Key Technologies in Intelligent Seeding Machinery for Cereals: Recent Advances and Future Perspectives
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Reference Indexing Methods
1.3. Manuscript Organization
2. Relationship Between the Key Technologies of Intelligent Cereal Seeding Machinery
3. Active Controllable Seeding Actuators
3.1. Motor-Driven Seed-Metering Devices (MDSDs)
3.2. Ground Surface Profiling Mechanism (GSPM)
4. Intelligent Seeding Rate Control
4.1. Sensing of Soil Properties
- (1)
- Soil moisture content (SMC)
- (2)
- Soil organic matter (SOM)
- (3)
- Soil electrical conductivity (SEC)
- (4)
- Optimal seeding rate decision
4.2. Seeding Rate Monitoring Technique
4.3. Seeding Rate Control Technique
5. Intelligent Seed Position Control
5.1. Trajectory Control of Seeding Machinery
5.2. Intelligent Seeding Depth Control
6. Influences of Intelligent Seeding Machinery at Different Farming Scales
6.1. Application Models
6.2. Costs and Benefits
6.3. Practical Problems
6.4. Solutions
7. Present State, Limitations, and Future Development
7.1. Present State and Limitations
- (1)
- Existing studies on MDSDs have mainly concentrated on improving the qualified rate; however, few studies have focused on their adaptability to different cereal seeds or paid attention to the seed breaking rate of developed MDSDs. These limitations may mean that a given MDSD can only be used for a certain cereal, increasing the idle rate of the seeder. Additionally, seed breaking phenomena may frequently occur in practical cereal seeding operations.
- (2)
- Due to complex field operating conditions, the vibration of the seeding unit can affect the stability of the seeding depth and reduce the control accuracy of the GSPM. The majority of studies on GSPMs relate to structural designs, but few have focused on dynamic analyses to reduce the influence of vibrations caused by uneven soil surfaces. This research gap may result in an uncontrolled seed falling trajectory during practical cereal seeding.
- (3)
- A majority of high-precision soil property sensors are of the probe type, which must be inserted into the soil and transmit information using the IoT paradigm. In actual cereal seeding operations, the intelligent seeding machinery needs to implement variable seeding in real time; however, only a few soil property sensors can be installed on the seeding machinery. Hence, the seeding machinery must use previous soil property parameters, potentially reducing the accuracy of seeding rate decisions.
- (4)
- Existing seeding rate sensors only can monitor the seed quantity out of the seed-metering device, but the distribution of seeds in the soil cannot be monitored. Hence, existing seed spacing monitoring technology judges the spacing between adjacent seeds through estimation according to the time interval, and the actual seed spacings under soil cannot be monitored.
- (5)
- The objective of existing seeding rate control technology is to discharge cereal seeds at uniform and accurate time intervals via developing innovative control algorithms. However, some types of cereal seeds, such as corn and rice, benefit from being sown in a certain direction and position. Few studies have focused on the direction and position control of cereal seeds.
- (6)
- Studies on seeding depth control systems have mainly focused on how to control the down force or seeding depth precisely. However, in reality, the theoretical down force of seeding machinery should be varied according to the soil moisture rate of the cultivated field. At present, existing seeding depth control systems do not regulate the theoretical down force or seeding depth according to the soil conditions, leading to deviation in the actual seeding depth from the theoretical value.
7.2. Future Developments
- (1)
- Future research on MDSDs should aim to improve their adaptability to different cereal seeds. For example, the innovative structural holes of a pneumatic MDSD can suck in several types of seeds with similar shapes, such as wheat, rice, barley, and so on, improving the utility of the intelligent seeding machinery. Furthermore, by means of DEM simulation and practical experiments, the structural optimization of MDSDs should be conducted to reduce the seed breaking phenomenon during the filling, conveying, and discharging processes.
- (2)
- Dynamic analyses should be performed when the GSPM is working on uneven soil. According to the analytical results, new structures or methods which can absorb vibrations affecting the GSPM could potentially be developed.
- (3)
- Vehicle-mounted soil property sensors (which may be based on high-spectrum and near-infrared spectrum technologies) should be developed, and soil property estimation models should be researched. Compared to probe-type sensors, non-contact optical soil property sensors are more suitable for use in high-speed seeding machinery during practical seeding operations.
- (4)
- Intelligent seed distribution sensors that can detect seeds under covered soil need to be developed. Ground-penetrating radar might serve as a reference for such a seed distribution sensor, allowing for the monitoring of actual seed spacing, row spacing, and seeding depth. In this way, intelligent seeding machinery can provide more information for subsequent agronomic processes.
- (5)
- Innovative structures for seed-metering devices that can adjust the positions of seeds should be developed. The positions of cereal seeds should be adjusted during the seed-filling process, following which belt conveying or airflow technologies can contribute to placing seeds into the soil in the desired pose.
- (6)
- A LiDAR sensor could be installed in front of the tractor to measure the soil height conditions. Moreover, point cloud processing algorithms for soil height measurement should be developed in the future. In this way, the seeding depth can be controlled according to the soil height, instead of the down force.
8. Conclusions
- (a)
- The existing studies on MDSDs have mainly focused on the improvement of seeding performance, but MDSDs still lack adaptability for different cereal seeds;
- (b)
- The development of GSPMs has focused on structural designs, while few studies have analyzed the seeding depth errors caused by mechanical vibrations and proposed relevant solutions;
- (c)
- Moreover, most soil property sensors are of the probe type and, thus, cannot be installed on the seeding machinery;
- (d)
- Existing seeding rate sensors can only monitor the seeds out of the seed-metering device, meaning that the distribution of seeds in the soil cannot be monitored;
- (e)
- Seeding rate control technology to control the distribution of seeds using innovative control algorithms has been considered, but few studies have considered seed pose control approaches;
- (f)
- Existing seeding depth control systems mainly focus on precisely controlling the down force or seeding depth; however, they cannot regulate the theoretical down force or seeding depth according to the soil conditions.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gunathunga, C.; Senanayake, S.; Jayasinghe, M.A.; Brennan, C.S.; Truong, T.; Marapana, U.; Chandrapala, J. Germination effects on nutritional quality: A comprehensive review of selected cereals and pulses changes. J. Food Compos. Anal. 2024, 128, 106024. [Google Scholar] [CrossRef]
- Available online: https://www.fao.org/faostat/zh/#data (accessed on 17 November 2024).
- Dhima, K.V.; Lithourgidis, A.S.; Vasilakoglou, I.B.; Dordas, C.A. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Res. 2007, 100, 249–256. [Google Scholar] [CrossRef]
- Yadelew, Z.; Tadesse, T.M.; Tarekegn, W. Appropriate seed source and rate enhanced the productivity of bread wheat varieties under irrigated conditions in North Mecha, Amhara region, Ethiopia. Heliyon 2024, 10, 31568. [Google Scholar] [CrossRef]
- Edwards, L. Comparison of two spring seeding methods to establish forage cover crops in relay with winter cereals. Soil Tillage Res. 1998, 45, 227–235. [Google Scholar] [CrossRef]
- Takele, M.M.; Dires, G.Z.; Mintesnot, S.M.; Kidanemariam Gelaw, G. Design and development of a combined seedbed compactor and teff seed cum fertilizer drill machine. Heliyon 2024, 10, 36856. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Baarda, L.; Gretzinger, M.; Coles, K.; Beres, B. Effect of precision planting and seeding rates on canola plant density and seed yield in southern Alberta. Can. J. Plant Sci. 2022, 102, 698–709. [Google Scholar] [CrossRef]
- Pawelek, K.A.; Smith, F.S.; Falk, A.D.; Clayton, M.K.; Haby, K.W.; Rankin, D.W. Comparing Three Common Seeding Techniques for Pipeline Vegetation Restoration: A Case Study in South Texas. Rangelands 2015, 37, 99–105. [Google Scholar] [CrossRef]
- Chen, Y.; Tessier, S.; Irvine, B. Drill and crop performances as affected by different drill configurations for no-till seeding. Soil Tillage Res. 2004, 77, 147–155. [Google Scholar] [CrossRef]
- Vaitauskienė, K.; Šarauskis, E.; Romaneckas, K.; Jasinskas, A. Design, development and field evaluation of row-cleaners for strip tillage in conservation farming. Soil Tillage Res. 2017, 174, 139–146. [Google Scholar] [CrossRef]
- Zhao, P.; Ju, X.; Yang, P.; Zheng, Z.; Huang, Y.; Gao, X.; Shi, J. Design and experiment of fertilizer pipe front-mounted wheat wide seedling belt rotary tillage fertilization planter. Trans. Chin. Soc. Agric. Eng. 2024, 40, 12–21. [Google Scholar]
- Lin, J.; Qian, W.; Li, B.; Liu, Y. Simulation and validation of seeding depth mathematical model of 2BG-2 type corn ridge planting no-till planter. Trans. Chin. Soc. Agric. Eng. 2015, 31, 19–24. [Google Scholar]
- Liu, H.; Yi, L.; Xie, Y.; Zhao, Y.; Fang, L. Development of the transfer platform with ground wheel in front for the medium-sized no-tillage stalk mulching ridge corn planter. Trans. Chin. Soc. Agric. Eng. 2022, 38, 10–18. [Google Scholar]
- Hu, H.; Li, H.; Li, C.; Wang, Q.; He, J.; Li, W.; Zhang, X. Design and experiment of broad width and precision minimal tillage wheat planter in rice stubble field. Trans. Chin. Soc. Agric. Eng. 2016, 32, 24–32. [Google Scholar]
- Shang, S.; Wu, X.; Yang, R.; Li, G.; Yang, X.; Chen, D. Research status and prospect of plot-sowing equipment and technology. Trans. Chin. Soc. Agric. Mach. 2021, 52, 1–20. [Google Scholar]
- Fu, Z.; Gong, Z.; Chu, Q.; Li, H.; Zhang, M.; Huang, Y. Design and test of electro-hydraulic control system for soil compaction of maize planter. Trans. Chin. Soc. Agric. Mach. 2024, 55, 273–284. [Google Scholar]
- Du, Z.; He, X.; Yang, L.; Zhang, D.; Cui, T.; Zhong, X. Research progress on precision variable-rate seeding technology and equipment for maize. Trans. Chin. Soc. Agric. Eng. 2023, 39, 1–16. [Google Scholar]
- Ding, Y.; Yang, L.; Zhang, D.; Cui, T.; Zhang, K.; Wang, M. Design of row-unit driver for maize variable rate planter. Trans. Chin. Soc. Agric. Eng. 2019, 35, 1–9. [Google Scholar]
- Bai, H.; Wang, N.; Long, J. Image-based corn seed embryo orientation detection and adjustment for precision planting. Comput. Electron. Agric. 2024, 224, 109139. [Google Scholar] [CrossRef]
- Šarauskis, E.; Kazlauskas, M.; Naujokienė, V.; Bručienė, I.; Steponavičius, D.; Romaneckas, K.; Jasinskas, A. Variable Rate Seeding in Precision Agriculture: Recent Advances and Future Perspectives. Agriculture 2022, 12, 305. [Google Scholar] [CrossRef]
- Munnaf, M.A.; Haesaert, G.; Mouazen, A.M. Site-specific seeding for maize production using management zone maps delineated with multi-sensors data fusion scheme. Soil Tillage Res. 2022, 220, 105377. [Google Scholar] [CrossRef]
- Virk, S.S.; Fulton, J.P.; Porter, W.M.; Pate, G.L. Row-crop planter performance to support variable-rate seeding of maize. Precis. Agric. 2020, 21, 603–619. [Google Scholar] [CrossRef]
- Yang, L.; Yan, B.; Zhang, D.; Zhang, T.; Wang, Y.; Cui, T. Research progress on precision planting technology of maize. Trans. Chin. Soc. Agric. Mach. 2016, 47, 38–48. [Google Scholar]
- Wang, H.; Yang, L.; Zhang, D.; Cui, T.; He, X.; Xiao, T.; Li, H.; Du, Z.; Xie, C. Comparative investigation and evaluation of electric-drive seed-metering systems across diverse speed ranges for enhanced high-precision seeding applications. Comput. Electron. Agric. 2024, 222, 108976. [Google Scholar] [CrossRef]
- Xie, C.; Yang, L.; Zhang, D.; Cui, T.; He, X.; Du, Z.; Xiao, T. A signal output quantity (SOQ) judgment algorithm for improving seeding quantity accuracy. Comput. Electron. Agric. 2022, 201, 107321. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, T.; Zheng, Z.; Fang, J.; Xie, X.; Chen, L. Design and test of the precision seeding dispenser with the staggered convex teeth for wheat sowing with wide seedling belt. Trans. Chin. Soc. Agric. Eng. 2024, 40, 47–59. [Google Scholar]
- Gao, X.; Xie, G.; Xu, Y.; Yu, Y.; Lai, Q. Application of a staggered symmetrical spiral groove wheel on a quantitative feeding device and investigation of particle motion characteristics based on DEM. Powder Technol. 2022, 407, 117650. [Google Scholar] [CrossRef]
- Shang, Y.; Zhou, B.; Yang, J.; Zhang, S. Design and experiment of impeller seed guide device for rice internal suction hole direct seeding device. Sci. Rep. 2024, 14, 13300. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, D.; Yang, L.; Cui, T.; He, X.; Li, Z.; Dong, J.; Xing, S.; Jiang, Y.; Liang, J. Research on a centrifugal high-speed precision seed metering device for maize with airflow-assisted seed filling and cleaning. Comput. Electron. Agric. 2024, 226, 109434. [Google Scholar] [CrossRef]
- Xing, H.; Cao, X.; Zhong, P.; Wan, Y.; Lin, J.; Zang, Y.; Zhang, G. DEM-CFD coupling simulation and optimisation of rice seed particles seeding a hill in double cavity pneumatic seed metering device. Comput. Electron. Agric. 2024, 224, 109075. [Google Scholar] [CrossRef]
- Li, Z.; Xie, R.; Wang, T.; Zhang, T.; Liu, L.; Chen, Y. Pipeline negative pressure monitoring system of pneumatic precision seed dispenser for rape. Trans. Chin. Soc. Agric. Mach. 2024, 55, 180–189. [Google Scholar]
- Xie, C.; Zhang, D.; Yang, L.; Cui, T.; He, X.; Du, Z. Precision seeding parameter monitoring system based on laser sensor and wireless serial port communication. Comput. Electron. Agric. 2021, 190, 106429. [Google Scholar] [CrossRef]
- Sun, W.; Yi, S.; Qi, H.; Wang, S.; Li, Y.; Dai, Z. Design and experiment of twin discs intertwined air-pressure high-speed precision seed-metering device for maize delta-row dense plantings. Trans. Chin. Soc. Agric. Mach. 2024, 55, 168–179. [Google Scholar]
- Wang, W.; Song, L.; Shi, W.; Wei, D.; Chen, Y.; Chen, L. Design and experiment of air-suction double-row staggered precision seed metering device for maize dense planting. Trans. Chin. Soc. Agric. Mach. 2024, 55, 53–63. [Google Scholar]
- Yang, L.; Li, Z.; Zhang, D.; Li, C.; Cui, T.; He, X. Design and test of the T-shaped hole of centrifugal high-speed maize precision seed metering device. Trans. Chin. Soc. Agric. Eng. 2024, 40, 50–60. [Google Scholar]
- Li, Y.; Zhao, S.; Yang, L.; Song, Q.; Li, B.; Yang, F. Design and test of high-speed precision seeder of independent fractionated soybean double-row brush. Trans. Chin. Soc. Agric. Mach. 2024, 55, 101–110. [Google Scholar]
- Wang, Y.; Huang, S.; Zhang, W.; Qi, B.; Zhou, X.; Ding, Y. Design and experiment of wheat precision seed metering device with staggered hook-tooth. Trans. Chin. Soc. Agric. Mach. 2024, 55, 142–153. [Google Scholar]
- Zhu, H.; Wu, X.; Bai, L.; Li, R.; Guo, G.; Qin, J.; Zhang, Y.; Li, H. Design and experiment of a soybean shaftless spiral seed discharge and seed delivery device. Sci. Rep. 2023, 13, 20751. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tang, Y.; He, D.; Shi, J.; Hao, L.; Li, J.; Sun, D.; Li, H.; Zhang, Z.; Ye, S.; et al. Design and Test of Electromagnetic Vibration Type Fine and Small-Amount Seeder for Millet. Agriculture 2024, 14, 1528. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Wang, Q.; He, J.; Lu, C.; Liu, K. Design and experiment of wheat mechanical shooting seed-metering device. Trans. Chin. Soc. Agric. Mach. 2020, 51, 73–84. [Google Scholar]
- Wang, Y.; Kang, X.; Wang, G.; Ji, W. Numerical Analysis of Friction-Filling Performance of Friction-Type Vertical Disc Precision Seed-Metering Device Based on EDEM. Agriculture 2023, 13, 2183. [Google Scholar] [CrossRef]
- Dun, G.Q.; Mao, N.; Gao, Z.; Wu, X.P.; Liu, W.; Zhou, C. Model construction of soybean average diameter and hole parameters of seed-metering wheel based on DEM. Int. J. Agric. Biol. Eng. 2022, 15, 101–110. [Google Scholar] [CrossRef]
- Wang, L.; Liao, Q.; Xi, R.; Li, X.; Liao, Y. Influence of an equal width polygon groove-tooth wheel on feeding performance of the seed feeding device for wheat. Comput. Electron. Agric. 2024, 217, 108565. [Google Scholar] [CrossRef]
- Gao, X.; Cui, T.; Zhou, Z.; Yu, Y.; Xu, Y.; Zhang, D.; Song, W. DEM study of particle motion in novel high-speed seed metering device. Adv. Powder Technol. 2021, 32, 1438–1449. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, S.; Zheng, Z.; Wu, J.; Huang, Y.; Gao, X. Development of a novel perforated type precision metering device for efficient and cleaner production of maize. J. Clean. Prod. 2024, 443, 140928. [Google Scholar] [CrossRef]
- Deng, S.; Feng, Y.; Cheng, X.; Wang, X.; Zhang, X.; Wei, Z. Disturbance analysis and seeding performance evaluation of a pneumatic-seed spoon interactive precision maize seed-metering device for plot planting. Biosyst. Eng. 2024, 247, 221–240. [Google Scholar] [CrossRef]
- Li, C.; Cui, T.; Zhang, D.; Yang, L.; He, X.; Li, Z.; Jing, M.; Dong, J.; Xing, S. Design and experiment of a centrifugal filling and cleaning high-speed precision seed metering device for maize. J. Clean. Prod. 2023, 426, 139083. [Google Scholar] [CrossRef]
- Liu, C.; Wei, D.; Du, X.; Jiang, M.; Song, J.; Zhang, F. Design and test of wide seedling strip wheat precision hook-hole type seed-metering device. Trans. Chin. Soc. Agric. Mach. 2019, 50, 75–84. [Google Scholar]
- Li, H.; Yang, L.; Zhang, D.; Tao, C.; He, X.; Xie, C.; Li, C.; Du, Z.; Xiao, T.; Li, Z.; et al. Design and optimization of a high-speed maize seed guiding device based on DEM-CFD coupling method. Comput. Electron. Agric. 2024, 227, 109604. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Hu, H.; He, J.; Wang, Q.; Lu, C.; Liu, P.; Yang, Q.; He, D.; Jiang, S.; et al. A noncontact self-suction wheat shooting device for sustainable agriculture: A preliminary research. Comput. Electron. Agric. 2022, 197, 106927. [Google Scholar] [CrossRef]
- Tang, H.; Xu, F.; Guan, T.; Xu, C.; Wang, J. Design and test of a pneumatic type of high-speed maize precision seed metering device. Comput. Electron. Agric. 2023, 211, 107997. [Google Scholar] [CrossRef]
- Wang, J.; Tang, H.; Zhou, W.; Yang, W.; Wang, Q. Improved Design and Experiment on Pickup Finger Precision Seed Metering Device. Trans. Chin. Soc. Agric. Mach. 2015, 46, 68–76. [Google Scholar]
- Liu, R.; Liu, Z.; Liu, L.; Li, Y. Design and Experiment of Corn High Speed Air Suction Seed Metering Device with Disturbance Assisted Seed-filling. Trans. Chin. Soc. Agric. Mach. 2022, 53, 50–59. [Google Scholar]
- Geng, D.; Li, Y.; Meng, P.; Du, R.; Meng, F. Design and Test on Telescopic Clip Finger Type of Metering Device. Trans. Chin. Soc. Agric. Mach. 2016, 47, 38–45. [Google Scholar]
- Hou, S.; Zou, Z.; Wei, Z.; Zhu, Y.; Chen, H. Design and Experiment of Flexible Mechanical Soybean Precision Seed metering Device. Trans. Chin. Soc. Agric. Mach. 2020, 51, 77–86, 108. [Google Scholar]
- Fang, Z.; Zhang, J.; Chen, J.; Pan, F.; Wang, B.; Ji, C. Design and Experimental Analysis of an Air-Suction Wheat Precision Hill-Seed Metering Device. Agriculture 2024, 14, 1931. [Google Scholar] [CrossRef]
- Hou, J.; Ma, D.; Li, H.; Zhang, Z.; Zhou, J.; Shi, S. Design and Experiment of Pneumatic Centrifugal Combined Precision Seed Metering Device for Wheat. Trans. Chin. Soc. Agric. Mach. 2023, 54, 35–45. [Google Scholar]
- He, R.; Wang, J.; XU, G.; He, X.; Duan, Q.; Ding, Q. Design and Experiment of Wheat Precise Seed Metering Apparatus with Positive and Negative Pressure with Function of Limiting Seed Filling Posture. Trans. Chin. Soc. Agric. Mach. 2022, 53, 39–49. [Google Scholar]
- Zang, Y.; Huang, Z.; Qin, W.; He, S.; Qian, C.; Jiang, Y.; Tao, W.; Zhang, M.; Wang, Z. Design of hybrid rice air-suction single-seed metering device. Trans. Chin. Soc. Agric. Eng. 2024, 40, 181–191. [Google Scholar]
- Nielsen, S.K.; Nørremark, M.; Green, O. Sensor and control for consistent seed drill coulter depth. Comput. Electron. Agric. 2016, 127, 690–698. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, X.; Yang, S.; Zhai, C.; Zhao, X.; Zhao, C. Development of CAN-based sowing depth monitoring and evaluation system. Trans. Chin. Soc. Agric. Mach. 2019, 50, 23–32. [Google Scholar]
- Zhang, C.; Wang, X.; Guo, M.; Zhao, J.; Li, M. A compacting device of rice dry direct-seeding planter based on DEM-MFBD coupling simulation significantly improves the seedbed uniformity and seedling emergence rate. Biosyst. Eng. 2024, 246, 26–40. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Kim, T.-J.; Kim, Y.-J.; Lee, S.-D.; Park, S.-U.; Kim, W.-S. Development of a real-time tillage depth measurement system for agricultural tractors: Application to the effect analysis of tillage depth on draft force during plow tillage. Sensors 2020, 20, 912. [Google Scholar] [CrossRef]
- He, X.; Zhang, J.; Zhang, R.; Zhu, Y.; Wang, W.; Zhang, H. Development of the seed-ditch compaction device for wide-boundary sowing wheat. Trans. Chin. Soc. Agric. Eng. 2023, 39, 18–29. [Google Scholar]
- Xue, B.; Zhou, L.; Niu, K.; Zheng, Y.; Bai, S.; Wei, L. Sowing depth control system of wheat planter based on adaptive fuzzy PID. Trans. Chin. Soc. Agric. Mach. 2023, 54, 93–102. [Google Scholar]
- Li, Y.; Meng, P.; Geng, D.; He, K.; Meng, F.; Jiang, M. Intelligent system for adjusting and controlling corn seeding depth. Trans. Chin. Soc. Agric. Mach. 2016, 47, 62–68. [Google Scholar]
- Sharipov, G.M.; Paraforos, D.S.; Griepentrog, H.W. Implementation of a magnetorheological damper on a no-till seeding assembly for optimising seeding depth. Comput. Electron. Agric. 2018, 150, 465–475. [Google Scholar] [CrossRef]
- Tang, Q.; Wu, J.; Jiang, L.; Wu, C.; Xiao, T.; Jiang, T. Design and test of hydraulic profiling system for rape seedling combined transplanter. Trans. Chin. Soc. Agric. Mach. 2021, 52, 95–102. [Google Scholar]
- Liu, L.; Wang, X.; Zhang, X.; Cheng, X.; Wei, Z.; Ji, J.; Li, H.; Zhang, H.; Wang, M. Sowing depth control strategy based on the downforce measurement and control system of ‘T’-shaped furrow opener. Biosyst. Eng. 2024, 247, 97–108. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Zhang, X.; Cheng, X.; Wei, Z.; Zhou, H.; Zhao, K. The impact of ‘T’-shaped furrow opener of no-tillage seeder on straw and soil based on discrete element method. Comput. Electron. Agric. 2023, 213, 108278. [Google Scholar] [CrossRef]
- Li, H.; He, J.; Wang, C.; Yang, W.; Lin, H.; Wang, Q.; Yang, H.; Tan, L. Research Progress on the Development of the Planter Unit for Furrowing Control and the Depth Measurement Technology. Appl. Sci. 2023, 13, 11884. [Google Scholar] [CrossRef]
- Courtney, R.G.; Mullen, G.J. Soil quality and barley growth as influenced by the land application of two compost types. Bioresour. Technol. 2008, 99, 2913–2918. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Lei, T.; Zhang, X.; Chen, Y. Volume replacement method for direct measurement of soil moisture and bulk density. Trans. Chin. Soc. Agric. Eng. 2013, 29, 86–93. [Google Scholar]
- Li, J.; Xu, Y.; Jiang, R.; Yang, Z.; Lu, H. Establishment and verification of model for ultrasonic soil water content detector. Trans. Chin. Soc. Agric. Eng. 2017, 33, 127–133. [Google Scholar]
- Suo, R.; Kulbir, S.; You, F.; Conner, R.; Cober, E.; Wang, M.; Hou, A. Low temperature and excess moisture affect seed germination of soybean (Glycine max L.) under controlled environments. Can. J. Plant Sci. 2024, 104, 375–387. [Google Scholar] [CrossRef]
- Available online: https://metergroup.com/products/teros-12/ (accessed on 17 November 2024).
- Available online: https://acclima.com/tdr-315n-sdi-12-soil-moisture-sensor-data-sheet/ (accessed on 17 November 2024).
- Available online: https://acclima.com/tdt-soil-moisture-sensor/ (accessed on 17 November 2024).
- Kalita, H.; Palaparthy, V.S.; Baghini, M.S.; Aslam, M. Electrochemical synthesis of graphene quantum dots from graphene oxide at room temperature and its soil moisture sensing properties. Carbon 2020, 165, 9–17. [Google Scholar] [CrossRef]
- Ullah, A.; Zubair, M.; Zulfiqar, M.H.; Kamsong, W.; Karuwan, C.; Massoud, Y.; Mehmood, M.Q. Highly sensitive screen-printed soil moisture sensor array as green solutions for sustainable precision agriculture. Sens. Actuators A Phys. 2024, 371, 115297. [Google Scholar] [CrossRef]
- Kojima, Y.; Kawashima, T.; Noborio, K.; Kamiya, K.; Horton, R. A dual-probe heat pulse-based sensor that simultaneously determines soil thermal properties, soil water content and soil water matric potential. Comput. Electron. Agric. 2021, 188, 106331. [Google Scholar] [CrossRef]
- Kapilaratne, R.G.C.J.; Lu, M. Automated general temperature correction method for dielectric soil moisture sensors. J. Hydrol. 2017, 551, 203–216. [Google Scholar] [CrossRef]
- Phillips, A.J.; Newlands, N.K.; Liang, S.H.L.; Ellert, B.H. Integrated sensing of soil moisture at the field-scale: Measuring, modeling and sharing for improved agricultural decision support. Comput. Electron. Agric. 2014, 107, 73–88. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, M.; Luo, L.; Wang, S.; Chen, C.; Zhang, Z.; Yao, Y.; Hu, X. GNSS-IR dual-frequency data fusion for soil moisture inversion based on Helmert variance component estimation. J. Hydrol. 2024, 631, 130752. [Google Scholar] [CrossRef]
- Nouraki, A.; Golabi, M.; Albaji, M.; Naseri, A.A.; Homayouni, S. Enhanced root zone soil moisture monitoring using multitemporal remote sensing data and machine learning techniques. Remote Sens. Appl. Soc. Environ. 2024, 36, 101354. [Google Scholar] [CrossRef]
- Murcia, E.; Guzmán, S.M. Using singular spectrum analysis and empirical mode decomposition to enhance the accuracy of a machine learning-based soil moisture forecasting algorithm. Comput. Electron. Agric. 2024, 224, 109200. [Google Scholar] [CrossRef]
- Bandaru, L.; Irigireddy, B.C.; Pvnr, K.; Davis, B. DeepQC: A deep learning system for automatic quality control of in-situ soil moisture sensor time series data. Smart Agric. Technol. 2024, 8, 100514. [Google Scholar] [CrossRef]
- Lei, F.; Crow, W.T.; Kustas, W.P.; Dong, J.; Yang, Y.; Knipper, K.R.; Anderson, M.C.; Gao, F.; Notarnicola, C.; Greifeneder, F.; et al. Data assimilation of high-resolution thermal and radar remote sensing retrievals for soil moisture monitoring in a drip-irrigated vineyard. Remote Sens. Environ. 2020, 239, 111622. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Hayes, M.H.B.; Novotny, E.H. A two-year incubation study of transformations of crop residues into soil organic matter (SOM) and a procedure for the sequential isolation and the fractionation of components of SOM. Sci. Total Environ. 2021, 763, 143034. [Google Scholar] [CrossRef]
- Du, Z.; Yang, L.; Zhang, D.; Cui, T.; He, X.; Xiao, T.; Xie, C.; Li, H. Corn variable-rate seeding decision based on gradient boosting decision tree model. Comput. Electron. Agric. 2022, 198, 107025. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, W.; Wang, Z.; Cao, Y.; Li, M. Improving the estimation accuracy of soil organic matter based on the fusion of near-infrared and Raman spectroscopy using the outer-product analysis. Comput. Electron. Agric. 2024, 219, 108760. [Google Scholar] [CrossRef]
- Available online: https://www.insentek.com/product/fangwu.html (accessed on 17 November 2024).
- Castaldi, F.; Palombo, A.; Santini, F.; Pascucci, S.; Pignatti, S.; Casa, R. Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sens. Environ. 2016, 179, 54–65. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, C.; Zhang, Y.; Gao, L.; Wang, Y.; Wu, Z.; Zhang, W.; Liu, H. Integration of bare soil and crop growth remote sensing data to improve the accuracy of soil organic matter mapping in black soil areas. Soil Tillage Res. 2024, 244, 106269. [Google Scholar] [CrossRef]
- Ou, D.; Tan, K.; Lai, J.; Jia, X.; Wang, X.; Chen, Y.; Li, J. Semi-supervised DNN regression on airborne hyperspectral imagery for improved spatial soil properties prediction. Geoderma 2021, 385, 114875. [Google Scholar] [CrossRef]
- Lazaar, A.; Mouazen, A.M.; El Hammouti, K.; Fullen, M.; Pradhan, B.; Memon, M.S.; Andich, K.; Monir, A. The application of proximal visible and near-infrared spectroscopy to estimate soil organic matter on the Triffa Plain of Morocco. Int. Soil Water Conserv. Res. 2020, 8, 195–204. [Google Scholar] [CrossRef]
- Hong, Y.; Liu, Y.; Chen, Y.; Liu, Y.; Yu, L.; Liu, Y.; Cheng, H. Application of fractional-order derivative in the quantitative estimation of soil organic matter content through visible and near-infrared spectroscopy. Geoderma 2019, 337, 758–769. [Google Scholar] [CrossRef]
- Khanal, S.; Fulton, J.; Klopfenstein, A.; Douridas, N.; Shearer, S. Integration of high-resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield. Comput. Electron. Agric. 2018, 153, 213–225. [Google Scholar] [CrossRef]
- Qian, J.; Yang, J.; Sun, W.; Zhao, L.; Shi, L.; Dang, C. Evaluation and improvement of temporal robustness and transfer performance of surface soil moisture estimated by machine learning regression algorithms. Comput. Electron. Agric. 2024, 217, 108518. [Google Scholar]
- Nawar, S.; Buddenbaum, H.; Hill, J.; Kozak, J.; Mouazen, A.M. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil Tillage Res. 2016, 155, 510–522. [Google Scholar] [CrossRef]
- Li, H.; Ju, W.; Song, Y.; Cao, Y.; Yang, W.; Li, M. Soil organic matter content prediction based on two-branch convolutional neural network combining image and spectral features. Comput. Electron. Agric. 2024, 217, 108561. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, B.; Zhou, Y.; Sun, X. Advances in monitoring soil nutrients by near-infrared spectroscopy. In Computer and Computing Technologies in Agriculture XI; Springer: Berlin/Heidelberg, Germany, 2019; Volume 546, pp. 94–99. [Google Scholar]
- Pölönen, I.; Saari, H.; Kaivosoja, J.; Honkavaara, E.; Pesonen, L. Hyperspectral imaging based biomass and nitrogen content estimations from light-weight UAV. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XV; SPIE: Dresden, Germany, 2013; Volume 8887. [Google Scholar]
- Seesaard, T.; Goel, N.; Kumar, M.; Wongchoosuk, C. Advances in gas sensors and electronic nose technologies for agricultural cycle applications. Comput. Electron. Agric. 2022, 193, 106673. [Google Scholar] [CrossRef]
- Pal, A.; Dubey, S.K.; Goel, S.; Kalita, P.K. Portable sensors in precision agriculture: Assessing advances and challenges in soil nutrient determination. TrAC Trends Anal. Chem. 2024, 180, 117981. [Google Scholar] [CrossRef]
- Liu, S.; Chen, X.; Xia, X.; Jin, Y.; Wang, G.; Jia, H.; Huang, D. Electronic sensing combined with machine learning models for predicting soil nutrient content. Comput. Electron. Agric. 2024, 221, 108947. [Google Scholar] [CrossRef]
- Santana, F.B.; Otani, S.; De Souza, A.; Poppi, R. Determination of soil organic matter using visible-near infrared spectroscopy and machine learning. Spectrosc. Eur. 2019, 31, 14. [Google Scholar]
- Ba, Y.; Liu, J.; Han, J.; Zhang, X. Application of vis-NIR spectroscopy for determination of the content of organic matter in saline-alkali soils. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 229, 117863. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Meng, X.; Ustin, S.; Wang, X.; Zhang, X.; Liu, H.; Tang, H. Vis-SWIR spectral prediction model for soil organic matter with different grouping strategies. CATENA 2020, 195, 104703. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, X.; Chen, S.; Lu, R.; Wang, Z.; Wang, N.; Hong, Y.; Chen, X.; Xiao, Y.; Ma, Y.; et al. The validity domain of sensor fusion in sensing soil quality indicators. Geoderma 2023, 438, 116657. [Google Scholar] [CrossRef]
- Liu, K.; Wang, Y.; Wang, X.; Sun, Z.; Song, Y.; Di, H.; Yan, Q.; Hua, D. Characteristic bands extraction method and prediction of soil nutrient contents based on an analytic hierarchy process. Measurement 2023, 220, 113408. [Google Scholar] [CrossRef]
- Li, H.; Song, Y.; Wang, Z.; Li, M.; Yang, W. Development of an online prediction system for soil organic matter and soil moisture content based on multi-modal fusion. Comput. Electron. Agric. 2024, 227, 109514. [Google Scholar] [CrossRef]
- Jia, C.; Zhou, T.; Zhang, K.; Yang, L.; Zhang, D.; Cui, T.; He, X.; Sang, X. Design and experimentation of soil organic matter content detection system based on high-temperature excitation principle. Comput. Electron. Agric. 2023, 214, 108325. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, D.; Yang, L.; Ma, Y.; Cui, T.; He, X.; Du, Z. Developing a generalized vis-NIR prediction model of soil moisture content using external parameter orthogonalization to reduce the effect of soil type. Geoderma 2022, 419, 115877. [Google Scholar] [CrossRef]
- Heil, K.; Schmidhalter, U. Theory and guidelines for the application of the geophysical sensor EM38. Sensors 2019, 19, 4293. [Google Scholar] [CrossRef] [PubMed]
- Agah, A.E.; Meire, P.; De Deckere, E. Laboratory calibration of TDR probes for simultaneous measurements of soil water content and electrical conductivity. Commun. Soil Sci. Plant Anal. 2019, 50, 1525–1540. [Google Scholar] [CrossRef]
- Wei, H.; Meng, F. Soil electrical conductivity measurement based on four-terminal method and time domain reflectometry method. Trans. Chin. Soc. Agric. Mach. 2019, 50, 237–242. [Google Scholar]
- Wang, D.; Yang, W.; Meng, C.; Cao, Y.; Li, M. Research on vehicle-mounted soil electrical conductivity and moisture content detection system based on current–voltage six-terminal method and spectroscopy. Comput. Electron. Agric. 2023, 205, 107640. [Google Scholar] [CrossRef]
- Available online: https://geonics.com/html/em38.html (accessed on 17 November 2024).
- Munnaf, M.A.; Mouazen, A.M. An automated system of soil sensor-based site-specific seeding for silage maize: A proof of concept. Comput. Electron. Agric. 2023, 209, 107872. [Google Scholar] [CrossRef]
- Yang, W.; Han, Y.; Li, M.; Meng, C. Vehicle-mounted soil conductivity detection system based on digital oscilloscope. Trans. Chin. Soc. Agric. Mach. 2020, 51, 395–401. [Google Scholar]
- Available online: http://www.bjecotech.com/ecotech-Article-1606810/ (accessed on 17 November 2024).
- Murata, H.; Futagawa, M.; Kumazaki, T.; Saigusa, M.; Ishida, M.; Sawada, K. Millimeter scale sensor array system for measuring the electrical conductivity distribution in soil. Comput. Electron. Agric. 2014, 102, 43–50. [Google Scholar] [CrossRef]
- Han, Y.; Yang, W.; Li, M.; Meng, C. Comparative study of two soil conductivity meters based on the principle of current-voltage four-terminal method. IFAC-PapersOnLine 2019, 52, 36–42. [Google Scholar] [CrossRef]
- Fu, Y.; Horton, R.; Ren, T.; Heitman, J.L. A general form of Archie’s model for estimating bulk soil electrical conductivity. J. Hydrol. 2021, 597, 126160. [Google Scholar] [CrossRef]
- Choo, H.; Park, J.; Do, T.T.; Lee, C. Estimating the electrical conductivity of clayey soils with varying mineralogy using the index properties of soils. Appl. Clay Sci. 2022, 217, 106388. [Google Scholar] [CrossRef]
- Qi, J.; Wang, K.; Bao, Z.; Zhang, W.; Guo, H.; Liu, X.; Li, N. Measuring soil electrical conductivity using dual-array fusion of Wenner and Schlumberger. Trans. Chin. Soc. Agric. Eng. 2024, 40, 90–99. [Google Scholar]
- Baradaran Motie, J.B.; Aghkhani, M.H.; Rohani, A.; Lakzian, A. A soft-computing approach to estimate soil electrical conductivity. Biosyst. Eng. 2021, 205, 105–120. [Google Scholar] [CrossRef]
- Cao, X.; Ding, J.; Ge, X.; Wang, J. Estimation of soil electrical conductivity based on spectral index and machine learning algorithm. Acta Pedol. Sin. 2020, 57, 867–877. [Google Scholar]
- Stanley, J.D.; Mehring, G.H.; Wiersma, J.J.; Ransom, J.K. A decision support system to guide grower selection of optimal seeding rates of wheat cultivars in diverse environments. Front. Plant Sci. 2020, 11, 779. [Google Scholar] [CrossRef]
- Mehring, G.H.; Wiersma, J.J.; Stanley, J.D.; Ransom, J.K. Genetic and environmental predictors for determining optimal seeding rates of diverse wheat cultivars. Agronomy 2020, 10, 332. [Google Scholar] [CrossRef]
- Loewen, S.; Maxwell, B.D. Optimizing crop seeding rates on organic grain farms using on farm precision experimentation. Field Crops Res. 2024, 318, 109593. [Google Scholar] [CrossRef]
- Geng, G.; Ye, X.; Ren, T.; Zhang, Y.; Li, X.; Cong, R.; Cakmak, I.; Lu, Z.; Lu, J. Optimal magnesium management for better seed yield and quality of rapeseed based on native soil magnesium supply. Eur. J. Agron. 2024, 161, 127364. [Google Scholar] [CrossRef]
- Quinn, D.J.; Poffenbarger, H.J.; Lee, C.D. Rye cover crop and in-furrow fertilizer and fungicide impacts on corn optimum seeding rate and grain yield. Eur. J. Agron. 2022, 139, 126529. [Google Scholar] [CrossRef]
- Singh, S.; Gummadi, S.N. Two-stage seeding strategy and its multi-response optimization for enhanced xylitol production by Debaryomyces nepalensis NCYC 3413. Bioresour. Technol. 2024, 413, 131469. [Google Scholar] [CrossRef] [PubMed]
- Ciampitti, I. Yield responses to planting density for US modern corn hybrids: A synthesis-analysis. Crop. Sci. 2016, 56, 2802–2817. [Google Scholar]
- Assefa, Y.; Carter, P.; Hinds, M.; Bhalla, G.; Schon, R.; Jeschke, M.; Paszkiewicz, S.; Smith, S.; Ciampitti, I.A. Analysis of long-term study indicates both agronomic optimal plant density and increased maize yield per plant contributed to yield gain. Sci. Rep. 2018, 8, 4937. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Dong, Z.; Wu, Z.; Fang, K. Optimization of maize planting density and fertilizer application rate based on BP neural network. Trans. Chin. Soc. Agric. Eng. 2017, 33, 92–99. [Google Scholar] [CrossRef]
- Shahhosseini, M.; Hu, G.; Archontoulis, S.V. Forecasting corn yield with machine learning ensembles. Front. Plant Sci. 2020, 11, 1120. [Google Scholar] [CrossRef]
- Wang, J.; Lv, Z.; Zhao, M.; Wang, Z. Design and experiment of rice side-deep variable rate fertilization control system based on prescription diagrams. Trans. Chin. Soc. Agric. Mach. 2024, 55, 151–162. [Google Scholar]
- Munnaf, M.A.; Haesaert, G.; Van Meirvenne, M.; Mouazen, A.M. Map-based site-specific seeding of consumption potato production using high-resolution soil and crop data fusion. Comput. Electron. Agric. 2020, 178, 105752. [Google Scholar] [CrossRef]
- Available online: https://drybeanagronomy.ca/dry-bean-seeding-rate-project-results/ (accessed on 17 November 2024).
- Zhu, Q.; Wu, G.; Luo, C.; Wei, X.; Wang, X.; Meng, Z. Design of multipath precision fertilizer and sowing control system based on attitude real-time monitoring. Trans. Chin. Soc. Agric. Mach. 2018, 49, 155–163. [Google Scholar]
- Chen, J.; Li, Y.; Tan, C.; Liu, C. Design and test of capacitive detection system for wheat seeding quantity. Trans. Chin. Soc. Agric. Eng. 2018, 34, 51–58. [Google Scholar]
- Xie, C.; Zhang, D.; Yang, L.; Cui, T.; Yu, T.; Wang, D.; Xiao, T. Experimental analysis on the variation law of sensor monitoring accuracy under different seeding speeds and seeding spacing. Comput. Electron. Agric. 2021, 189, 106369. [Google Scholar] [CrossRef]
- Zhang, J.; Hou, Y.; Ji, W.; Zheng, P.; Yan, S.; Hou, S.; Cai, C. Evaluation of a real-time monitoring and management system of soybean precision seed metering devices. Agronomy 2023, 13, 541. [Google Scholar] [CrossRef]
- Okopnik, D.L.; Falate, R. Usage of the DFRobot RB-DFR-49 infrared sensor to detect maize seed passage on a conveyor belt. Comput. Electron. Agric. 2014, 102, 106–111. [Google Scholar] [CrossRef]
- Ji, C.; Chen, X.; Chen, J.; Wang, S.; He, P. Monitoring system for working performance of no-tillage corn precision seeder. Trans. Chin. Soc. Agric. Mach. 2016, 47, 1–6. [Google Scholar]
- Available online: https://dickey-john.com/products/sensors/blockage-sensors/hy-rate-grain-drill (accessed on 17 November 2024).
- Available online: https://www.mcelettronica.it/en/product/uni-seeder/ (accessed on 17 November 2024).
- Available online: https://i-xeed.com/project/ds2000i-seed-sensor/ (accessed on 17 November 2024).
- Available online: https://mueller-elektronik.de/en/produkte/plantirium-sensor-2/?category=486#produkt (accessed on 17 November 2024).
- Available online: https://www.mcelettronica.it/en/product/maxi-seeder-tin-counter-photocell/ (accessed on 17 November 2024).
- Available online: https://precisionagsolutions.net/product/wavevision-seed-sensor/ (accessed on 17 November 2024).
- Kamgar, S.; Noei-Khodabadi, F.; Shafaei, S.M. Design, development and field assessment of a controlled seed metering unit to be used in grain drills for direct seeding of wheat. Inf. Process. Agric. 2015, 2, 169–176. [Google Scholar] [CrossRef]
- Huang, D.; Zhu, T.; Jia, H.; Yu, T.; Yan, J. Remote monitoring system for corn seeding quality based on GPS and GPRS. Trans. Chin. Soc. Agric. Eng. 2016, 32, 162–168. [Google Scholar]
- Lev, J.; Křepčík, V.; Prošek, V.; Kumhála, F. Capacitive throughput sensor for plant materials—Effects of frequency and moisture content. Comput. Electron. Agric. 2017, 133, 22–29. [Google Scholar] [CrossRef]
- Besharati, B.; Navid, H.; Karimi, H.; Behfar, H.; Eskandari, I. Development of an infrared seed-sensing system to estimate flow rates based on physical properties of seeds. Comput. Electron. Agric. 2019, 162, 874–881. [Google Scholar] [CrossRef]
- Karimi, H.; Navid, H.; Besharati, B.; Behfar, H.; Eskandari, I. A practical approach to comparative design of non-contact sensing techniques for seeding rate detection. Comput. Electron. Agric. 2017, 142, 165–172. [Google Scholar] [CrossRef]
- Zhao, B.; Fan, X.; Zhou, L.; Li, Y.; Che, Y.; Niu, K. Design and test of piezoelectric flow sensor for pneumatic seeder. Trans. Chin. Soc. Agric. Mach. 2020, 51, 55–61. [Google Scholar]
- Rossi, S.; Rubio Scola, I.; Bourges, G.; Šarauskis, E.; Karayel, D. Improving the seed detection accuracy of piezoelectric impact sensors for precision seeders. Part II: Evaluation of different plate materials. Comput. Electron. Agric. 2023, 215, 108448. [Google Scholar] [CrossRef]
- Gierz, Ł.; Paszkiewicz, B.K. PVDF Piezoelectric Sensors for Seeds Counting and Coulter Clogging Detection in Sowing Process Monitoring. J. Eng. 2020, 2020, 2676725. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, K.; Liu, X.; Liu, W.; Chen, L.; Liu, W.; Du, C. Research progress of seeding detection technology for medium and small size seeds. Trans. Chin. Soc. Agric. Eng. 2021, 37, 30–41. [Google Scholar]
- Zhou, L.; Zhang, X.; Yuan, Y. Design of capacitance seed rate sensor of wheat planter. Trans. Chin. Soc. Agric. Eng. 2010, 26, 99–103. [Google Scholar]
- Zhou, L.; Wang, S.; Zhang, X.; Yuan, Y.; Zhang, J. Seed monitoring system for corn planter based on capacitance signal. Trans. Chin. Soc. Agric. Eng. 2012, 28, 16–21. [Google Scholar]
- Ding, Y.; Zhu, K.; Wang, K.; Liu, X.; Du, C. Development of monitoring device for medium and small size seed flow based on thin surface laser-silicon photocell. Trans. Chin. Soc. Agric. Eng. 2019, 35, 12–20. [Google Scholar]
- Liu, W.; Hu, J.; Zhao, X.; Pan, H.; Lakhiar, I.A.; Wang, W.; Zhao, J. Development and experimental analysis of a seeding quantity sensor for the precision seeding of small seeds. Sensors 2019, 19, 5191. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Fu, Q.; Zhao, C.; Mei, H.; Meng, Z.; Dong, J.; Gao, N.; Wang, X.; Li, L. Design and experiment on real-time monitoring system of wheat seeding. Trans. Chin. Soc. Agric. Eng. 2017, 33, 32–40. [Google Scholar]
- Liu, W.; Hu, J.; Zhao, X.; Pan, H.; Lakhiar, I.A.; Wang, W. Development and experimental analysis of an intelligent sensor for monitoring seeding rate based on a seed flow reconstruction technique. Comput. Electron. Agric. 2019, 164, 104899. [Google Scholar] [CrossRef]
- Che, Y.; Wei, L.; Liu, X.; Li, Z.; Wang, F. Design and experiment of seeding quality infrared monitoring system for no-tillage seeder. Trans. Chin. Soc. Agric. Eng. 2017, 33, 11–16. [Google Scholar]
- Mussadiq, Z.; Laszlo, B.; Helyes, L.; Gyuricza, C. Evaluation and comparison of open source program solutions for automatic seed counting on digital images. Comput. Electron. Agric. 2015, 117, 194–199. [Google Scholar] [CrossRef]
- Jing, H.; Qiu, L.; Qian, W. Design and experiment of seeding monitoring system for seed drill. J. Shenyang Agric. Univ. 2010, 41, 743–746. [Google Scholar]
- Zhao, L.; Zhang, Z.; Wang, C.; Jian, S.; Liu, T.; Cui, D.; Ding, X. Design of monitoring system for wheat precision seeding-fertilizing machine based on variable distance photoelectric sensor. Trans. Chin. Soc. Agric. Eng. 2018, 34, 27–34. [Google Scholar]
- Qi, B.; Zhang, W.; Yu, S.; Ji, Y.; Li, K.; Zhang, S. Establishment of seeding amount control model for centralized pneumatic metering system for rice. Trans. Chin. Soc. Agric. Mach. 2018, 49, 125–131. [Google Scholar]
- Zhang, K.; Zhang, Z.; Wang, S.; Yang, C.; Yu, Y.; Li, H. Design and experiment of electronic seeding system based on response surface method. Int. J. Comput. Integr. Manuf. 2020, 33, 982–990. [Google Scholar] [CrossRef]
- Available online: https://www.agriexpo.cn/prod/dickey-john/product-168816-167342.html (accessed on 17 November 2024).
- Available online: https://www.mcelettronica.it/en/product/esd/ (accessed on 17 November 2024).
- Available online: https://www.precisionagriservices.com/brands/ag-leader/incommand-1200 (accessed on 17 November 2024).
- Available online: https://agriculture.newholland.com/apac/zh-cn/precision-land-management/products/displays/intelliview-iv-display (accessed on 17 November 2024).
- Ding, Y.; Yang, L.; Zhang, D.; Cui, T.; He, X.; Zhong, X. Control system of motor-driving maize precision planter based on GPS speed measurement. Trans. Chin. Soc. Agric. Mach. 2018, 49, 42–49. [Google Scholar]
- Zhai, J.; Xia, J.; Zhou, Y.; Zhang, S. Design and experimental study of the control system for precision seed-metering device. Int. J. Agric. Biol. Eng. 2014, 7, 13–18. [Google Scholar]
- Zhao, X.; Chen, L.; Gao, Y.; Yang, S.; Zhai, C. Optimization method for accurate positioning seeding based on sowing decision. Int. J. Agric. Biol. Eng. 2021, 14, 3. [Google Scholar] [CrossRef]
- He, X.; Cui, T.; Zhang, D.; Wei, J.; Wang, M.; Yu, Y.; Liu, Q.; Yan, B.; Zhao, D.; Yang, L. Development of an electric-driven control system for a precision planter based on a closed-loop PID algorithm. Comput. Electron. Agric. 2017, 136, 184–192. [Google Scholar] [CrossRef]
- He, X.; Ding, Y.; Zhang, D.; Yang, L.; Cui, T.; Zhong, X. Development of a variable-rate seeding control system for corn planters Part I: Design and laboratory experiment. Comput. Electron. Agric. 2019, 162, 318–327. [Google Scholar] [CrossRef]
- He, X.; Ding, Y.; Zhang, D.; Yang, L.; Cui, T.; Zhong, X. Development of a variable-rate seeding control system for corn planters Part II: Field performance. Comput. Electron. Agric. 2019, 162, 309–317. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, B.; Yi, S.; Zhao, X.; Liu, Z.; Sun, Y. Electric-driven mung bean precision seeder control system based on IGWO-LADRC. Trans. Chin. Soc. Agric. Mach. 2022, 53, 87–98. [Google Scholar]
- Yu, Y.; Hu, Y.; Shang, S.; Diao, L.; Ge, R.; Zhang, X. Design of motor-driven precision seed-metering device with improved fuzzy PID controller for small peanut planters. Int. J. Agric. Biol. Eng. 2023, 16, 136–144. [Google Scholar] [CrossRef]
- Chen, L.; Xie, B.; Li, Z.; Yang, L.; Chen, Y. Design of control system of maize precision seeding based on double closed-loop PID fuzzy algorithm. Trans. Chin. Soc. Agric. Eng. 2018, 34, 33–41. [Google Scholar]
- Wang, W.; Wu, K.; Zhang, Y.; Wang, M.; Zhang, C.; Chen, L. The development of an electric-driven control system for a high-speed precision planter based on the double closed-loop fuzzy PID algorithm. Agronomy 2022, 12, 945. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, W.; Dong, W.; Chen, L.; Liu, X.; Jin, W. Design and Experiment of Seed Metering Device for Rapeseed Based on Seeding Frequency Feedback. Trans. Chin. Soc. Agric. Mach. 2021, 52, 73–82+116. [Google Scholar]
- Wang, S.; Yu, Y.; Yang, C.; Liu, L.; Zhang, Y.; Zhang, Z.; Li, H. Experiment and Research of Seeding Electromechanical Control Seeding System Based on Fuzzy Control Strategy. J. Intell. Fuzzy Syst. 2019, 38, 453–462. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, X.; Liu, W.; Yao, M.; Zhao, J. Development of a Seeding Control Method Based on Seed Height in the Hopper of a Precision Wheat Drill. Appl. Eng. Agric. 2021, 37, 1131–1138. [Google Scholar] [CrossRef]
- Liu, W.; Hu, J.; Zhao, X.; Yao, M.; Lakhiar, I.A.; Zhao, J.; Liu, J.; Wang, W. An Adaptive Roller Speed Control Method Based on Monitoring Value of Real-Time seeding rate for Flute-Roller Type Seed-Metering Device. Sensors 2021, 21, 80. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, C.; Yu, H.; Zhang, H.; Dou, X.; Liu, Z. Self-Correcting Method for Application Rate Control Parameters of Wheat Seed Drill Machine. Trans. Chin. Soc. Agric. Mach. 2023, 54, 31–37. [Google Scholar]
- Yan, B.; Fu, W.; Wu, G.; Xiao, Y.; Meng, Z. Seed Location Prediction Method of Maize High-Height Precision Planting Based on Satellite Positioning. Trans. Chin. Soc. Agric. Mach. 2021, 52, 44–54. [Google Scholar]
- Zhang, Z.; Dong, W.; Xiong, Z.; Hu, Z.; Wang, D.; Ding, Y. Design and Experiment of Fuzzy Adaptive Pure Pursuit Control of Crawler-Type Rape Seeder. Trans. Chin. Soc. Agric. Mach. 2021, 52, 105–114. [Google Scholar]
- Ding, Y.; He, Z.; Xia, Z.; Peng, J.; Wu, T. Design of Navigation Immune Controller of Small Crawler-Type Rape Seeder. Trans. Chin. Soc. Agric. Eng. 2019, 35, 12–20. [Google Scholar]
- Yang, Y.; Li, Y.; Wen, X.; Zhang, G.; Ma, Q.; Cheng, S.; Qi, J.; Xu, L.; Chen, L. An Optimal Goal Point Determination Algorithm for Automatic Navigation of Agricultural Machinery: Improving the Tracking Accuracy of the Pure Pursuit Algorithm. Comput. Electron. Agric. 2022, 194, 106760. [Google Scholar] [CrossRef]
- Ding, C.; Ding, S.; Wei, X.; Mei, K. Output Feedback Sliding Mode Control for Path-Tracking of Autonomous Agricultural Vehicles. Nonlinear Dyn. 2022, 110, 2429–2445. [Google Scholar] [CrossRef]
- Kayacan, E.; Ramon, H.; Kaynak, O.; Saeys, W. Towards Agrobots: Trajectory Control of an Autonomous Tractor Using Type-2 Fuzzy Logic Controllers. IEEE/ASME Trans. Mechatron. 2015, 20, 287–298. [Google Scholar] [CrossRef]
- Miao, H.; Diao, P.; Xu, G.; Yao, W.; Song, Z.; Wang, W. Research on Decoupling Control for the Longitudinal and Lateral Dynamics of a Tractor Considering Steering Delay. Sci. Rep. 2022, 12, 13997. [Google Scholar] [CrossRef]
- Xu, L.; Chen, Q.; Wang, L.; Yao, L. Path Tracking of Agricultural Vehicles Based on 4WIS–4WID Structure and Fuzzy Control. Appl. Sci. 2023, 13, 8495. [Google Scholar] [CrossRef]
- Xu, L.; Yang, Y.; Chen, Q.; Fu, F.; Yang, B.; Yao, L. Path Tracking of a 4WIS–4WID Agricultural Machinery Based on Variable Look-Ahead Distance. Appl. Sci. 2022, 12, 8651. [Google Scholar] [CrossRef]
- He, J.; Hu, L.; Wang, P.; Liu, Y.; Man, Z.; Tu, T.; Yang, L.; Li, Y.; Yi, Y.; Li, W.; et al. Path Tracking Control Method and Performance Test Based on Agricultural Machinery Pose Correction. Comput. Electron. Agric. 2022, 200, 107185. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, L.; Li, Y.; Li, D. Model Predictive Control and Its Application in Agriculture: A Review. Comput. Electron. Agric. 2018, 151, 104–117. [Google Scholar] [CrossRef]
- Fan, X.; Wang, J.; Wang, H.; Yang, L.; Xia, C. LQR Trajectory Tracking Control of Unmanned Wheeled Tractor Based on Improved Quantum Genetic Algorithm. Machines 2023, 11, 62. [Google Scholar] [CrossRef]
- Chen, X.; Qiang, Y. Dual Predictive Model Adaptive Switching Control for Directional Control of Tractor Semitrailer Combinations. Adv. Mech. Eng. 2023, 15, 16878132231189311. [Google Scholar]
- Zhou, B.; Su, X.; Yu, H.; Guo, W.; Zhang, Q. Research on Path Tracking of Articulated Steering Tractor Based on Modified Model Predictive Control. Agriculture 2023, 13, 871. [Google Scholar] [CrossRef]
- Wu, T.; Li, Y.; Lin, H.; Gong, L.; Liu, C. Fast Terminal Sliding Mode Control for Autonomous Rice Seeding Machine Based on Disturbance Observer. Trans. Chin. Soc. Agric. Mach. 2021, 52, 24–31. [Google Scholar]
- Yin, C.; Wang, S.; Gao, J.; Li, X. Trajectory Tracking for Agricultural Tractor Based on Improved Fuzzy Sliding Mode Control. PLoS ONE 2023, 18, 0283961. [Google Scholar] [CrossRef]
- Jiao, J.; Chen, J.; Qiao, Y.; Wang, M.; Gu, L.; Li, Z. Adaptive Sliding Mode Control of Trajectory Tracking Based on DC Motor Drive for Agricultural Tracked Robot. Trans. Chin. Soc. Agric. Eng. 2018, 34, 64–70. [Google Scholar]
- Wang, L.; Zhu, S.; Liu, Y.; Du, X.; Zhu, Z.; Zhai, Z. A Novel Path Tracking Method of Tractor Based on Improved Second-Order Sliding Mode Considering Front Wheel Steering Angle Compensation. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2022, 237, 095440702211083. [Google Scholar] [CrossRef]
- Wang, S.; Yin, C.; Gao, J.; Sun, Q. Lateral Displacement Control for Agricultural Tractor Based on Cascade Control Structure. Int. J. Control Autom. Syst. 2020, 18, 2375–2385. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, B.; Zhang, C.; Zhang, Y.; Shen, G. A Model-Free Adaptive Predictive Path-Tracking Controller with PID Terms for Tractors. Biosyst. Eng. 2024, 242, 38–49. [Google Scholar] [CrossRef]
- Ding, C.; Wei, X.; Mei, K. Adaptive Second-Order Sliding Mode Path Tracking Control for Agricultural Tractors. Control Theory Appl. 2023, 40, 1287–1295. [Google Scholar]
- Khalaji, A.K. PID-Based Target Tracking Control of a Tractor-Trailer Mobile Robot. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 4776–4787. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, W.; Liu, Y.; Pan, W.; Hou, X.; Liu, Z. Autonomous Trajectory Tracking Control Method for an Agricultural Robotic Vehicle. Int. J. Agric. Biol. Eng. 2024, 17, 215–224. [Google Scholar] [CrossRef]
- Yin, J.; Zhu, D.; Liao, J.; Zhu, G.; Wang, Y.; Zhang, S. Automatic Steering Control Algorithm Based on Compound Fuzzy PID for Rice Transplanter. Appl. Sci. 2019, 9, 2666. [Google Scholar] [CrossRef]
- Liu, Z.; Yue, M.; Guo, L.; Zhang, Y. Trajectory Planning and Robust Tracking Control for a Class of Active Articulated Tractor-Trailer Vehicle with On-Axle Structure. Eur. J. Control 2020, 54, 87–98. [Google Scholar] [CrossRef]
- Lu, E.; Xue, J.; Chen, T.; Jiang, S. Robust Trajectory Tracking Control of an Autonomous Tractor-Trailer Considering Model Parameter Uncertainties and Disturbances. Agriculture 2023, 13, 869. [Google Scholar] [CrossRef]
- Zhao, H.; Zhou, S.; Chen, W.; Miao, Z.; Liu, Y.H. Modeling and Motion Control of Industrial Tractor–Trailers Vehicles Using Force Compensation. IEEE/ASME Trans. Mechatron. 2021, 26, 645–656. [Google Scholar] [CrossRef]
- Khanpoor, A.; Khalaji, A.K.; Moosavian, S.A.A. Modeling and Control of an Underactuated Tractor–Trailer Wheeled Mobile Robot. Robotica 2017, 35, 2297–2318. [Google Scholar] [CrossRef]
- Wu, C.; Wu, S.; Wen, L. Variable Curvature Path Tracking Control for the Automatic Navigation of Tractors. Trans. Chin. Soc. Agric. Eng. 2022, 38, 1–7. [Google Scholar]
- Hou, Y.; Xu, X. High-Speed Lateral Stability and Trajectory Tracking Performance for a Tractor-Semitrailer with Active Trailer Steering. PLoS ONE 2022, 17, 0277358. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Wang, X.; Xie, J.; Liu, H.; Li, J.; Wang, P.; Yang, X. Path Planning and Tracking Control of Tracked Agricultural Machinery Based on Improved A* and Fuzzy Control. Electronics 2024, 13, 188. [Google Scholar] [CrossRef]
- An, G.; Zhong, Z.; Yang, S.; Yang, L.; Jin, C.; Du, J.; Yin, X. EASS: An Automatic Steering System for Agricultural Wheeled Vehicles Using Fuzzy Control. Comput. Electron. Agric. 2024, 217, 108544. [Google Scholar] [CrossRef]
- Ding, Q.; Qi, S.; You, Y.; Xing, Q.; Xu, G.; Liang, L. Field Bench Test of Seeding Unit Based on Precise Seeding Depth Control Objective. Trans. Chin. Soc. Agric. Mach. 2022, 53, 100–107. [Google Scholar]
- Ma, R.; Wei, L.; Zhao, B.; Zhou, L.; Liu, Y.; Xing, G. Rotary Tillage Depth Detection Based on Multi-Sensor Data Fusion. Trans. Chin. Soc. Agric. Mach. 2024, 55, 52–64. [Google Scholar]
- Fu, W.; Dong, J.; Mei, H.; Gao, N.; Lu, C.; Zhang, J. Design and Test of Maize Seeding Unit Downforce Control System. Trans. Chin. Soc. Agric. Mach. 2018, 49, 68–77. [Google Scholar]
- Xia, J.; Li, D.; Liu, G.; Cheng, J.; Zheng, K.; Luo, C. Design and Test of Electro-Hydraulic Monitoring Device for Hitch Tillage Depth Based on Measurement of Tractor Pitch Angle. Trans. Chin. Soc. Agric. Mach. 2021, 52, 386–395. [Google Scholar]
- Wen, L.; Fan, X.; Liu, Z.; Zhang, Y. The Design and Development of the Precision Planter Sowing Depth Control System. Sens. Transducers 2014, 162, 53–58. [Google Scholar]
- Jia, H.; Guo, M.; Yu, H.; Li, Y.; Feng, X.; Zhao, J.; Qi, J. An Adaptable Tillage Depth Monitoring System for Tillage Machine. Biosyst. Eng. 2016, 151, 187–199. [Google Scholar] [CrossRef]
- Zhang, B.-W.; Zhang, W.; Qi, L.; Fu, H.; Yu, L.-J.; Li, R.; Zhao, Y.; Ma, X. Information Acquisition System of Multipoint Soil Surface Height Variation for Profiling Mechanism of Seeding Unit of Precision Corn Planter. Int. J. Agric. Biol. Eng. 2018, 11, 58–64. [Google Scholar] [CrossRef]
- Nielsen, S.K.; Munkholm, L.J.; Lamandé, M.; Nørremark, M.; Skou-Nielsen, N.; Edwards, G.T.C.; Green, O. Seed Drill Instrumentation for Spatial Coulter Depth Measurements. Comput. Electron. Agric. 2017, 141, 207–214. [Google Scholar] [CrossRef]
- Nielsen, S.K.; Munkholm, L.J.; Lamandé, M.; Nørremark, M.; Edwards, G.T.C.; Green, O. Seed Drill Depth Control System for Precision Seeding. Comput. Electron. Agric. 2018, 144, 174–180. [Google Scholar] [CrossRef]
- Suomi, P.; Oksanen, T. Automatic Working Depth Control for Seed Drill Using ISO 11783 Remote Control Messages. Comput. Electron. Agric. 2015, 116, 30–35. [Google Scholar] [CrossRef]
- Huang, D.; Zhu, L.; Jia, H.; Yu, T. Automatic Control System of Seeding Depth Based on Piezoelectric Film for No-Till Planter. Trans. Chin. Soc. Agric. Eng. 2015, 46, 1–8. [Google Scholar]
- Jia, H.; Guo, H.; Guo, M.; Wang, L.; Zhao, J.; Fan, X. Finite Element Analysis of Performance on Elastic Press Wheel of Row Sowing Plow Machine for Covering with Soil and Its Experiment. Trans. Chin. Soc. Agric. Eng. 2015, 31, 9–16. [Google Scholar]
- Gao, Y.; Wang, X.; Yang, S.; Zhao, X.; Dou, H.; Zhao, C. Design and Test of Pneumatic Downforce Control System for Planting. Trans. Chin. Soc. Agric. Mach. 2019, 50, 19–29. [Google Scholar]
- Jing, H.; Zhang, D.; Wang, Y.; Yang, L.; Fan, C.; Zhao, H.; Wu, H.; Zhang, Y.; Pei, J.; Cui, T. Development and Performance Evaluation of an Electro-Hydraulic Downforce Control System for Planter Row Unit. Comput. Electron. Agric. 2020, 172, 105073. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, L.; Jia, H.; Huang, D.; Guo, M.; Cong, Y. Automatic Depth Control System for a No-Till Seeder. Int. J. Agric. Biol. Eng. 2018, 11, 115–121. [Google Scholar] [CrossRef]
- Zhou, L.; Ma, Y.; Zhou, H.; Niu, K.; Zhao, B.; Wei, L.; Bai, S.; Zheng, Y.; Zhang, W. Design and Test of Sowing Depth Measurement and Control System for No-Till Corn Seeder Based on Integrated Electro-Hydraulic Drive. Appl. Sci. 2023, 13, 5823. [Google Scholar] [CrossRef]
- Li, M.; Xia, X.; Zhu, L.; Zhou, R.; Huang, D. Intelligent Sowing Depth Regulation System Based on Flex Sensor and Mamdani Fuzzy Model for a No-Till Planter. Int. J. Agric. Biol. Eng. 2021, 14, 145–152. [Google Scholar] [CrossRef]
- Bullock, D.S.; Bullock, D.; Nafziger, E.D.; Stafford, J.V. Variable rate seeding of maize in the Midwestern USA. In Proceedings of the 2nd European Conference on Precision Agriculture, Odense, Denmark, 11–15 July 1999. [Google Scholar]
- Velandia, M.; Buschermohle, M.; Larson, J.A.; Thompson, N.M.; Jernigan, B.M. The economics of automatic section control technology for planters: A case study of middle and west Tennessee farms. Comput. Electron. Agric. 2013, 95, 1–10. [Google Scholar] [CrossRef]
- Dong, L.; Yang, T.; Li, R.; Ma, L.; Feng, Y.; Li, Y. Grain Yield, Rice Seedlings and Transplanting Quantity in Response to Decreased Sowing Rate under Precision Drill Sowing. Agriculture 2024, 14, 1745. [Google Scholar] [CrossRef]
MDSD Type | Objective Cereal Seed | Qualified Rate | Missing Rate | Overlapping Rate | Reference |
---|---|---|---|---|---|
Pickup finger precision seed-metering device | Corn | 86.90% | 3.51% | 9.62% | Wang et al. [52] |
High-speed air-suction seed-metering device | Corn | 94.60% | 5.10% | 4.20% | Liu et al. [53] |
Telescopic clip finger-type seed-metering device | Corn | 95.40% | 1.90% | 2.70% | Geng et al. [54] |
Air-suction double-row staggered seed-metering device | Corn | 95.70% | 2.80% | 1.60% | Wang et al. [34] |
Shaftless spiral seed discharge and seed delivery device | Soybean | 92.60% | 2.40% | 5.03% | Zhu et al. [38] |
Flexible mechanical soybean precision seed-metering device | Soybean | 94.00% | 3.00% | 3.00% | Hou et al. [55] |
Four-bar translational seed-metering device | Soybean | 87.61% | 5.75% | 6.63% | Dun et al. [42] |
Air-suction wheat precision hill-seed-metering device | Wheat | 91.66% | 2.36% | 5.98% | Fang et al. [56] |
Pneumatic centrifugal combined seed-metering device | Wheat | 93.46% | 2.78% | 3.73% | Hou et al. [57] |
Airflow wheat seed-metering device | Wheat | 92.70% | 3.47% | 3.83% | He et al. [58] |
Hybrid rice air-suction single-seed-metering device | Rice | 86.91% | 3.41% | 10.23% | Zang et al. [59] |
Types of SOM Sensors | SOM Prediction Algorithms | Coefficient of Determination (R2) | RMSE | Reference |
---|---|---|---|---|
Vis-NIR spectroscopy | Partial least squares regression | 0.97 | 0.38 | Ba et al. [108] |
Visible–shortwave infrared spectroscopy | Random forest | 0.89 | 0.42 | Bao et al. [109] |
Vis-NIR and MIR spectroscopy | Spectral-guided ensemble modeling | 0.86 | 3.72 | Xue et al. [110] |
Multi-sensor array | Multilayer perceptron random forest | 0.94 | 0.81 | Liu et al. [106] |
HyMap airborne hyperspectral imaging sensor | Semi-supervised deep neural network regression | 0.71 | 3.52 | Ou et al. [95] |
Vis-NIR spectroscopy | A hybrid PLS-SVM algorithm | 0.79 | 5.33 | Hong et al. [97] |
Spectral photometer and standard reflector | Analytic hierarchy process and particle swarm optimization | 0.99 | 1.23 | Liu et al. [111] |
Visible–thermal imaging camera | MobileNet V3-LSTM | 0.91 | 2.60 | Li et al. [112] |
Carbon dioxide sensor | Multiple linear regression | 0.974 | 1.49 | Jia et al. [113] |
Hyperspectrometer | Improved dual-branch CNN model and BLMultiCNN | 0.91 | 3.09 | Li et al. [101] |
Fiber-optic spectrometer | Partial least squares regression | 0.89 | 0.03 | Liu et al. [114] |
Near-infrared spectroscopy and Raman spectroscopy | Outer-product analysis and partial least squares | 0.903 | 2.59 | Bai et al. [91] |
Sensor | Data Processing Algorithm | Coefficient of Determination (R2) | RMSE | Reference |
---|---|---|---|---|
Identical time domain reflectometry probe | Time domain reflectometry | 0.985 | 0.019 | Agah et al. [116] |
Near-infrared spectral sensor | Current–voltage six-terminal method | 0.983 | 15.625 | Wang et al. [118] |
Thermo-time domain reflectometry sensor | Archie’s model | 0.960 | 0.315 | Fu et al. [125] |
Conductivity meter | Conductivity algorithm based on Archie’s equation | 0.930 | 0.190 | Choo et al. [126] |
Self-developed soil conductivity measurement device | BP neural network | 0.997 | 0.120 | Qi et al. [127] |
Conductivity meter | Radial basis function artificial neural network | 0.801 | 0.350 | Motie et al. [128] |
Cond 7310 Soil Tester | Extreme learning machine | 0.884 | 3.071 | Cao et al. [129] |
Objective Seed | Measuring Principle | Measuring Accuracy | Reference |
---|---|---|---|
Wheat | Photoelectric | 95.00% | Zhu et al. [143] |
Wheat | Capacitive | 97.74% | Chen et al. [154] |
Corn | Photoelectric | 98.50% | Ji et al. [148] |
Corn | Photoelectric | 97.40% | Huang et al. [144] |
Corn | Capacitive | 94.60% | Zhou et al. [165] |
Corn | Photoelectric | 99.00% | Che et al. [170] |
Soybean | Photoelectric | 98.00% | Zhang et al. [146] |
Corn | Photoelectric | 98.50% | Okopnik et al. [147] |
Corn | Photoelectric | 96.00% | Jing et al. [172] |
Corn | Photoelectric | 92.50% | Zhao et al. [173] |
Corn and bean | Piezoelectric | 95.00% | Rossi et al. [161] |
Wheat | Piezoelectric | 90.38% | Zhao et al. [160] |
Seed Type | Loop Types | Control Algorithm | Control Accuracy | Reference |
---|---|---|---|---|
Corn | Closed loop | PID | 96.50% | Zhao et al. [182] |
Corn | Closed loop | PID | 97.09% | He et al. [183] |
Corn | Closed loop | Fuzzy PID | 90.89% | Chen et al. [188] |
Corn | Closed loop | Developed compensation algorithm for seeding lag | 99.38% | He et al. [184] |
Corn | Closed loop | Fuzzy PID | 95.27% | Wang et al. [189] |
Corn | Semi-closed loop | PID | 97.64% | He et al. [185] |
Wheat | Closed loop | PID | 90.00% | Liu et al. [193] |
Wheat | Semi-closed loop | Seed quantity real-time correcting algorithm | 97.39% | Ding et al. [194] |
Trajectory Control Algorithm | Model Type | Strengths | Drawbacks | Representative Reference |
---|---|---|---|---|
PPT | Kinematic model | The PPT algorithm has a high dynamic response and fewer input variables. | The PPT algorithm is susceptible to unstable and time-varying systematic parameters | Wu et al. [223] |
LQR | Kinematic model | The controlled systems of the LQR should have a time-invariable state-space model with a defined goal | The LQR algorithm is dependent on the accuracy of the model | Hou et al. [224] |
MPC | Kinematic model | The MPC is suitable for complex scenarios with higher precision demands and variable seeding conditions | The performance of the MPC is limited by the complicate parameter-tuning processes and enormous real-time computational burden | Zhou et al. [208] |
Sliding mode control | Dynamic model | The sliding mode control is suitable for scenarios where the controlled system has uncertainties such as disturbances and perturbations | The output chattering cannot be eradicated completely | Liu et al. [225] |
PID | Model-free | The PID algorithm does not need a precise model, so it is simple to implement | The PID algorithm with fixed parameters might be affected by external disturbances of nonlinear and time-varying systems | Wang et al. [213] |
Fuzzy PID | Model-free | Fuzzy PID improves upon the robustness and adaptability of the conventional PID algorithm and can control nonlinear systems | When the inputs deviate from the fuzzy set, the output may have discontinuities or oscillations | An et al. [226] |
Topographic Monitoring Sensor | Actuator | Control Algorithm | Control Accuracy | References |
---|---|---|---|---|
Angle sensor | Hydraulic cylinder | Compensation PID | 98.60% | Zhou et al. [242] |
Flex sensor and Hall sensor | Pneumatic cylinder | Mamdani fuzzy algorithm | 82.00% | Li et al. [243] |
Angle sensor and force sensor | Pneumatic cylinder | Pneumatic cylinder-to-down force model | 98.91% | Gao et al. [239] |
Angle sensor | Electric cylinder | Adaptive Fuzzy PID | 93.00% | Xue et al. [65] |
Down force sensor | Hydraulic cylinder | Bang-bang | 91.33% | Bai et al. [91] |
Polyvinylidene fluoride | Pneumatic cylinder | PID | 90.00% | Huang et al. [237] |
Ultrasonic sensor, angle sensor, and rotary sensor | Hydraulic cylinder | Double closed-loop PID control | 95.60% | Suomi et al. [236] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Zhou, J.; Zhang, T.; Zhang, P.; Yao, M.; Li, J.; Sun, Z.; Ma, G.; Chen, X.; Hu, J. Key Technologies in Intelligent Seeding Machinery for Cereals: Recent Advances and Future Perspectives. Agriculture 2025, 15, 8. https://doi.org/10.3390/agriculture15010008
Liu W, Zhou J, Zhang T, Zhang P, Yao M, Li J, Sun Z, Ma G, Chen X, Hu J. Key Technologies in Intelligent Seeding Machinery for Cereals: Recent Advances and Future Perspectives. Agriculture. 2025; 15(1):8. https://doi.org/10.3390/agriculture15010008
Chicago/Turabian StyleLiu, Wei, Jinhao Zhou, Tengfei Zhang, Pengcheng Zhang, Mengjiao Yao, Jinhong Li, Zitong Sun, Guoxin Ma, Xinxin Chen, and Jianping Hu. 2025. "Key Technologies in Intelligent Seeding Machinery for Cereals: Recent Advances and Future Perspectives" Agriculture 15, no. 1: 8. https://doi.org/10.3390/agriculture15010008
APA StyleLiu, W., Zhou, J., Zhang, T., Zhang, P., Yao, M., Li, J., Sun, Z., Ma, G., Chen, X., & Hu, J. (2025). Key Technologies in Intelligent Seeding Machinery for Cereals: Recent Advances and Future Perspectives. Agriculture, 15(1), 8. https://doi.org/10.3390/agriculture15010008