Development of a Lightweight Model for Rice Plant Counting and Localization Using UAV-Captured RGB Imagery
Abstract
:1. Introduction
- First, this paper introduce P2P-CNF, a lightweight rice counting model optimized for resource-constrained agricultural settings. The reduced parameter size of P2P-CNF ensures its suitability for enhanced counting and positioning tasks, facilitating efficient deployment in fields where computational resources are limited.
- Second, a novel pruning method, Cosine-Norm Fusion (CNF), is proposed, designed to decrease the model’s parameter count while retaining maximal information from the original model. This pruning technique enables the model to maintain its performance integrity, ensuring minimal loss in functional efficacy.
- Lastly, the Depth-Attentive Fusion Module (DAFM), a lightweight feature fusion module that significantly enhances the model’s overall performance, is developed. The DAFM utilizes depthwise separable convolution combined with a linear self-attention mechanism to achieve superior results while maintaining a low-parameter footprint.
2. Related Work
2.1. Network Pruning
2.2. Plant Count
3. Materials and Methods
3.1. UAV-Based RGB Image Collection
3.2. Rice Plant Counting Dataset Collected by UAV
3.3. Other Dataset
3.4. Methond
3.4.1. Problem Definition
3.4.2. P2P-CNF
- Backbone Network Pruning: We introduce Cosine-Norm Fusion (CNF), a pruning methodology that minimizes information loss, ensuring the model remains lightweight while retaining high accuracy for rice counting.
- Lightweight Feature Fusion Module: The upgraded feature fusion module DAFM significantly cuts down the number of parameters, enhancing the model’s capability to capture and integrate multi-layered information effectively. This allows for improved recognition of rice plants in diverse field conditions.
3.4.3. Cosine-Norm Fusion
3.4.4. Depth-Attentive Fusion Module
4. Results
4.1. Implementation Details and Evaluation Metric
4.2. Experiment on the RSC-UAV Dataset
4.3. Impact of Pruning Parameters on RSC-UAV Dataset Performance
4.4. Ablation Experiment
4.5. Experiments on URC Dataset
4.6. Experiments on WED Dataset
4.7. Experiments on MTC Dataset
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zeigler, R.S.; Barclay, A. The relevance of rice. Rice 2008, 1, 3–10. [Google Scholar] [CrossRef]
- Adhikari, B.; Mehera, B.; Haefele, S. Impact of rice nursery nutrient management, seeding density and seedling age on yield and yield attributes. Am. J. Plant Sci. 2013, 4, 146–155. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Tan, S.; Li, H.; Qi, L.; Wang, Y.; Chen, J.; Yang, C.; Chen, J.; Qin, Y.; et al. Research on density grading of hybrid rice machine-transplanted blanket-seedlings based on multi-source unmanned aerial vehicle data and mechanized transplanting test. Comput. Electron. Agric. 2024, 222, 109070. [Google Scholar] [CrossRef]
- Madec, S.; Jin, X.; Lu, H.; De Solan, B.; Liu, S.; Duyme, F.; Heritier, E.; Baret, F. Ear density estimation from high resolution RGB imagery using deep learning technique. Agric. For. Meteorol. 2019, 264, 225–234. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.; Dong, W.; Cao, X.; Wen, Z.; Xiao, R.; Wei, Y.; Zeng, H.; Ma, X. An automatic approach for detecting seedlings per hill of machine-transplanted hybrid rice utilizing machine vision. Comput. Electron. Agric. 2021, 185, 106178. [Google Scholar] [CrossRef]
- Bai, X.; Liu, P.; Cao, Z.; Lu, H.; Xiong, H.; Yang, A.; Cai, Z.; Wang, J.; Yao, J. Rice plant counting, locating, and sizing method based on high-throughput UAV RGB images. Plant Phenomics 2023, 5, 20. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Gu, S.; Liu, P.; Yang, A.; Cai, Z.; Wang, J.; Yao, J. Rpnet: Rice plant counting after tillering stage based on plant attention and multiple supervision network. Crop J. 2023, 11, 1586–1594. [Google Scholar] [CrossRef]
- Song, Q.; Wang, C.; Jiang, Z.; Wang, Y.; Tai, Y.; Wang, C.; Li, J.; Huang, F.; Wu, Y. Rethinking counting and localization in crowds: A purely point-based framework. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 3365–3374. [Google Scholar]
- Zhao, J.; Kaga, A.; Yamada, T.; Komatsu, K.; Hirata, K.; Kikuchi, A.; Hirafuji, M.; Ninomiya, S.; Guo, W. Improved field-based soybean seed counting and localization with feature level considered. Plant Phenomics 2023, 5, 26. [Google Scholar] [CrossRef]
- Yao, M.; Li, W.; Chen, L.; Zou, H.; Zhang, R.; Qiu, Z.; Yang, S.; Shen, Y. Rice Counting and Localization in Unmanned Aerial Vehicle Imagery Using Enhanced Feature Fusion. Agronomy 2024, 14, 868. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, M.; Shi, J.Q. A survey on deep neural network pruning: Taxonomy, comparison, analysis, and recommendations. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 10558–10578. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems 25: 26th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Redmon, J. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, A. Attention is all you need. In Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Schick, T.; Dwivedi-Yu, J.; Dessì, R.; Raileanu, R.; Lomeli, M.; Hambro, E.; Zettlemoyer, L.; Cancedda, N.; Scialom, T. Toolformer: Language models can teach themselves to use tools. In Proceedings of the 38th Annual Conference on Neural Information Processing Systems (NIPS), Vancouver, BC, Canada, 10–15 December 2024. [Google Scholar]
- Joo, D.; Kim, D.; Kim, J. Slimming ResNet by Slimming Shortcut. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 7677–7683. [Google Scholar]
- Li, M.; Ding, D.; Heldring, A.; Hu, J.; Chen, R.; Vecchi, G. Low-rank matrix factorization method for multiscale simulations: A review. IEEE Open J. Antennas Propag. 2021, 2, 286–301. [Google Scholar] [CrossRef]
- Saha, R.; Srivastava, V.; Pilanci, M. Matrix compression via randomized low rank and low precision factorization. In Proceedings of the 37th Annual Conference on Neural Information Processing Systems (NIPS), New Orleans, LA, USA, 10–16 December 2023. [Google Scholar]
- Gou, J.; Yu, B.; Maybank, S.J.; Tao, D. Knowledge distillation: A survey. Int. J. Comput. Vis. 2021, 129, 1789–1819. [Google Scholar] [CrossRef]
- Sun, S.; Ren, W.; Li, J.; Wang, R.; Cao, X. Logit standardization in knowledge distillation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 15731–15740. [Google Scholar]
- Bakhtiarifard, P.; Igel, C.; Selvan, R. EC-NAS: Energy consumption aware tabular benchmarks for neural architecture search. In Proceedings of the ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 5660–5664. [Google Scholar]
- Gao, S.; Huang, F.; Cai, W.; Huang, H. Network pruning via performance maximization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 9270–9280. [Google Scholar]
- Fang, G.; Ma, X.; Song, M.; Mi, M.B.; Wang, X. Depgraph: Towards any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 16091–16101. [Google Scholar]
- Ma, X.; Fang, G.; Wang, X. Llm-pruner: On the structural pruning of large language models. Adv. Neural Inf. Process. Syst. 2023, 36, 21702–21720. [Google Scholar]
- Gao, S.; Zhang, Z.; Zhang, Y.; Huang, F.; Huang, H. Structural alignment for network pruning through partial regularization. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 17402–17412. [Google Scholar]
- Wang, Z.; Li, C.; Wang, X. Convolutional neural network pruning with structural redundancy reduction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14913–14922. [Google Scholar]
- Liao, Z.; Quétu, V.; Nguyen, V.T.; Tartaglione, E. Can Unstructured Pruning Reduce the Depth in Deep Neural Networks? In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 1402–1406. [Google Scholar]
- Pietroń, M.; Żurek, D.; Śnieżyński, B. Speedup deep learning models on GPU by taking advantage of efficient unstructured pruning and bit-width reduction. J. Comput. Sci. 2023, 67, 101971. [Google Scholar] [CrossRef]
- Wilkinson, L.; Cheshmi, K.; Dehnavi, M.M. Register Tiling for Unstructured Sparsity in Neural Network Inference. Proc. ACM Program. Lang. 2023, 7, 1995–2020. [Google Scholar] [CrossRef]
- Frantar, E.; Alistarh, D. Sparsegpt: Massive language models can be accurately pruned in one-shot. In Proceedings of the International Conference on Machine Learning, PMLR, Honolulu, HI, USA, 23–29 July 2023; pp. 10323–10337. [Google Scholar]
- Dhahri, R.; Immer, A.; Charpentier, B.; Günnemann, S.; Fortuin, V. Shaving Weights with Occam’s Razor: Bayesian Sparsification for Neural Networks Using the Marginal Likelihood. arXiv 2024, arXiv:2402.15978. [Google Scholar]
- Sun, X.; Shi, H. Towards Better Structured Pruning Saliency by Reorganizing Convolution. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2024; pp. 2204–2214. [Google Scholar]
- Chen, T.; Ji, B.; Ding, T.; Fang, B.; Wang, G.; Zhu, Z.; Liang, L.; Shi, Y.; Yi, S.; Tu, X. Only train once: A one-shot neural network training and pruning framework. Adv. Neural Inf. Process. Syst. 2021, 34, 19637–19651. [Google Scholar]
- He, Y.; Liu, P.; Wang, Z.; Hu, Z.; Yang, Y. Filter pruning via geometric median for deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4340–4349. [Google Scholar]
- Wang, W.; Fu, C.; Guo, J.; Cai, D.; He, X. COP: Customized deep model compression via regularized correlation-based filter-level pruning. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; pp. 3785–3791. [Google Scholar]
- Ioffe, S. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning efficient convolutional networks through network slimming. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2736–2744. [Google Scholar]
- You, Z.; Yan, K.; Ye, J.; Ma, M.; Wang, P. Gate decorator: Global filter pruning method for accelerating deep convolutional neural networks. In Proceedings of the 33rd Annual Conference on Neural Information Processing Systems (NIPS), Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Zhuang, T.; Zhang, Z.; Huang, Y.; Zeng, X.; Shuang, K.; Li, X. Neuron-level structured pruning using polarization regularizer. Adv. Neural Inf. Process. Syst. 2020, 33, 9865–9877. [Google Scholar]
- Kang, M.; Han, B. Operation-aware soft channel pruning using differentiable masks. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 5122–5131. [Google Scholar]
- Lu, H.; Cao, Z. TasselNetV2+: A fast implementation for high-throughput plant counting from high-resolution RGB imagery. Front. Plant Sci. 2020, 11, 541960. [Google Scholar] [CrossRef] [PubMed]
- Karami, A.; Crawford, M.; Delp, E.J. Automatic plant counting and location based on a few-shot learning technique. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5872–5886. [Google Scholar] [CrossRef]
- Pape, J.M.; Klukas, C. Utilizing machine learning approaches to improve the prediction of leaf counts and individual leaf segmentation of rosette plant images. Proc. Comput. Vis. Probl. Plant Phenotyping (CVPPP) 2015, 3, 1–12. [Google Scholar]
- Giuffrida, M.V.; Minervini, M.; Tsaftaris, S.A. Learning to count leaves in rosette plants. In Proceedings of the Computer Vision Problems in Plant Phenotyping (CVPPP), Swansea, UK, 7–10 September 2015. [Google Scholar]
- Qureshi, W.S.; Payne, A.; Walsh, K.; Linker, R.; Cohen, O.; Dailey, M. Machine vision for counting fruit on mango tree canopies. Precis. Agric. 2017, 18, 224–244. [Google Scholar] [CrossRef]
- Sam, D.B.; Peri, S.V.; Sundararaman, M.N.; Kamath, A.; Babu, R.V. Locate, size, and count: Accurately resolving people in dense crowds via detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 2739–2751. [Google Scholar]
- Bai, S.; He, Z.; Qiao, Y.; Hu, H.; Wu, W.; Yan, J. Adaptive dilated network with self-correction supervision for counting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 4594–4603. [Google Scholar]
- Hu, Y.; Jiang, X.; Liu, X.; Zhang, B.; Han, J.; Cao, X.; Doermann, D. Nas-count: Counting-by-density with neural architecture search. In Computer Vision–ECCV 2020, Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020; Part XXII 16; Springer: Berlin/Heidelberg, Germany, 2020; pp. 747–766. [Google Scholar]
- Buzzy, M.; Thesma, V.; Davoodi, M.; Mohammadpour Velni, J. Real-time plant leaf counting using deep object detection networks. Sensors 2020, 20, 6896. [Google Scholar] [CrossRef]
- Wang, N.; Cao, H.; Huang, X.; Ding, M. Rapeseed flower counting method based on GhP2-YOLO and StrongSORT algorithm. Plants 2024, 13, 2388. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Yu, J.; He, L.; Chen, J.; He, Y. Complete and accurate holly fruits counting using YOLOX object detection. Comput. Electron. Agric. 2022, 198, 107062. [Google Scholar] [CrossRef]
- Chen, H.; Chen, H.; Huang, X.; Zhang, S.; Chen, S.; Cen, F.; He, T.; Zhao, Q.; Gao, Z. Estimation of sorghum seedling number from drone image based on support vector machine and YOLO algorithms. Front. Plant Sci. 2024, 15, 1399872. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Cao, Z.; Xiao, Y.; Zhuang, B.; Shen, C. TasselNet: Counting maize tassels in the wild via local counts regression network. Plant Methods 2017, 13, 79. [Google Scholar] [CrossRef]
- Xiong, H.; Cao, Z.; Lu, H.; Madec, S.; Liu, L.; Shen, C. TasselNetv2: In-field counting of wheat spikes with context-augmented local regression networks. Plant Methods 2019, 15, 150. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Liu, L.; Li, Y.N.; Zhao, X.M.; Wang, X.Q.; Cao, Z.G. TasselNetV3: Explainable plant counting with guided upsampling and background suppression. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Wu, J.; Yang, G.; Yang, X.; Xu, B.; Han, L.; Zhu, Y. Automatic counting of in situ rice seedlings from UAV images based on a deep fully convolutional neural network. Remote Sens. 2019, 11, 691. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, J.; Wang, B.; Costa, M.; Kaeppler, S.M.; Zhang, Z. IntegrateNet: A deep learning network for maize stand counting from UAV imagery by integrating density and local count maps. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6512605. [Google Scholar] [CrossRef]
- Kim, M.; Gao, S.; Hsu, Y.C.; Shen, Y.; Jin, H. Token fusion: Bridging the gap between token pruning and token merging. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2024; pp. 1383–1392. [Google Scholar]
- Li, Y.; Zhang, X.; Chen, D. Csrnet: Dilated convolutional neural networks for understanding the highly congested scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1091–1100. [Google Scholar]
- Liang, D.; Xu, W.; Zhu, Y.; Zhou, Y. Focal inverse distance transform maps for crowd localization. IEEE Trans. Multimed. 2022, 25, 6040–6052. [Google Scholar] [CrossRef]
- Liu, C.; Lu, H.; Cao, Z.; Liu, T. Point-query quadtree for crowd counting, localization, and more. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2 2023; pp. 1676–1685. [Google Scholar]
Experimental Parameter | Experimental Environment |
---|---|
Python | 3.8 |
Pytorch | 2.0.1 |
CUDA | 12.1 |
CPU | Intel® Core™ i7-13700KF |
GPU | NVIDIA GeForce RTX 4090 |
Operating system | Windows 11 |
learning rate | 0.0001 |
Model | Venue | MAE | RMSE | Parmaters |
---|---|---|---|---|
CSRnet [62] | CVPR 2018 | 6.93 | 8.53 | 16.26 M |
P2PNet [8] | ICCV 2021 | 2.94 | 3.84 | 21.57 M |
FIDTM [63] | TMM 2022 | 3.20 | 4.02 | 66.58 M |
RPNet [7] | Crop J 2023 | 3.78 | 4.81 | 20.64 M |
RiceNet [6] | PLPH 2023 | 3.71 | 4.77 | 20.55 M |
PET [64] | ICCV 2023 | 3.46 | 4.36 | 20.90 M |
P2P-CNF (60% Pruned) | This paper | 3.12 | 4.12 | 7.31 M |
Model | Venue | Precision | Recall | F-Measure |
---|---|---|---|---|
P2PNet [8] | ICCV 2021 | 95.5% | 96.1% | 95.8% |
P2P-CNF (60% Pruned) | This paper | 95.5% | 96.0% | 95.7% |
FIDTM [63] | TMM 2022 | 94.9% | 95.5% | 95.2% |
PET [64] | ICCV 2023 | 93.8% | 94.2% | 94.0% |
Model | MAE | RMSE | Parmaters |
---|---|---|---|
P2PNet | 2.94 | 3.84 | 21.57 M |
P2P-CNF (40% Pruned) | 3.67 | 4.57 | 10.4 M |
P2P-CNF (50% Pruned) | 3.45 | 4.59 | 8.63 M |
P2P-CNF (60% Pruned) | 3.12 | 4.12 | 7.31 M |
P2P-CNF (70% Pruned) | 3.21 | 4.42 | 6.51 M |
P2P-CNF (80% Pruned) | 3.66 | 4.94 | 5.59 M |
Baseline | CNF | Scale Sparse Rate | DAFM | MAE | RMSE | Parmaters |
---|---|---|---|---|---|---|
✓ | 2.94 | 3.84 | 21.57 M | |||
✓ | ✓ | 0.4 | 5.01 | 6.83 | 11.68 M | |
✓ | ✓ | 0.4 | ✓ | 3.67 | 4.57 | 10.4 M |
✓ | ✓ | 0.5 | 5.19 | 6.65 | 9.93 M | |
✓ | ✓ | 0.5 | ✓ | 3.45 | 4.59 | 8.63 M |
✓ | ✓ | 0.6 | 4.44 | 5.93 | 8.58 M | |
✓ | ✓ | 0.6 | ✓ | 3.12 | 4.12 | 7.31 M |
✓ | ✓ | 0.7 | 5.33 | 6.77 | 7.54 M | |
✓ | ✓ | 0.7 | ✓ | 3.21 | 4.42 | 6.51 M |
✓ | ✓ | 0.8 | 6.59 | 8.77 | 6.93 M | |
✓ | ✓ | 0.8 | ✓ | 3.66 | 4.94 | 5.59 M |
Model | Venue | MAE | RMSE | Parmaters |
---|---|---|---|---|
CSRnet [62] | CVPR 2018 | 10.95 | 12.12 | 16.26 M |
TasselNetv2+ [44] | Front Plant Sci 2020 | 9.46 | 11.44 | 0.25 M |
P2PNet [8] | ICCV 2021 | 4.46 | 5.88 | 21.57 M |
RPNet [7] | Crop J 2023 | 5.53 | 6.69 | 20.64 M |
RiceNet [6] | PLPH 2023 | 5.12 | 6.41 | 20.55 M |
PET [64] | ICCV 2023 | 4.15 | 5.19 | 20.90 M |
P2P-CNF (60% Pruned) | This paper | 5.11 | 6.57 | 7.31 M |
P2P-CNF (70% Pruned) | This paper | 6.24 | 7.57 | 6.27 M |
P2P-CNF (80% Pruned) | This paper | 7.03 | 8.59 | 5.65 M |
Model | Venue | MAE | RMSE | Parmaters |
---|---|---|---|---|
Faster R-CNN [16] | TPAMI 2016 | 4.93 | 6.52 | 41.4 M |
CSRnet [62] | CVPR 2018 | 6.37 | 8.35 | 16.26 M |
TasselNetv2+ [44] | Front Plant Sci 2020 | 6.59 | 9.01 | 0.25 M |
P2PNet [8] | ICCV 2021 | 3.61 | 4.97 | 21.57 M |
RPNet [7] | Crop J 2023 | 3.61 | 5.13 | 20.64 M |
RiceNet [6] | PLPH 2023 | 4.01 | 5.80 | 20.55 M |
PET [64] | ICCV 2023 | 4.22 | 5.29 | 20.90 M |
P2P-CNF (60% Pruned) | This paper | 3.95 | 5.48 | 7.05 M |
P2P-CNF (70% Pruned) | This paper | 5.76 | 7.10 | 6.13 M |
P2P-CNF (80% Pruned) | This paper | 7.65 | 9.37 | 5.56 M |
Model | Venue | MAE | RMSE | Parmaters |
---|---|---|---|---|
Faster R-CNN [16] | TPAMI 2016 | 7.77 | 9.80 | 41.4 M |
CSRnet [62] | CVPR 2018 | 6.87 | 8.87 | 16.26 M |
TasselNetv2+ [44] | Front Plant Sci 2020 | 5.10 | 8.75 | 0.25 M |
P2PNet [8] | ICCV 2021 | 4.02 | 5.76 | 21.57 M |
RPNet [7] | Crop J 2023 | 2.94 | 4.66 | 20.64 M |
RiceNet [6] | PLPH 2023 | 2.99 | 4.86 | 20.55 M |
PET [64] | ICCV 2023 | 4.26 | 5.88 | 20.90 M |
P2P-CNF (40% Pruned) | This paper | 2.95 | 4.71 | 10.00 M |
P2P-CNF (50% Pruned) | This paper | 3.35 | 4.54 | 8.30 M |
P2P-CNF (60% Pruned) | This paper | 2.94 | 5.05 | 7.00 M |
P2P-CNF (70% Pruned) | This paper | 3.23 | 4.70 | 6.07 M |
P2P-CNF (80% Pruned) | This paper | 4.02 | 5.85 | 5.54 M |
Model | Scale Parse Rate | MAE | RMSE | Parameters |
---|---|---|---|---|
P2P-CNF (original feature fusion) | 0.4 | 5.01 | 6.83 | 11.68 M |
P2P-CNF (DAFM without attention) | 4.0 | 5.06 | 10.15 M | |
P2P-CNF (DAFM) | 3.67 | 4.57 | 10.4 M | |
P2P-CNF (original feature fusion) | 0.5 | 5.19 | 6.65 | 9.93 M |
P2P-CNF (DAFM without attention) | 4.20 | 5.48 | 8.40 M | |
P2P-CNF (DAFM) | 3.45 | 4.59 | 8.63 M | |
P2P-CNF (original feature fusion) | 0.6 | 4.44 | 5.93 | 8.58 M |
P2P-CNF (DAFM without attention) | 4.17 | 5.27 | 7.05 M | |
P2P-CNF (DAFM) | 3.12 | 4.12 | 7.31 M | |
P2P-CNF (original feature fusion) | 0.7 | 5.33 | 6.77 | 7.54 M |
P2P-CNF (DAFM without attention) | 4.25 | 5.36 | 6.0 M | |
P2P-CNF (DAFM) | 3.21 | 4.42 | 6.51 M | |
P2P-CNF (original feature fusion) | 0.8 | 6.59 | 8.77 | 6.93 M |
P2P-CNF (DAFM without attention) | 4.21 | 5.39 | 5.38 M | |
P2P-CNF (DAFM) | 3.66 | 4.94 | 5.59 M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Tan, S.; Luo, Z.; Yin, Y.; Cao, C.; Zhou, K.; Zhu, L. Development of a Lightweight Model for Rice Plant Counting and Localization Using UAV-Captured RGB Imagery. Agriculture 2025, 15, 122. https://doi.org/10.3390/agriculture15020122
Sun H, Tan S, Luo Z, Yin Y, Cao C, Zhou K, Zhu L. Development of a Lightweight Model for Rice Plant Counting and Localization Using UAV-Captured RGB Imagery. Agriculture. 2025; 15(2):122. https://doi.org/10.3390/agriculture15020122
Chicago/Turabian StyleSun, Haoran, Siqiao Tan, Zhengliang Luo, Yige Yin, Congyin Cao, Kun Zhou, and Lei Zhu. 2025. "Development of a Lightweight Model for Rice Plant Counting and Localization Using UAV-Captured RGB Imagery" Agriculture 15, no. 2: 122. https://doi.org/10.3390/agriculture15020122
APA StyleSun, H., Tan, S., Luo, Z., Yin, Y., Cao, C., Zhou, K., & Zhu, L. (2025). Development of a Lightweight Model for Rice Plant Counting and Localization Using UAV-Captured RGB Imagery. Agriculture, 15(2), 122. https://doi.org/10.3390/agriculture15020122