Plucking Point and Posture Determination of Tea Buds Based on Deep Learning
Abstract
:1. Introduction
- An approach for plucking posture and point determination of tea buds based on a deep learning network and an image processing method were proposed. This technique can enhance the accuracy of mechanized tea plucking implementation, thereby contributing to its successful adoption in practice.
- Two approaches of feature point matching were put forward, enabling accurate alignment of two sets of tea bud feature points and the acquisition of the feature line for tea plucking posture. The accuracy and efficiency of these two methods were analyzed in detail.
- The accurate matching of feature points plays a crucial role in determining the plucking posture of tea buds. Therefore, the failure cases of feature point matching were also analyzed. Additionally, future research prospects were presented.
2. Materials and Methods
2.1. Dataset Building
2.1.1. Image Acquisition
2.1.2. Data Processing
2.2. Instance Segmentation of Tea Bud and Plucking Area Based on Improved YOLOv8-Seg
2.2.1. The Improved Segmentation Head
2.2.2. SPPF-LSKA Module
2.2.3. C2f-DCNv2 Module
2.3. Matching the Tea Bud with Its Plucking Point
2.3.1. Plucking Point Localization
2.3.2. Nearest Point Matching Method
Algorithm 1: Nearest point matching method | |
Input: Point set A: { centroid of plucking area}; Point set B: { central points of tea bud bounding box}; | |
Output: Result ←List:, in A matched with the nearest in B)) | |
1: | Result ← zeros (row ← min (row of A, row of B), column ← 4) |
2: | for i = 1, …, n (n ← row of A) |
3: | D ← zeros (row = row of A, column = 1) |
4: | for j = 1, …, m (m ← row of B) |
5: | ← distance of and |
6: | k ← Index of minimum of d |
7: | Result [i] ← |
8: | B ← B without |
9: | Return Result |
2.3.3. Point in Range Matching Method
Algorithm 2: Point in range matching method | |
centroid of plucking area}; Point set B limits of tea bud area bounding box}; | |
Output: Result | |
1: | Result ← zeros (row ← min (row of A, row of B), column ← 4) |
2: | for i = 1, …, n (n ← row of A) |
3: | for j = 1, …, m (m ← row of B) |
4: | |
5: | Result |
6: | |
7: | break |
8: | else |
9: | continue |
10: | Return Result |
2.4. Plucking Posture Determination
2.4.1. Two-Dimensional Plucking Posture Determination
2.4.2. Three-Dimensional Plucking Posture Determination
2.5. General Summary of the Method
3. Results and Discussion
3.1. Evaluation Metrics
3.2. Model Training of LDS-YOLOv8
3.3. Evaluation of Tea Bud Recognition and Plucking Area Detection
3.3.1. Detection and Segmentation Results Using the Improved YOLOv8 Model
3.3.2. Performance Comparison Between Different Networks
3.3.3. Ablation Experiments
3.4. Evaluation of the Matching and Plucking Posture Determination
3.5. Analysis of Failure Cases
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, Y.; Xiao, H.; Qin, G.; Song, Z.; Ding, W.; Mei, S. Developing Situations of Tea Plucking Machine. Engineering 2014, 6, 268–273. [Google Scholar] [CrossRef]
- Motokura, K.; Takahashi, M.; Ewerton, M.; Peters, J. Plucking Motions for Tea Harvesting Robots Using Probabilistic Movement Primitives. IEEE Robot. Autom. Lett. 2020, 5, 3275–3282. [Google Scholar] [CrossRef]
- Han, Y.; Xiao, H.; Song, Y.; Ding, Q. Design and Evaluation of Tea-Plucking Machine for Improving Quality of Tea. Appl. Eng. Agric. 2019, 35, 979–986. [Google Scholar] [CrossRef]
- Wang, X.; Han, C.; Wu, W.; Xu, J.; Zhang, Q.; Chen, M.; Hu, Z.; Zheng, Z. Fundamental Understanding of Tea Growth and Modeling of Precise Tea Shoot Picking Based on 3-D Coordinate Instrument. Processes 2021, 9, 1059. [Google Scholar] [CrossRef]
- Li, Y.; Wu, S.; He, L.; Tong, J.; Zhao, R.; Jia, J.; Chen, J.; Wu, C. Development and field evaluation of a robotic harvesting system for plucking high-quality tea. Comput. Electron. Agric. 2023, 206, 107659. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, C.; Tong, J.; Chen, J.; He, L.; Wang, R.; Jia, J. Deviation Tolerance Performance Evaluation and Experiment of Picking End Effector for Famous Tea. Agriculture 2021, 11, 128. [Google Scholar] [CrossRef]
- Li, Y.; He, L.; Jia, J.; Lv, J.; Chen, J.; Qiao, X.; Wu, C. In-field tea shoot detection and 3D localization using an RGB-D camera. Comput. Electron. Agric. 2021, 185, 106149. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Z. Research progress of tea image feature extraction and its application. J. Green Sci. Technol. 2021, 23, 207–209. [Google Scholar] [CrossRef]
- Tian, J.; Zhu, H.; Liang, W.; Chen, J.; Wen, F.; Long, Z. Research on the Application of Machine Vision in Tea Autonomous Picking. J. Phys. Conf. Ser. 2021, 1952, 022063. [Google Scholar] [CrossRef]
- Wei, B. Research on tea leaf recognition based on the color and shape features. Fujian Tea 2016, 38, 16–17. [Google Scholar] [CrossRef]
- Thangavel, S.K.; Murthi, M. A semi automated system for smart harvesting of tea leaves. In Proceedings of the 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 6–7 January 2017; pp. 1–10. [Google Scholar]
- Chen, J.; Chen, Y.; Jin, X.; Che, J.; Gao, F.; Li, N. Research on a Parallel Robot for Tea Flushes Plucking. In Proceedings of the Proceedings of the 2015 International Conference on Education, Management, Information and Medicine, Shenyang, China, 24–26 April 2015; pp. 22–26. [Google Scholar]
- Wu, X.; Tang, X.; Zhang, F.; Gu, J. Tea buds image identification based on lab color model and K-means clustering. J. Chin. Agric. Mech. 2015, 36, 161–164, 179. [Google Scholar] [CrossRef]
- Karunasena, G.M.K.B.; Priyankara, H. Tea Bud Leaf Identification by Using Machine Learning and Image Processing Techniques. Int. J. Sci. Eng. Res. 2020, 11, 624–628. [Google Scholar] [CrossRef]
- Wang, C.; Tang, Y.; Zou, X.; Luo, L.; Chen, X. Recognition and Matching of Clustered Mature Litchi Fruits Using Binocular Charge-Coupled Device (CCD) Color Cameras. Sensors 2017, 17, 2564. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Feng, Y.; Wu, J.; Liu, Z.; Gao, F.; Majeed, Y.; Al-Mallahi, A.; Zhang, Q.; Li, R.; Cui, Y. Fast and accurate detection of kiwifruit in orchard using improved YOLOv3-tiny model. Precis. Agric. 2021, 22, 754–776. [Google Scholar] [CrossRef]
- Gené-Mola, J.; Vilaplana, V.; Rosell-Polo, J.R.; Morros, J.-R.; Ruiz-Hidalgo, J.; Gregorio, E. Multi-modal deep learning for Fuji apple detection using RGB-D cameras and their radiometric capabilities. Comput. Electron. Agric. 2019, 162, 689–698. [Google Scholar] [CrossRef]
- Mirbod, O.; Choi, D.; Heinemann, P.H.; Marini, R.P.; He, L. On-tree apple fruit size estimation using stereo vision with deep learning-based occlusion handling. Biosyst. Eng. 2023, 226, 27–42. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, H.; Wang, H.; Zhang, Y. Fruit detection and positioning technology for a Camellia oleifera C. Abel orchard based on improved YOLOv4-tiny model and binocular stereo vision. Expert Syst. Appl. 2023, 211, 118573. [Google Scholar] [CrossRef]
- Rong, J.; Wang, P.; Wang, T.; Hu, L.; Yuan, T. Fruit pose recognition and directional orderly grasping strategies for tomato harvesting robots. Comput. Electron. Agric. 2022, 202, 107430. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, J.; Xu, L.; Gu, Y.; Zou, L.; Ma, Z. A segmentation method for waxberry image under orchard environment. Sci. Hortic. 2020, 266, 109309. [Google Scholar] [CrossRef]
- Tang, Y.; Qiu, J.; Zhang, Y.; Wu, D.; Cao, Y.; Zhao, K.; Zhu, L. Optimization strategies of fruit detection to overcome the challenge of unstructured background in field orchard environment: A review. Precis. Agric. 2023, 24, 1183–1219. [Google Scholar] [CrossRef]
- Li, X.; Liu, B.; Shi, Y.; Xiong, M.; Ren, D.; Wu, L.; Zou, X. Efficient three-dimensional reconstruction and skeleton extraction for intelligent pruning of fruit trees. Comput. Electron. Agric. 2024, 227, 109554. [Google Scholar] [CrossRef]
- Chen, B.; Yan, J.; Wang, K. Fresh Tea Sprouts Detection via Image Enhancement and Fusion SSD. J. Control Sci. Eng. 2021, 2021, 6614672. [Google Scholar] [CrossRef]
- Chen, C.; Lu, J.; Zhou, M.; Yi, J.; Liao, M.; Gao, Z. A YOLOv3-based computer vision system for identification of tea buds and the picking point. Comput. Electron. Agric. 2022, 198, 107116. [Google Scholar] [CrossRef]
- Gui, Z.; Chen, J.; Li, Y.; Chen, Z.; Wu, C.; Dong, C. A lightweight tea bud detection model based on Yolov5. Comput. Electron. Agric. 2023, 205, 107636. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, K.; Zhang, W.; Wang, R.; Wan, S.; Rao, Y.; Jiang, Z.; Gu, L. Tea picking point detection and location based on Mask-RCNN. Inf. Process. Agric. 2021, 10, 267–275. [Google Scholar] [CrossRef]
- Yang, H.; Chen, L.; Chen, M.; Ma, z.; Deng, F.; Li, M.; Li, X. Tender Tea Shoots Recognition and Positioning for Picking Robot Using Improved YOLO-V3 Model. IEEE Access 2019, 7, 180998–181011. [Google Scholar] [CrossRef]
- Yang, H.; Chen, L.; Ma, Z.; Chen, M.; Zhong, Y.; Deng, F.; Li, M. Computer vision-based high-quality tea automatic plucking robot using Delta parallel manipulator. Comput. Electron. Agric. 2021, 181, 105946. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, L.; Li, J.; Shang, S.; Ding, X.; Wang, T. Detection and classification of tea buds based on deep learning. Comput. Electron. Agric. 2022, 192, 106547. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Chen, S.-F. Localizing plucking points of tea leaves using deep convolutional neural networks. Comput. Electron. Agric. 2020, 171, 105298. [Google Scholar] [CrossRef]
- Torralba, A.; Russell, B.C.; Yuen, J. LabelMe: Online Image Annotation and Applications. Proc. IEEE 2010, 98, 1467–1484. [Google Scholar] [CrossRef]
- Sapkota, R.; Ahmed, D.; Karkee, M. Comparing YOLOv8 and Mask R-CNN for instance segmentation in complex orchard environments. Artif. Intell. Agric. 2024, 13, 84–99. [Google Scholar] [CrossRef]
- Wu, Y.; He, K. Group Normalization. Int. J. Comput. Vis. 2020, 128, 742–755. [Google Scholar] [CrossRef]
- Lin, G.; Chen, D.; Chen, J.; Zhong, K.; Cai, L.; Lin, F.; Zheng, X.; Li, W. Design and testing of a Cutting-collecting integrated end-effector for tea picking. Mech. Electr. Eng. Technol. 2023, 52, 42–45+172. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, L.; Lin, G.; Zhang, S.; Guan, J. Research progress on key technologies of the famous tea picking end effectors. Mordem Agric. Equip. 2022, 43, 7–12. [Google Scholar] [CrossRef]
- Chen, G.; Mao, b.; Zhang, Y. Research on key technologies of famous tea picking robot. J. Chin. Agric. Mech. 2023, 44, 174–179. [Google Scholar] [CrossRef]
Network Model | Precision (B) | Recall (B) | mAP (B) | Precision (M) | Recall (M) | mAP (M) |
---|---|---|---|---|---|---|
YOLOv8x-seg | 0.799 | 0.875 | 0.922 | 0.806 | 0.870 | 0.922 |
LDS-YOLOv8x-seg | 0.835 | 0.859 | 0.925 | 0.842 | 0.852 | 0.924 |
Network Model | Precision (B) | Recall (B) | mAP (B) | Precision (M) | Recall (M) | mAP (M) |
---|---|---|---|---|---|---|
YOLOv8x-seg | 0.794 | 0.618 | 0.707 | 0.645 | 0.492 | 0.499 |
LDS-YOLOv8x-seg | 0.8 | 0.664 | 0.745 | 0.635 | 0.508 | 0.514 |
Network Model | Precision (B) | Recall (B) | mAP (B) | Precision (M) | Recall (M) | mAP (M) |
---|---|---|---|---|---|---|
YOLOv8x-seg | 0.797 | 0.747 | 0.815 | 0.726 | 0.681 | 0.710 |
LDS-YOLOv8x-seg | 0.818 | 0.761 | 0.835 | 0.739 | 0.68 | 0.719 |
Method | Precision of Tea Bud Detection | Average Precision of Overall Performance | Average Recall of Overall Performance | F1 Score of Overall Performance |
---|---|---|---|---|
Chen et al. [31] | 0.727 | 0.668 | 0.777 | / |
Mask R-CNN with Resnet 50 | 0.734 | 0.666 | 0.724 | 0.694 |
Mask R-CNN with Resnet 101 | 0.693 | 0.617 | 0.713 | 0.662 |
Mask R-CNN with Resnet 152 | 0.724 | 0.662 | 0.720 | 0.689 |
This paper | 0.835 | 0.739 | 0.680 | 0.708 |
Improved Head | SPPF-LSKA | C2f-DCNv2 | Precision (B) | Recall (B) | mAP (B) | Precision (M) | Recall (M) | mAP (M) | GFLOPs |
---|---|---|---|---|---|---|---|---|---|
- | - | - | 0.797 | 0.747 | 0.815 | 0.726 | 0.681 | 0.710 | 344.5 |
√ | - | - | 0.81 | 0.759 | 0.831 | 0.735 | 0.674 | 0.714 | 301.2 |
- | √ | - | 0.798 | 0.747 | 0.817 | 0.73 | 0.681 | 0.715 | 345.8 |
- | - | √ | 0.793 | 0.759 | 0.823 | 0.731 | 0.688 | 0.718 | 342.5 |
√ | √ | √ | 0.818 | 0.761 | 0.835 | 0.739 | 0.68 | 0.719 | 300.5 |
Matching Algorithm | Matching Accuracy | Matching Time | |
---|---|---|---|
Average Time (Millisecond) | Standard Deviation (Millisecond) | ||
NPM | 90.355% | 0.175 | 0.380 |
PIRM | 99.229% | 2.363 | 0.995 |
Region | Maximum Pixel Area | Minimum Pixel Area | Average Pixel Area |
---|---|---|---|
Tea bud | 171,662.354 | 974.700 | 16,687.086 |
Plucking area | 5065.741 | 35.070 | 475.799 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, C.; Wu, W.; Han, C.; Zeng, Z.; Tang, T.; Liu, W. Plucking Point and Posture Determination of Tea Buds Based on Deep Learning. Agriculture 2025, 15, 144. https://doi.org/10.3390/agriculture15020144
Dong C, Wu W, Han C, Zeng Z, Tang T, Liu W. Plucking Point and Posture Determination of Tea Buds Based on Deep Learning. Agriculture. 2025; 15(2):144. https://doi.org/10.3390/agriculture15020144
Chicago/Turabian StyleDong, Chengju, Weibin Wu, Chongyang Han, Zhiheng Zeng, Ting Tang, and Wenwei Liu. 2025. "Plucking Point and Posture Determination of Tea Buds Based on Deep Learning" Agriculture 15, no. 2: 144. https://doi.org/10.3390/agriculture15020144
APA StyleDong, C., Wu, W., Han, C., Zeng, Z., Tang, T., & Liu, W. (2025). Plucking Point and Posture Determination of Tea Buds Based on Deep Learning. Agriculture, 15(2), 144. https://doi.org/10.3390/agriculture15020144