Soil Microarthropods as Tools for Monitoring Soil Quality: The QBS-ar Index in Three European Agroecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites and QBS-ar Sampling Procedure
- Koper (Western Slovenia): a total of 48 samples (3 subsamples for 4 bare-soil control plots and 3 subsamples for 4 permanent natural vegetation plots) × 2 sampling events (November 2022 and June 2023);
- San Casciano VdP (Central Italy): a total of 36 samples (3 subsamples for 3 control plots with cover crops and 3 subsamples for 3 plots with cover crops and biochar) × 2 sampling events (November 2022 and May 2023);
- Benacazon (Southern Spain): a total of 36 samples (3 subsamples for 2 bare-soil controls and 3 subsamples for 4 mixed-cover plots) × 2 sampling events (January 2023 and June 2023).
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Palomo-Campesino, S.; García-Llorente, M.; Hevia, V.; Boeraeve, F.; Dendoncker, N.; González, J.A. Do agroecological practices enhance the supply of ecosystem services? A comparison between agroecological and conventional horticultural farms. Ecosyst. Serv. 2022, 57, 101474. [Google Scholar] [CrossRef]
- Boeraeve, F.; Dendoncker, N.; Cornélis, J.T.; Degrune, F.; Dufrêne, M. Contribution of agroecological farming systems to the delivery of ecosystem services. J. Environ. Manag. 2020, 260, 109576. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, K.; Lal, R.; Ehlers, K. Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations’ Sustainable Development Goals. Land Degrad. Dev. 2019, 30, 824–838. [Google Scholar] [CrossRef]
- Nielsen, U.N.; Wall, D.H.; Six, J. Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 2015, 40, 63–90. [Google Scholar] [CrossRef]
- Tibbett, M.; Fraser, T.D.; Duddigan, S. Identifying potential threats to soil biodiversity. PeerJ 2020, 8, e9271. [Google Scholar] [CrossRef]
- Aksoy, E.; Louwagie, G.; Gardi, C.; Gregor, M.; Schröder, C.; Löhnertz, M. Assessing soil biodiversity potentials in Europe. Sci. Total Environ. 2017, 589, 236–249. [Google Scholar] [CrossRef]
- Culliney, T.W. Role of arthropods in maintaining soil fertility. Agriculture 2013, 3, 629–659. [Google Scholar] [CrossRef]
- Menta, C.; Conti, F.D.; Pinto, S.; Bodini, A. Soil Biological Quality index (QBS-ar): 15 years of application at global scale. Ecol. Indic. 2018, 85, 773–780. [Google Scholar] [CrossRef]
- Calzolari, C.; Ungaro, F.; Filippi, N.; Guermandi, M.; Malucelli, F.; Marchi, N.; Staffilani, F.; Tarocco, P. A methodological framework to assess the multiple contributions of soils to ecosystem services delivery at regional scale. Geoderma 2016, 261, 190–203. [Google Scholar] [CrossRef]
- Parisi, V.; Menta, C.; Gardi, C.; Jacomini, C.; Mozzanica, E. Microarthropod communities as a tool to assess soil quality and biodiversity: A new approach in Italy. Agric. Ecosyst. Environ. 2005, 105, 323–333. [Google Scholar] [CrossRef]
- Maienza, A.; Remelli, S.; Verdinelli, M.; Baronti, S.; Crisci, A.; Vaccari, F.P.; Menta, C. A magnifying glass on biochar strategy: Long-term effects on the soil biota of a Tuscan vineyard. J. Soils Sediments 2023, 23, 1733–1744. [Google Scholar] [CrossRef]
- Galli, L.; Lanza, E.; Rellini, I. First application of the QBS-ar Index in South America for the assessment of the biological quality of soils in Chile. Soil Sci. Annu. 2021, 72, 135990. [Google Scholar] [CrossRef]
- Kurniawan, I.D.; Kinasih, I.; Akbar, R.T.M.; Chaidir, L.; Iqbal, S.; Pamungkas, B.; Imanudin, Z. Arthropod community structure indicating soil quality recovery in the organic agroecosystem of mount ciremai national park’s buffer zone. Caraka Tani J. Sustain. Agric. 2023, 38, 229–243. [Google Scholar] [CrossRef]
- Fusco, T.; Fortini, L.; Casale, F.; Jacomini, C.; Di Giulio, A. Assessing soil quality of Italian Western Alps protected areas by QBS-ar: Impact of management and habitat type on soil microarthropods. Environ. Monit. Assess. 2023, 195, 1287. [Google Scholar] [CrossRef] [PubMed]
- Çakır, M.; Akburak, S.; Makineci, E.; Bolat, F. Recovery of soil biological quality (QBS-ar) and soil microarthropod abundance following a prescribed fire in the Quercus frainetto forest. Appl. Soil Ecol. 2023, 184, 104768. [Google Scholar] [CrossRef]
- Hågvar, S.; Klanderud, K.A.R.I. Effect of simulated environmental change on alpine soil arthropods. Glob. Change Biol. 2009, 15, 2972–2980. [Google Scholar] [CrossRef]
- Sjursen, H.; Michelsen, A.; Jonasson, S. Effects of long-term soil warming and fertilisation on microarthropod abundances in three sub-arctic ecosystems. Appl. Soil Ecol. 2005, 30, 148–161. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- D’Avino, L.; Bigiotti, G.; Vitali, F.; Tondini, E.; L’Abate, G.; Jacomini, C.; Cassi, F.; Menta, C.; QBS-ar SISS Working Group. QBS-ar and QBS-ar_BF index toolbox for biodiversity assessment of microarthropods community in soil. Zenodo 2023. [Google Scholar] [CrossRef]
- Bachelier, G. La Faune des Sols, Son Ecologie et Son Action; IDT N°38; ORSTOM: Paris, France, 1978; 391p. [Google Scholar]
- Holmstrup, M.; Sørensen, J.G.; Dai, W.; Krogh, P.H.; Schmelz, R.M.; Slotsbo, S. Analysis of heat and cold tolerance of a freeze-tolerant soil invertebrate distributed from temperate to Arctic regions: Evidence of selection for extreme cold tolerance. J. Comp. Physiol. B 2022, 192, 435–445. [Google Scholar] [CrossRef]
- Coleman, D.C.; Geisen, S.; Wall, D.H. Soil fauna: Occurrence, biodiversity, and roles in ecosystem function. In Soil Microbiology, Ecology and Biochemistry; Elsevier: Amsterdam, The Netherlands, 2024; pp. 131–159. [Google Scholar] [CrossRef]
- Gruss, I.; Twardowski, J.P.; Latawiec, A.; Medyńska-Juraszek, A.; Królczyk, J. Risk assessment of low-temperature biochar used as soil amendment on soil mesofauna. Environ. Sci. Pollut. Res. 2019, 26, 18230–18239. [Google Scholar] [CrossRef] [PubMed]
- Di Giovanni, F.; Nardi, F.; Frati, F.; Migliorini, M. Below-ground arthropod diversity in conventional and organic vineyards: A review. Crop Prot. 2024, 180. [Google Scholar] [CrossRef]
- Bourgeois, B.; Charles, A.; Van Eerd, L.L.; Tremblay, N.; Lynch, D.; Bourgeois, G.; Bastien, M.; Bélanger, V.; Landry, C.; Vanasse, A. Interactive effects between cover crop management and the environment modulate benefits to cash crop yields: A meta-analysis. Can. J. Plant Sci. 2022, 102, 656–678. [Google Scholar] [CrossRef]
- Maienza, A.; Baronti, S.; Lanini, G.M.; Ugolini, F.; Ungaro, F.; Vaccari, F.P. The QBS-ar Index: A sensitive tool to assess the effectiveness of an agroecological practice in the Italian Alpine region. J. Soil Sci. Plant Nutr. 2022, 22, 3740–3744. [Google Scholar] [CrossRef]
Trait | Koper (Slovenia) | San Casciano V.P. (Italy) | Benacazon (Spain) |
---|---|---|---|
Crop | Vineyard | Vineyard | Olive Orchard |
Experimental design | Bare soil vs permanent vegetation cover | Mixed cover vs mixed cover + biochar | Bare soil vs mixed cover |
Start experiment | 1992 | 2019 | 2009 |
Soil texture | Loam | Clay loam | Sandy loam |
Vegetation cover | Ctrl = absent Treat = permanent | Ctrl = permanent Treat = permanent + biochar | Ctrl = absent Treat = permanent |
Site climate classification [18] | Csa Warm oceanic | Csa–Cfa Warm oceanic–warm Mediterranean | Cfa Warm Mediterranean |
Average air temperature | 12.2 °C | 17 °C | 18 °C |
Cumulative precipitation | 570 mm | 55 mm | 0 mm |
Soil Parameters | CTRL Koper (Slovenia) | TREAT Koper (Slovenia) | CTRL San Casciano V.P. (Italy) | TREAT San Casciano V.P. (Italy) | CTRL Benacazon (Spain) | TREAT Benacazon (Spain) |
---|---|---|---|---|---|---|
Clay (%) | 32 ± 2.6 | 33.2 ± 1.3 | 34 ± 0.01 | 34 ± 0.01 | 71.5 ± 3.2 | 67.89 ± 6.69 |
Silt (%) | 43.7 ± 46.3 | 46.3 ± 1.5 | 30 ± 0.01 | 30 ± 0.01 | 16.9 ± 3.11 | 21.97 ± 4.24 |
Sand (%) | 23.4 ± 3.1 | 20.5 ± 2.5 | 36 ± 0.01 | 36 ± 0.01 | 11.55 ± 0.07 | 10.12 ± 2.60 |
BD (g/m3) | 1.33 ± 0.14 | 1.44 ± 0.14 | 1.2 ± 0.1 | 1.1 ± 0.1 | 1.24 ± 0.0 | 1.13 ± 0.04 |
SOC (%) | 1.22 ± 0.022 | 1.88 ± 0.20 | 1.56 ± 0.45 | 0.99 ± 0.17 | 0.77 ± 0.06 | 0.80 ± 0.13 |
N (%) | 0.10 ± 0.01 | 0.17 ± 0.02 | 0.14 ± 0.02 | 0.14 ± 0.01 | 0.07 ± 0.00 | 0.09 ± 0.01 |
Subphylum | Koper (Slovenia) | San Casciano V.P (Italy) | Benecazion (Spain) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTRL | CTRL | TREAT | TREAT | CTRL | CTRL | TREAT | TREAT | CTRL | CTRL | TREAT | TREAT | ||
Season 1 | Season 2 | Season 1 | Season 2 | Season 1 | Season 2 | Season 1 | Season 2 | Season 1 | Season 2 | Season 1 | Season 2 | ||
Chelicerata | |||||||||||||
Acarina | 64.75 | 34.75 | 28.24 | 41.94 | 53.97 | 66.10 | 44.81 | 64.66 | 73.91 | 100.00 | 45.74 | 66.13 | |
Aranea | - | 0.25 | - | - | 0.84 | 0.13 | 0.55 | 0.39 | - | - | - | 1.61 | |
Opiliones | 0.36 | - | 0.09 | 0.13 | 1.26 | - | 1.09 | - | - | - | - | - | |
Pseudoscorpiones | - | - | - | - | - | - | 0.24 | - | - | - | - | ||
Crostacea | |||||||||||||
Isopoda | - | - | - | - | 0.42 | 0.13 | 1.64 | 0.29 | - | - | - | - | |
Myriapoda | |||||||||||||
Chilopoda | 0.36 | - | - | 0.39 | 0.42 | 0.20 | - | 0.29 | 0.48 | - | 0.17 | - | |
Symphila | - | 0.50 | - | 1.18 | - | 0.39 | - | 0.24 | 0.48 | - | 2.17 | 1.61 | |
Diplopoda | - | - | - | 0.13 | - | 0.92 | 1.09 | 2.46 | - | - | - | - | |
Hexapoda Entognatha | |||||||||||||
Pauropoda | 0.36 | 0.25 | 0.23 | 0.92 | - | 1.11 | - | 0.48 | 2.42 | - | 3.51 | - | |
Collembola | 21.58 | 19.75 | 51.90 | 24.90 | 31.38 | 27.42 | 34.97 | 26.71 | 18.36 | - | 38.73 | 3.23 | |
Diplura | 0.72 | 0.75 | - | 0.52 | 1.26 | 0.26 | 1.09 | 0.82 | - | - | 0.50 | - | |
Protura | - | - | - | 0.52 | - | 0.79 | 1.64 | 0.96 | - | - | - | - | |
Hexapoda Insecta | |||||||||||||
Hymenoptera | 3.96 | 40.25 | 12.04 | 22.41 | 4.60 | 0.85 | 9.29 | 0-58 | - | - | 0.33 | 8.06 | |
Thysanoptera | 1.08 | - | 0.23 | 0.39 | - | 0.13 | - | 0-24 | - | - | 0.17 | 6.45 | |
Psocoptera | - | 0.50 | 0.05 | 0.13 | - | - | 1.64 | 0.05 | - | - | - | ||
Hemiptera | - | 0.25 | 1.58 | 4.33 | - | 0.46 | - | - | - | - | 1.50 | - | |
Larvae | |||||||||||||
Diptera | 3.24 | 0.75 | 2.17 | 1.83 | 3.77 | 0.39 | 1.09 | 0.34 | 2.42 | - | 5.51 | 4.84 | |
Lepidoptera | - | - | 0.05 | - | - | - | - | - | - | - | - | ||
Coleoptera | 3.60 | 2.00 | 3.44 | 0.26 | 2.09 | 0.39 | 1.09 | 0.96 | 1.93 | - | 1.67 | 8.06 |
Country | Treatment | Shannon | Eveness | Simpson | A\C Ratio | Number of Edaphic Forms |
---|---|---|---|---|---|---|
Slovenia | Control bare soil | 1.19 | 0.49 | 0.57 | 2.16 * | 1.9 * |
Slovenia | Permanent grassland | 1.29 | 0.62 | 0.66 | 1.14 * | 2.8 * |
Italy | Control mixed cover | 1.05 | 0.44 | 1.05 | 2.17 | 3.78 |
Italy | Mixed cover + biochar | 1.17 | 0.50 | 1.17 | 2.18 | 3.86 |
Spain | Control bare soil | 0.81 | 0.63 | 0.54 | 3.94 | 2.75 |
Spain | Mixed cover | 1.09 | 0.61 | 0.59 | 3.99 | 1.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallese, F.; Gismero-Rodriguez, L.; Govednik, A.; Giagnoni, L.; Lumini, E.; Suhadolc, M.; Vaccari, F.P.; Maienza, A. Soil Microarthropods as Tools for Monitoring Soil Quality: The QBS-ar Index in Three European Agroecosystems. Agriculture 2025, 15, 89. https://doi.org/10.3390/agriculture15010089
Gallese F, Gismero-Rodriguez L, Govednik A, Giagnoni L, Lumini E, Suhadolc M, Vaccari FP, Maienza A. Soil Microarthropods as Tools for Monitoring Soil Quality: The QBS-ar Index in Three European Agroecosystems. Agriculture. 2025; 15(1):89. https://doi.org/10.3390/agriculture15010089
Chicago/Turabian StyleGallese, Filippo, Laura Gismero-Rodriguez, Anton Govednik, Laura Giagnoni, Erica Lumini, Marjetka Suhadolc, Francesco Primo Vaccari, and Anita Maienza. 2025. "Soil Microarthropods as Tools for Monitoring Soil Quality: The QBS-ar Index in Three European Agroecosystems" Agriculture 15, no. 1: 89. https://doi.org/10.3390/agriculture15010089
APA StyleGallese, F., Gismero-Rodriguez, L., Govednik, A., Giagnoni, L., Lumini, E., Suhadolc, M., Vaccari, F. P., & Maienza, A. (2025). Soil Microarthropods as Tools for Monitoring Soil Quality: The QBS-ar Index in Three European Agroecosystems. Agriculture, 15(1), 89. https://doi.org/10.3390/agriculture15010089