Adaptation Strategies for Hemp in Alkaline Salt Environments: Fertilizer Management for Nutrient Uptake and Optimizing Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Alkaline Stress Treatment
2.3. Growth Parameters and Biomass Analysis
2.4. Mineral Nutrient Analysis
2.5. Statistical Analysis
3. Results
3.1. Effects of NPK on the Growth of Hemp Under NaHCO3 Stress
3.1.1. Effects of Different NPK Combinations on Growth Indicators and Biomass of Hemp Under NaHCO3 Stress
3.1.2. Range Analysis of the Effect of NPK Fertilization on Growth Indicators of Hemp Under NaHCO3 Stress
3.2. Effects of N, P, and K Application on the Ionic Content of Hemp Under NaHCO3 Stress
3.2.1. Na+
3.2.2. K+
3.2.3. N
3.2.4. P
3.2.5. Ca2+ and Mg2+
3.2.6. Range Analysis of N, P, and K Fertilizers on Nutrient Content of Hemp Under NaHCO3 Stress
4. Discussion
4.1. Optimal N, P, and K Ratios for Hemp Growth Under Alkaline Stress
4.2. Effects of N, P, and K Nutritional Combinations on Nutrient Allocation and Ion Homeostasis
4.3. Harmful Effects and Threshold Concentrations of Excessive Fertilization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jones, A.D.; Ejeta, G. A new global agenda for nutrition and health: The importance of agriculture and food systems. Bull. World Health Organ. 2016, 94, 228–229. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Liang, C.; Chen, X.; Ye, S.; Peng, Y.; Yang, L.; Duan, M.; Wang, X. Magnetically-treated brackish water affects soil water-salt distribution and the growth of cotton with film mulch drip irrigation in Xinjiang, China. Agric. Water Manag. 2022, 263, 107487. [Google Scholar] [CrossRef]
- Hu, H.; Liu, H.; Liu, F. Seed germination of hemp (Cannabis sativa L.) cultivars responds differently to the stress of salt type and concentration. Ind. Crop. Prod. 2018, 123, 254–261. [Google Scholar] [CrossRef]
- Manaia, J.P.; Manaia, A.T.; Rodriges, L. Industrial hemp fibers: An overview. Fibers 2019, 7, 106. [Google Scholar] [CrossRef]
- Amaducci, S.; Scordia, D.; Liu, F.; Zhang, Q.; Guo, H.; Testa, G.; Cosentino, S. Key cultivation techniques for hemp in Europe and China. Ind. Crop. Prod. 2015, 68, 2. [Google Scholar] [CrossRef]
- Liu, J.; Qiao, Q.; Cheng, X.; Du, G.; Deng, G.; Zhao, M.; Liu, F. Transcriptome differences between fiber-type and seed-type Cannabis sativa variety exposed to salinity. Physiol. Mol. Biol. Plants 2016, 22, 429–443. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Zhu, Y.; Zhang, R.; Zhu, Z.; Zhao, T.; Cheng, L.; Gao, L.; Liu, B.; Zhang, X.; Wang, Y. Ionomic and metabolomic analyses reveal the resistance response mechanism to saline-alkali stress in Malus halliana seedlings. Plant Physiol. Biochem. 2020, 147, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Shi, D.; Wang, D. Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regul. 2008, 56, 179–190. [Google Scholar] [CrossRef]
- Michalska, A.; Wojdyło, A.; Bogucka, B. The influence of nitrogen and potassium fertilisation on the content of polyphenolic compounds and antioxidant capacity of coloured potato. J. Food Compos. Anal. 2016, 47, 69–75. [Google Scholar] [CrossRef]
- Guo, X.; Wu, Q.; Zhang, Z.; Zhu, G.; Zhou, G. Nitrogen and phosphorus counteracted the adverse effects of salt on sorghum by improving ROS scavenging and osmotic regulation. Agronomy 2023, 13, 1020. [Google Scholar] [CrossRef]
- Singh, M.; Singh, V.P.; Prasad, S.M. Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation. Plant Physiol. Biochem. 2016, 109, 72–83. [Google Scholar] [CrossRef]
- Bouras, H.; Choukr-Allah, R.; Amouaouch, Y.; Bouaziz, A.; Devkota, K.P.; El Mouttaqi, A.; Bouazzama, B.; Hirich, A. How does quinoa (Chenopodium quinoa Willd.) respond to phosphorus fertilization and irrigation water salinity? Plants 2022, 11, 216. [Google Scholar] [CrossRef]
- Iqbal, N.; Umar, S.; Khan, N.A. Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J. Plant Physiol. 2015, 178, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Talbi Zribi, O.; Abdelly, C.; Debez, A. Interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity of barley (Hordeum vulgare L.). Plant Biol. 2011, 13, 872–880. [Google Scholar] [CrossRef]
- Huang, W.; Lin, M.; Liao, J.; Li, A.; Tsewang, W.; Chen, X.; Sun, B.; Liu, S.; Zheng, P. Effects of potassium deficiency on the growth of tea (Camelia sinensis) and strategies for optimizing potassium levels in soil: A critical review. Horticulturae 2022, 8, 660. [Google Scholar] [CrossRef]
- Munir, A.; Shehzad, M.T.; Qadir, A.A.; Murtaza, G.; Khalid, H.I. Use of potassium fertilization to ameliorate the adverse effects of saline-sodic stress condition (ECw: SARw Levels) in rice (Oryza sativa L.). Commun. Soil Sci. Plant Anal. 2019, 50, 1975–1985. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef]
- Zhao, D.-Y.; Zhang, X.-L.; Zhao, S.-P.; Liu, G.-L.; Zhang, Z.-W.; Zhao, W.-F.; Li, X.-P.; Khan, S.A.; Siddique, K.H.M. Biomass allocation and nutrients utilization in wheat as affected by phosphorus placement and salt stress. Agronomy 2023, 13, 1570. [Google Scholar] [CrossRef]
- Reinbott, T.M.; Blevins, D.G. Phosphorus and temperature effects on magnesium, calcium, and potassium in wheat and tall fescueleaves. Agron. J. 1994, 86, 523–529. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, T.Q.; Tan, C.S.; Astatkie, T. Responses of fruit yield and quality of processing tomato todrip rrigation and ferilizers phosphorus and potassium. Agron. J. 2011, 103, 1339–1345. [Google Scholar] [CrossRef]
- Kaci, H.S.-A.; Haddadj, A.C.; Aid, F. Enhancing of symbiotic efficiency and salinity tolerance of chickpea by phosphorus supply. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2018, 68, 534–540. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, H.; Xia, J.; Hou, F.; Shi, X.; Hao, X.; Hafeez, A.; Han, H.; Luo, H. Optimal pre-plant irrigation and fertilization canimprove biomass accumulation by maintaining the root and leaf productive capacity of cotton crop. Sci. Rep. 2017, 7, 17168. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wang, Q.; Ye, Z.; Stiles, S.; Feng, G. Optimisation of phosphorus fertilisation promotes biomass and phosphorus nutrientaccumulation, partitioning and translocation in three cotton (Gossypium hirsutum) genotypes. Crop Pasture Sci. 2020, 71, 56–69. [Google Scholar] [CrossRef]
- GB 9834-1988; Standardization Administration of China. Method for Determination of Soil Organic Matter. China Standard Press: Beijing, China, 1988.
- Cao, K.; Sun, Y.; Zhang, X.; Zhao, Y.; Bian, J.; Zhu, H.; Wang, P.; Gao, B.; Sun, X.; Hu, M. The miRNA–mRNA regulatory networks of the response to NaHCO3 stress in industrial hemp (Cannabis sativa L.). BMC Plant Biol. 2023, 23, 509. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Si, H.; Ye, Y.; Ji, Q.; Wang, H.; Zhang, Y. Arbuscular Mycorrhizal Fungi-Mediated Modulation of Physiological, Biochemical, and Secondary Metabolite Responses in Hemp (Cannabis sativa L.) under Salt and Drought Stress. J. Fungi 2024, 10, 283. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.J.; Li, G.; Wang, M.M.; Jin, Y.Y.; Zhang, G.H.; Liu, M.; Yang, H.Y.; Jiang, C.J.; Liang, Z.-W. Physiological and transcriptomic analyses reveal novel insights into the cultivar-specific response to alkaline stress in alfalfa (Medicago sativa L.). Ecotoxicol. Environ. Saf. 2021, 228, 113017. [Google Scholar] [CrossRef]
- Wei, X.; Zhou, W.; Long, S.; Guo, Y.; Qiu, C.; Zhao, X.; Wang, Y. Effects of Different N, P, and K Rates on the Growth and Cannabinoid Content of Industrial Hemp. J. Nat. Fibers 2023, 20, 2159605. [Google Scholar] [CrossRef]
- Liu, J.; Chen, W.; Wang, H.; Peng, F.; Chen, M.; Liu, S.; Chu, G. Effects of NPK fertilization on photosynthetic characteristics and nutrients of pecan at the seedling stage. J. Soil Sci. Plant Nutr. 2021, 21, 2425–2435. [Google Scholar] [CrossRef]
- Chen, K.; Ma, L.; Chen, C.; Liu, N.; Wang, B.; Bao, Y.; Liu, Z.; Zhou, G. Long-term impact of N, P, K fertilizers in different rates on yield and quality of Anisodus tanguticus (Maxinowicz) Pascher. Plants 2023, 12, 2102. [Google Scholar] [CrossRef]
- Yang, Z.-J.; Wu, X.-H.; Chen, L.-H.; Huang, L.-M.; Chen, Y.; Wu, J.; El-Kassaby, Y.A.; Grossnickle, S.C.; Feng, J.-L. Fertilization regulates accumulation and allocation of biomass and nutrients in Phoebe bournei seedlings. Agriculture 2021, 11, 1187. [Google Scholar] [CrossRef]
- Shao, A.; Sun, Z.; Fan, S.; Xu, X.; Wang, W.; Amombo, E.; Yin, Y.; Li, X.; Wang, G.; Wang, H. Moderately low nitrogen application mitigate the negative effects of salt stress on annual ryegrass seedlings. PeerJ 2020, 8, e10427. [Google Scholar] [CrossRef] [PubMed]
- Hafsi, C.; Falleh, H.; Saada, M.; Ksouri, R.; Abdelly, C. Potassium deficiency alters growth, photosynthetic performance, secondary metabolites content, and related antioxidant capacity in Sulla carnosa grown under moderate salinity. Plant Physiol.Biochem. 2017, 118, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Ahanger, M.A.; Qin, C.; Begum, N.; Maodong, Q.; Dong, X.X.; El-Esawi, M.; El-Sheikh, M.A.; Alatar, A.A.; Zhang, L. Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation. BMC Plant Biol. 2019, 19, 479. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Mohammad, F.; Khan, M.N.; Al-Whaibi, M.H.; Bahkali, A.H. Nitrogen in Relation to Photosynthetic Capa city and Accumulation of Osmo protectant and Nutrients in Brassica Genotypes Grown Under Salt Stress. Agric. Sci. China 2010, 9, 671–680. [Google Scholar] [CrossRef]
- Xia, Z.; Zhang, S.; Wang, Q.; Zhang, G.; Fu, Y.; Fu, Y.; Lu, H.; Lu, H. Effects of root zone warming on maize seedling growth and photosynthetic characteristics under different phosphorus levels. Front. Plant Sci. 2021, 12, 746152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, C.; Tang, X.; Li, H.; Zhang, F.; Rengel, Z.; Whalley, W.R.; Davies, W.J.; Shen, J. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize. New Phytol. 2016, 209, 823–831. [Google Scholar] [CrossRef]
- Shi, X.; Zhou, D.; Guo, P.; Zhang, H.; Dong, J.; Ren, J.; Jiang, C.; Zhong, C.; Zhao, X.; Yu, H. External potassium mediates the response and tolerance to salt stress in peanut at the flowering and needling stages. Photosynthetica 2020, 58, 1141–1149. [Google Scholar] [CrossRef]
- Gul, M.; Wakeel, A.; Steffens, D.; Lindberg, S. Potassium-induced decrease in cytosolic Na+ alleviates deleterious effects of salt stress on wheat (Triticum aestivum L.). Plant Biol. 2019, 21, 825–831. [Google Scholar] [CrossRef]
- Rady, M.M.; Mossa, A.-T.H.; Youssof, A.M.; Osman, A.S.; Ahmed, S.M.; Mohamed, I.A. Exploring the reinforcing effect of nano-potassium on the antioxidant defense system reflecting the increased yield and quality of salt-stressed squash plants. Sci. Hortic. 2023, 308, 111609. [Google Scholar] [CrossRef]
- Chen, W.; Hou, Z.; Wu, L.; Liang, Y.; Wei, C. Effects of salinity and nitrogen on cotton growth in arid environment. Plant Soil 2010, 326, 61–73. [Google Scholar] [CrossRef]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Miao, Q.; Wang, H.; Xue, Y.; Qi, S.; Zhang, J.; Li, J.; Meng, Q.; Cui, Z. Optimizing phosphorus application for winter wheat production in the coastal saline area. Agronomy 2022, 12, 2966. [Google Scholar] [CrossRef]
- Chen, Z.; Pottosin, I.I.; Cuin, T.A.; Fuglsang, A.T.; Tester, M.; Jha, D.; Zepeda-Jazo, I.; Zhou, M.; Palmgren, M.G.; Newman, I.A. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol. 2007, 145, 1714–1725. [Google Scholar] [CrossRef] [PubMed]
- Tester, M.; Davenport, R. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 2003, 91, 503–527. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Tan, S.; Yang, Q.; Chen, S.; Qi, C.; Liu, X.; Liang, J.; Wang, H. Nitrogen Application Alleviates Impairments for Jatropha curcas L. Seedling Growth under Salinity Stress by Regulating Photosynthesis and Antioxidant Enzyme Activity. Agronomy 2023, 13, 1749. [Google Scholar] [CrossRef]
- Giambalvo, D.; Amato, G.; Borgia, D.; Ingraffia, R.; Librici, C.; Lo Porto, A.; Puccio, G.; Ruisi, P.; Frenda, A.S. Nitrogen availability drives mycorrhizal effects on wheat growth, nitrogen uptake and recovery under salt stress. Agronomy 2022, 12, 2823. [Google Scholar] [CrossRef]
- Li, L.; Tang, C.; Rengel, Z.; Zhang, F.S. Calcium, magnesium and microelement uptake as affected by phosphorus sources andinterspecific root interactions between wheat and chickpea. Plant Soil 2004, 261, 29–37. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Q.; Zong, J.; Guo, H.; Liu, J.; Chen, J. Effects of Supplemental Potassium on the Growth, Photosynthetic Characteristics, and Ion Content of Zoysia matrella under Salt Stress. Horticulturae 2023, 10, 31. [Google Scholar] [CrossRef]
- Gao, Y.; Li, D. Assessing leaf senescence in tall fescue (Festuca arundinacea Schreb.) under salinity stress using leaf spectrum. Eur. J. Hortic. Sci 2015, 80, 170–176. [Google Scholar] [CrossRef]
- Mauchamp, A.; Mésleard, F. Salt tolerance in Phragmites australis populations from coastal Mediterranean marshes. Aquat. Bot. 2001, 70, 39–52. [Google Scholar] [CrossRef]
- Elhanafi, L.; Houhou, M.; Rais, C.; Mansouri, I.; Elghadraoui, L.; Greche, H. Impact of excessive nitrogen fertilization on the biochemical quality, phenolic compounds, and antioxidant power of Sesamum indicum L. seeds. J. Food Qual. 2019, 2019, 9428092. [Google Scholar] [CrossRef]
- Tang, H.; Niu, L.; Wei, J.; Chen, X.; Chen, Y. Phosphorus limitation improved salt tolerance in maize through tissue mass density increase, osmolytes accumulation, and Na+ uptake inhibition. Front. Plant Sci. 2019, 10, 856. [Google Scholar] [CrossRef] [PubMed]
- Daoud, B.; Pawelzik, E.; Naumann, M. Different potassium fertilization levels influence water-use efficiency, yield, and fruit quality attributes of cocktail tomato—A comparative study of deficient-to-excessive supply. Sci. Hortic. 2020, 272, 109562. [Google Scholar] [CrossRef]
- Duan, M.; Chang, S.X. Nitrogen fertilization improves the growth of lodgepole pine and white spruce seedlings under low salt stress through enhancing photosynthesis and plant nutrition. For. Ecol. Manag. 2017, 404, 197–204. [Google Scholar] [CrossRef]
No. | Treatment | N (g·L−1) | P (g·L−1) | K (g·L−1) |
---|---|---|---|---|
T1 | N0P0K0 | 0 (0) | 0 (0) | 0 (0) |
T2 | N0P2K2 | 0 (0) | 2 (0.238) | 2 (0.348) |
T3 | N1P2K2 | 1 (0.120) | 2 (0.238) | 2 (0.348) |
T4 | N2P0K2 | 2 (0.240) | 0 (0) | 2 (0.348) |
T5 | N2P1K2 | 2 (0.240) | 1 (0.119) | 2 (0.348) |
T6 | N2P2K2 | 2 (0.240) | 2 (0.238) | 2 (0.348) |
T7 | N2P3K2 | 2 (0.240) | 3 (0.357) | 2 (0.348) |
T8 | N2P2K0 | 2 (0.240) | 2 (0.238) | 0 (0) |
T9 | N2P2K1 | 2 (0.240) | 2 (0.238) | 1 (0.174) |
T10 | N2P2K3 | 2 (0.240) | 2 (0.238) | 3 (0.522) |
T11 | N3P2K2 | 3 (0.360) | 2 (0.238) | 2 (0.348) |
T12 | N1P1K2 | 1 (0.120) | 1 (0.119) | 2 (0.348) |
T13 | N1P2K1 | 1 (0.120) | 2 (0.238) | 1 (0.174) |
T14 | N2P1K1 | 2 (0.240) | 1 (0.119) | 1 (0.174) |
Element Type | Reagent Formula | Concentration (mmol·L−1) |
---|---|---|
Macroelement | MgSO4·7H2O | 406 |
CaCl2 | 424 | |
Microelement | H3BO3 | 0.05 |
MnSO4·H2O | 0.01 | |
Na2MoO4·2H2O | 0.001 | |
CuSO4·5H2O | 0.001 | |
ZnSO4·7H2O | 0.001 | |
Molysite | FeSO4·7H2O | 0.05 |
EDTA-2Na·2H2O | 0.05 |
Treatment | Plant Height (cm) | Stem Diameter (mm) | Root Length (cm) | Number of Effective Leaves |
---|---|---|---|---|
1#N0P0K0 | 45.07 ± 2.67 cde | 6.3 ± 0.02 fg | 24.89 ± 0.38 de | 9.67 ± 0.67 ef |
2#N0P2K2 | 47.53 ± 3.84 bc | 6.19 ± 0.04 gh | 26.11 ± 0.84 cde | 11.67 ± 0.33 cd |
3#N1P2K2 | 55.17 ± 0.58 a | 7.48 ± 0.04 a | 33.17 ± 1.73 a | 13.67 ± 0.33 ab |
4#N2P0K2 | 51.53 ± 1.2 ab | 6.29 ± 0.01 g | 21.04 ± 0.87 fg | 14.33 ± 0.67 a |
5#N2P1K2 | 54.1 ± 0.45 a | 7.23 ± 0.02 b | 28.91 ± 0.13 b | 13 ± 0.58 abc |
6#N2P2K2 | 51.83 ± 0.86 ab | 6.81 ± 0.03 cd | 28.68 ± 0.44 bc | 12.33 ± 0.33 bcd |
7#N2P3K2 | 46.37 ± 1.47 cd | 6.06 ± 0.04 hi | 20.86 ± 0.31 fgh | 11 ± 0.58 de |
8#N2P2K0 | 45.83 ± 0.94 cde | 6.48 ± 0.07 e | 27.25 ± 0.39 bcd | 9.67 ± 0.33 ef |
9#N2P2K1 | 39.23 ± 0.55 f | 6.43 ± 0.09 ef | 25.1 ± 0.81 de | 11 ± 0.58 de |
10#N2P2K3 | 33.17 ± 0.67 g | 6.45 ± 0.07 e | 25.09 ± 1.93 de | 11.67 ± 0.88 cd |
11#N3P2K2 | 41.17 ± 0.98 ef | 6.18 ± 0.02 gh | 23.48 ± 0.66 ef | 13 ± 0.58 abc |
12#N1P1K2 | 42.17 ± 0.58 def | 6.92 ± 0.02 c | 19.42 ± 0.57 gh | 9 ± 0.58 f |
13#N1P2K1 | 45.33 ± 1.82 cde | 6.76 ± 0.03 e | 18.25 ± 0.61 h | 10.67 ± 0.33 def |
14#N2P1K1 | 49.13 ± 0.55 bc | 6.03 ± 0.03 i | 20.25 ± 0.05 gh | 11 ± 0.58 de |
Growth Indicators | Range Value | Fertilizer Effect Ordination | ||
---|---|---|---|---|
N | P | K | ||
Plant height | 6.3889 | 3.5583 | 15.5667 | K > N > P |
Stem diameter | 0.8689 | 0.6678 | 0.2533 | N > P > K |
Root length | 2.0267 | 5.0283 | 4.8733 | K > N > P |
Number of leaves | 2.3333 | 1.000 | 2.5833 | K > N > P |
Whole plant biomass | 3.0300 | 3.0575 | 3.8792 | K > N > P |
Aboveground biomass | 2.6800 | 2.9038 | 2.8688 | P > K > N |
Underground biomass | 0.5233 | 0.1939 | 0.0104 | K > P > N |
Nutrient Content | Range Value | Fertilizer Effect Ordination | ||
---|---|---|---|---|
N | P | K | ||
Root N content | 21.0436 | 6.8537 | 13.9480 | N > K > P |
Steams N content | 6.3261 | 2.5876 | 4.0593 | N > K > P |
Leaves N content | 8.3115 | 6.3254 | 8.0423 | N > K > P |
Root P content | 2.9703 | 6.3518 | 1.7472 | P > N > K |
Steams P content | 1.7101 | 0.9210 | 0.7003 | N > P > K |
Leaves P content | 1.2637 | 3.3864 | 1.5669 | P > K > N |
Root K content | 61.9413 | 20.9437 | 31.0935 | N > K > P |
Steams K content | 2.5429 | 4.5110 | 5.3109 | K > P > N |
Leaves K content | 20.9482 | 58.0640 | 26.1786 | P > K > N |
Root Na+ content | 45.6194 | 25.1850 | 39.3616 | N > K > P |
Steams Na+ content | 1.8559 | 2.2741 | 1.6712 | P > N > K |
Leaves Na+ content | 0.6877 | 0.6431 | 0.5842 | P > K > N |
Root Ca2+ content | 20.9695 | 67.6636 | 16.6434 | P > N > K |
Steams Ca2+ content | 6.2693 | 5.0973 | 1.7447 | N > P > K |
Leaves Ca2+ content | 8.4764 | 6.4670 | 10.7035 | K > N > P |
Root Mg2+ content | 11.6652 | 20.9703 | 5.7352 | P > N > K |
Steams Mg2+ content | 4.5920 | 5.7073 | 4.5376 | P > N > K |
Leaves Mg2+ content | 1.9355 | 1.7621 | 1.4610 | N > P > K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Y.; Wang, H.; Zhang, P.; Zhang, Y. Adaptation Strategies for Hemp in Alkaline Salt Environments: Fertilizer Management for Nutrient Uptake and Optimizing Growth. Agriculture 2025, 15, 125. https://doi.org/10.3390/agriculture15020125
Ye Y, Wang H, Zhang P, Zhang Y. Adaptation Strategies for Hemp in Alkaline Salt Environments: Fertilizer Management for Nutrient Uptake and Optimizing Growth. Agriculture. 2025; 15(2):125. https://doi.org/10.3390/agriculture15020125
Chicago/Turabian StyleYe, Yunshu, Haoyu Wang, Panpan Zhang, and Yuhong Zhang. 2025. "Adaptation Strategies for Hemp in Alkaline Salt Environments: Fertilizer Management for Nutrient Uptake and Optimizing Growth" Agriculture 15, no. 2: 125. https://doi.org/10.3390/agriculture15020125
APA StyleYe, Y., Wang, H., Zhang, P., & Zhang, Y. (2025). Adaptation Strategies for Hemp in Alkaline Salt Environments: Fertilizer Management for Nutrient Uptake and Optimizing Growth. Agriculture, 15(2), 125. https://doi.org/10.3390/agriculture15020125