model of a Grain Cleaning System Functioning in a Combine Harvester using Response Surface Methodology. Acta Technol. Agric. 2022, 25, 20–26. [Google Scholar] [CrossRef]
- Chen, Z.W. Research on Measurement and Control System of Cyperus esculentus Separation and Cleaning Test Bench. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2022. Available online: https://kns.cnki.net/kcms2/article/abstract?v=D99zBTMMfgyjDJC8gBSmixZLwL7XeXPQplOnuwOqMyMny4xq9xJzChxIhOwr0U5CxhhGKnT8JS7GrWcnVkMe-J0ST7LnCo9nYPTAka2QP-D-jWvzmi6nsZBDyenJFvnvRgT7WXel12Tqt_o6LEhuNQU--PU91uuL1YL7fFgY7lcvu9zLnK0M0-jPOhmUmjz9MuE9IblWrTM=&uniplatform=NZKPT&language=CHS (accessed on 23 February 2023).
- Shangguan, Z.C. Development of Monitoring and Control System for Corn Harvester Based on STM32. Master’s Thesis, Jinan University, Jinan, China, 2023. Available online: https://kns.cnki.net/kcms2/article/abstract?v=D99zBTMMfgwYAfF5Y63nu4XFPAxFQq1G-pr0TW-FAtGqU9PiqgG8Ds9M4OGngo7xqUpM-qketzTEAxNfUjk06SV1sylGfs6ZbcyLblsWxaI0XikJuvwDTNB5N5lQHEjIFu-L8RYZor74a4wbkZ9KBfFNhCPje5m_8C3RDj8sx8AfPQMysTwVyc1IrZ2bj0QDBdHtn-94KUQ=&uniplatform=NZKPT&language=CHS (accessed on 22 February 2024).
- Qi, J.; Gao, J.; Chen, H.K.Z. Parameter Optimization of a Conveying and Separating Device Based on a Five-Stage Screw and Vibrating Screen for Tiger Nut Harvesters. Agriculture 2024, 14, 682. [Google Scholar] [CrossRef]
- François, M.; Osiurak, F.; Fort, A.; Crave, P.; Navarro, J. Automotive HMI design and participatory user involvement: Review and perspectives. Ergonomics 2016, 60, 541–552. [Google Scholar] [CrossRef]
- Obeidat, M.S.; Rababa, M.M.; Tyfour, W.R. Effects of vehicle’s human machine interface devices on driving distractions. Theor. Issues Ergon. Sci. 2021, 23, 414–434. [Google Scholar] [CrossRef]
- Jordan, N.; Louis, H.; Eugénie, A.; Julien, C. Influence of human-machine interactions and task demand on automation selection and use. Ergonomics 2018, 61, 1601–1612. [Google Scholar]
- Mellado, J.; Núez, F. Design of an IoT-PLC: A containerized programmable logical controller for the industry 4.0. J. Ind. Inf. Integr. 2021, 25, 100250. [Google Scholar] [CrossRef]
- Ioannides, M.G. Design and implementation of PLC-based monitoring control system for induction motor. IEEE Trans. Energy Convers. 2004, 19, 469–476. [Google Scholar] [CrossRef]
- Wu, S.X.; Li, J.S. Research on PLC selection in the design of basic automation control system. Town Water Supply 2022, 7, 59–65. [Google Scholar]
- Yulin, D.; Chunjiao, Z. Design and research of embedded PLC development system. In Proceedings of the 2011 3rd International Conference on Computer Research and Development, Shanghai, China, 11–13 March 2011; Available online: https://ieeexplore.ieee.org/document/5764286 (accessed on 19 February 2012).
- Guo, L.; Pecen, R. Design Projects in a Programmable Logic Controller (PLC) Course in Electrical Engineering Technology. Technol. Interface J. 2009, 10, 1–9. [Google Scholar]
- Cheng, Y.F. Structural Optimization Design and Modal Analysis of Linear Vibrating Screen. Master’s Thesis, Taiyuan University of Technology, Taiyuan, China, 2014. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&filename=1014418437.nh (accessed on 20 February 2015).
- Hou, J.M.; Ren, Z.T.; Zhu, H.J. Design and test of double-layer inclined vibrating air-screen castor cleaning device. Trans. Chin. Soc. Agric. Mach. 2022, 53, 39–51. [Google Scholar]
- Zheng, X.S.; Shang, S.Q.; Wang, D.W.; Li, C.P.; Li, M.H.; Shen, S.L.; Zhao, Z.L.; He, X.N. Design analysis and test of air-screen type oil sedge cleaning device. J. Agric. Mech. Res. 2024, 159, 146–153. [Google Scholar]
- Zeng, J. Research on Vibrating Screen Driven by Eccentric Cam Mechanism. Master’s Thesis, Southwest Petroleum University, Chengdu, China, 2019. Available online: https://kns.cnki.net/kcms2/article/abstract?v=D99zBTMMfgwCpkmsvX_ahJEe6WqR7Va9w3GHhnLH3Uomh2saaq06P1sfVGts98_wSg6-i196q1e6_7zpddXbt_-zFQhiV_Rqshd7_FqhDKe28pXWo2zog6zLa-xLw9X_cgRcI06A_ea9RukpWN56jTVF2KZk--d4OSnEWzreCwgHtLeznGuxqRFeD26Ob7w9UK8W5bIKnBI=&uniplatform=NZKPT&language=CHS (accessed on 21 February 2020).
- Xu, T.H. A comparative study on the efficiency of vibration screening parameters based on EDEM. South. Agric. Mach. 2024, 55, 166–168. [Google Scholar]
- Jin, T.C. Development of Potato Mechanized Harvest Potato Soil Vibration Separation Test Bench. Master’s Thesis, Shenyang Agriculture University, Shenyang, China, 2023. Available online: https://kns.cnki.net/kcms2/article/abstract?v=D99zBTMMfgw7ib5bxlUKt6nUHIIQDFAWxdkL1IyFW25uQyapzfSmUnceHzDTW5e18xSId3xprXziGVwoeso-YBhWpIIPy0ZHkWRJEttOSpA8UjSGKUBv5MQd5qy04-aJNTEAbUYcRZrcubiMmch-qyxYVF4KubUfS-mjiV6jC5427q2qzqTg422JS7mPqSMT&uniplatform=NZKPT&language=CHS (accessed on 21 February 2024).
- Khalil, H.K. Lyapunov Stability. Control Systems, Robotics and Automation. 2010. Available online: https://eolss.net/Sample-Chapters/C18/E6-43-21-05.pdf (accessed on 21 February 2011).
- Nguyen, N.T. Lyapunov Stability Theory. In Model-Reference Adaptive Control. Advanced Textbooks in Control and Signal Processing; Springer: Cham, Switzerland, 2018; pp. 47–81. [Google Scholar] [CrossRef]
- Shevitz, D.; Paden, B. Lyapunov stability theory of no smooth systems. IEEE Trans. Autom. Control 1994, 39, 1910–1914. [Google Scholar]
- Wu, Z.; Xia, Y.; Xie, X. Stochastic Barbalat’s Lemma and Its Applications. IEEE Trans. Autom. Control 2012, 57, 1537–1543. [Google Scholar] [CrossRef]
- Farkas, B.A.S.W. Variations on Barbălat’s lemma. Am. Math. Mon. 2016, 123, 825–830. [Google Scholar] [CrossRef]
- Lamarque, C.H.; Bernardin, F.; Bastien, J. Study of a rheological model with a friction term and a cubic term: Deterministic and stochastic cases. Eur. J. Mech. 2005, 24, 572–592. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Length × width × height/(mm × mm × mm) | 4900 × 2600 × 1600 |
Working width/(mm) | 1600 |
Total power/(kW) | 33 |
Frequency adjustment range/(Hz) | 0~25 |
Adjustment range of conveying speed/(r∙min−1) | 0~380 |
Mining depth adjustment range/(mm) | 0~200 |
Orders | Inherent Frequency/Hz | Maximum Deformation/mm | Vibration Mode Description |
---|---|---|---|
1 | 116.94 | 13.887 | The opposite bending deformation of the left-handed and right-handed blades (Z-direction) |
2 | 119.24 | 14.185 | The bending deformation of the left-handed and right-handed blades in the same direction (Z-direction) |
3 | 133.14 | 8.179 | Bending deformation along the Y-direction |
4 | 133.41 | 9.083 | Bending deformation along the X-direction |
5 | 255.34 | 23.44 | Isotropic bending deformation of spacer blades (Z-direction) |
6 | 264.53 | 21.33 | The bending deformation of both ends of the blade and the middle blade in the same direction (Z-direction) |
Error | Controller | 5 s | 10 s | 15 s | 20 s | 25 s | |
Displacement Error (e1) | B-PID | −5.107 × 10−2 | 1.924 | −4.989 × 10−2 | −1.949 | 7.08 × 10−3 | |
Non-PID | −1.004 × 10−2 | 1.983 | −5.284 × 10−2 | −1.974 | 5.218 × 10−2 | ||
Velocity Error (e2) | B-PID | −2.745 × 10−2 | 1.97 | 2.94 × 10−2 | −1.958 | −2.931 × 10−2 | |
Non-PID | −3.657 × 10−2 | 1.993 | 3.69 × 10−2 | −1.962 | −3.558 × 10−2 | ||
Error | Controller | 30 s | 35 s | 40 s | 45 s | 50 s | 55 s |
Displacement Error (e1) | B-PID | 1.918 | −4.59 × 10−2 | −1.946 | 1.078 × 10−2 | 1.921 | −4.234 × 10−2 |
Non-PID | 1.975 | −5.23 × 10−2 | −1.975 | 5.226 × 10−2 | 1.975 | −5.226 × 10−2 | |
Velocity Error (e2) | B-PID | 1.959 | 2.931 × 10−2 | −1.959 | −2.931 × 10−2 | 1.959 | 2.931 × 10−2 |
Non-PID | 1.988 | 3.673 × 10−2 | −1.964 | −3.569 × 10−2 | 1.985 | 3.663 × 10−2 | |
Error | Controller | Max | Min | RMS | Variance | Covariance | |
Displacement Error (e1) | B-PID | 1.924 | −1.949 | 5.636 × 10−1 | 1.6731 | 1.992 | |
Non-PID | 1.983 | −1.975 | 5.684 × 10−1 | 1.7728 | |||
Velocity Error (e2) | B-PID | 2.571 | −1.959 | 4.14 × 10−1 | 1.7259 | 1.833 | |
Non-PID | 2.571 | −1.964 | 4.14 × 10−1 | 1.8263 |
Error | Controller | 5 s | 15 s | 25 s | 35 s | 45 s |
Displacement Error (e1) | B-PID | 1.496 × 10−1 | 1.669 × 10−1 | −1.435 × 10−3 | −8.028 × 10−8 | 7.901 × 10−12 |
Non-PID | 1.919 × 10−1 | 7.872 × 10−5 | −1.029 × 10 | 5.713 × 10−1 | −3.411 | |
Error | Controller | Max | Min | Mean | RMS | |
Displacement Error (e1) | B-PID | 8.354 × 10−1 | −5.505 × 10−3 | 5.801 × 10−2 | 1.532 × 10−1 | |
Non-PID | 1.344 × 10 | −1.318 × 10 | −3.543 × 10−1 | 5.707 |
Rotational Speed Ratio | Project | First Stage Screw r∙min−1 | Second Stage Screw r∙min−1 | Third Stage Screw r∙min−1 | Fourth Stage Screw r∙min−1 | Fifth Stage Screw r∙min−1 | Relative Error/% |
---|---|---|---|---|---|---|---|
0.8 | Theoretical Value | 280 | 224 | 179 | 179 | 179 | 3.80 |
Measured Value | 267 | 213 | 172 | 173 | 175 | ||
0.9 | Theoretical Value | 280 | 252 | 227 | 227 | 227 | 1.76 |
Measured Value | 273 | 246 | 224 | 225 | 223 | ||
1 | Theoretical Value | 280 | 280 | 280 | 280 | 280 | 2.49 |
Measured Value | 277 | 268 | 274 | 276 | 270 |
Serial Number | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Theoretical Value/mm | 129 | 127 | 125 | 123 | 121 |
Measured Value/mm | 128.4 | 126.5 | 123.1 | 121.2 | 119.9 |
Relative Error/% | 0.4 | 0.3 | 1.5 | 1.4 | 0.9 |
Serial Number | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Theoretical Value/Hz | 8.4 | 7.2 | 7 | 8 | 9 |
Measured Value/Hz | 8.3 | 7 | 6.89 | 7.94 | 8.67 |
Relative Error/% | 1.19 | 2.78 | 1.57 | 0.75 | 3.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Qi, J.; Gao, J.; Chen, W.; Fei, J.; Meng, H.; Ma, Z. Research on the Control System for the Conveying and Separation Experimental Platform of Tiger Nut Harvester Based on Sensing Technology and Control Algorithms. Agriculture 2025, 15, 115. https://doi.org/10.3390/agriculture15010115
Chen S, Qi J, Gao J, Chen W, Fei J, Meng H, Ma Z. Research on the Control System for the Conveying and Separation Experimental Platform of Tiger Nut Harvester Based on Sensing Technology and Control Algorithms. Agriculture. 2025; 15(1):115. https://doi.org/10.3390/agriculture15010115
Chicago/Turabian StyleChen, Sirui, Jiangtao Qi, Jianping Gao, Wenhui Chen, Jiaming Fei, Hewei Meng, and Zhen Ma. 2025. "Research on the Control System for the Conveying and Separation Experimental Platform of Tiger Nut Harvester Based on Sensing Technology and Control Algorithms" Agriculture 15, no. 1: 115. https://doi.org/10.3390/agriculture15010115
APA StyleChen, S., Qi, J., Gao, J., Chen, W., Fei, J., Meng, H., & Ma, Z. (2025). Research on the Control System for the Conveying and Separation Experimental Platform of Tiger Nut Harvester Based on Sensing Technology and Control Algorithms. Agriculture, 15(1), 115. https://doi.org/10.3390/agriculture15010115