Analysis of Dynamic Biogas Consumption in Chinese Rural Areas at Village, Township, and County Levels
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
2. Methodology
2.1. Database
2.2. Scenario Configuration
2.3. Model Establishment
2.4. Model Validation Using Survey and Monitoring Results
2.4.1. Household Survey
2.4.2. Biogas System Monitoring
2.5. Design of Production and Supply Scenarios
3. Results and Discussion
3.1. Results of the Demand Forecasting Model
3.2. Model Validation and Optimization
3.2.1. Validation and Optimization of Total Biogas Consumption
3.2.2. Dynamic Load Validation and Optimization
3.3. Biogas Production and Supply Scenarios
4. Conclusions
- (i)
- The predicted average biogas demand for villages, townships, and counties was 380.06 m3/a·household, 1019.28 m3/a·household, and 1076.43 m3/a·household, respectively. The peak consumption periods were 09:00–15:00, 14:30–24:00, and 15:00–24:00, respectively.
- (ii)
- The prediction error was 19.27% lower than that of the static model. The predicted gas consumption and dynamic loads were consistent with the actual values, and the relative error of gas consumption in villages was 11.45%. The model was optimized by incorporating seasonal correction factors to improve the load prediction accuracy. The seasonal correction factors were 1.1223, 0.8431, 0.9375, and 1.0972, respectively.
- (iii)
- The reasonable parameters of the RBDM increased the stability of production and supply of villages, townships, and counties by 64.81%, 11.11%, and 24.07%, respectively, significantly improving the reliability of biogas supply and energy utilization rate.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Time (h) | Cooking (%) | Heating (%) | Small-Scale Industry (%) | ||||
---|---|---|---|---|---|---|---|
A1 | A2 | A3 | B1 | B2 | B3 | C1 | |
1 | 0 | 0.07 | 0.34 | 4.78 | 2.83 | 8.87 | 0 |
2 | 0 | 0.07 | 0.17 | 4.48 | 2.83 | 8.09 | 0 |
3 | 0 | 0 | 0.43 | 4.56 | 2.66 | 7.05 | 0 |
4 | 0 | 0 | 0.35 | 4.48 | 2.39 | 6.09 | 0 |
5 | 0.74 | 0 | 3.03 | 4.48 | 0.53 | 5.81 | 0 |
6 | 10.09 | 0 | 6.62 | 4.78 | 0.35 | 6.06 | 0 |
7 | 9.79 | 0.20 | 2.11 | 4.71 | 0.62 | 5.52 | 0 |
8 | 3.41 | 4.03 | 0.36 | 4.54 | 1.95 | 3.35 | 10 |
9 | 0.45 | 7.46 | 0.37 | 4.36 | 1.33 | 0.96 | 10 |
10 | 0.59 | 5.21 | 2.04 | 3.48 | 1.77 | 0.39 | 10 |
11 | 16.77 | 4.42 | 21.27 | 3.90 | 1.77 | 0.36 | 10 |
12 | 18.40 | 16.57 | 11.66 | 3.80 | 2.83 | 0.57 | 10 |
13 | 2.82 | 13.80 | 0.63 | 3.13 | 3.28 | 0.61 | 10 |
14 | 0.89 | 5.28 | 0.63 | 3.10 | 2.83 | 1.10 | 10 |
15 | 0 | 2.77 | 0.14 | 2.29 | 2.48 | 1.25 | 10 |
16 | 0.89 | 1.98 | 0.47 | 2.74 | 2.83 | 0.78 | 10 |
17 | 12.46 | 4.16 | 3.74 | 3.90 | 2.66 | 0.50 | 10 |
18 | 18.84 | 16.37 | 11.85 | 4.12 | 7.09 | 0.89 | 0 |
19 | 3.26 | 12.34 | 23.13 | 4.82 | 10.19 | 1.43 | 0 |
20 | 0.59 | 2.11 | 9.51 | 4.85 | 14.08 | 4.31 | 0 |
21 | 0 | 1.58 | 0.74 | 4.54 | 14.44 | 5.88 | 0 |
22 | 0 | 1.06 | 0.24 | 4.78 | 9.12 | 9.58 | 0 |
23 | 0 | 0.40 | 0 | 4.78 | 6.29 | 10.37 | 0 |
24 | 0 | 0.13 | 0.17 | 4.57 | 2.83 | 10.19 | 0 |
Reference | [1] | [38] | [39] | [40] | [38] | [41] | [42] |
Type | Stage | Range | x | Regression Coefficient | Adjusted r2 |
---|---|---|---|---|---|
Rural | I | 22.00–3.00 | 22–24, 0–3 | 0 | - |
II | 3.00–9.00 | 3–9 | y0 = 0.72 ± 0.52, xc = 6.64 ± 0.2, w = 2.28 ± 0.44, A = 24.69 ± 4.86 | 0.974 | |
III | 9.00–15.00 | 9–15 | y0 = 0.72 ± 0.52, xc = 11.63 ± 0.05, w = 1.79 ± 0.1, A = 69.82 ± 4.14 | 0.974 | |
IV | 15.00–22.00 | 15–22 | y0 = 0.72 ± 0.52, xc = 18.32 ± 0.05, w = 1.94 ± 0.12, A = 71.92 ± 4.42 | 0.974 | |
Township | I | 0.00–9.00 | 0–9 | y0 = 850.01 ± 106.47, xc = 11.95 ± 0.2, w = 2.05 ± 0.55, A = 1950.16 ± 922.65 | 0.891 |
II | 9.00–14.30 | 9–14.5 | y0 = 850.01 ± 106.47, xc = 13.91 ± 4.88, w = 8.76 ± 7.44, A = −7217.04 ± 7747.33 | 0.891 | |
III | 14.30–24.00 | 14.5–24 | y0 = 850.01 ± 106.47, xc = 19.73 ± 0.52, w = 4.6 ± 1.52, A = 5176.78 ± 6033.73 | 0.891 | |
County | I | 0.00–9.30 | 0–9.5 | y0 = 12,515.38 ± 669, xc = 9.62 ± 0.17, w = 1.24 ± 0.75, A = −13,521.5 ± 7222.09 | 0.909 |
II | 9.30–15.00 | 9.5–15 | y0 = 12,515.38 ± 669, xc = 15.53 ± 0.23, w = 4 ± 0.77, A = −110,999.32 ± 58,891.75 | 0.909 | |
III | 15.00–24.00 | 15–24 | y0 = 12,515.38 ± 669, xc = 16.85 ± 0.89, w = 8.12 ± 1.14, A = 186,157.88 ± 65,981.55 | 0.909 |
References
- Luo, T.; Pan, J.; Fu, L.; Mei, Z.; Kong, C.; Huang, H. Reducing biogas emissions from village-scale plant with optimal floating-drum biogas storage tank and operation parameters. Appl. Energy 2017, 208, 312–318. [Google Scholar] [CrossRef]
- Vargas-Soplín, A.; Prochnow, A.; Herrmann, C.; Tscheuschner, B.; Kreidenweis, U. The potential for biogas production from autumn tree leaves to supply energy and reduce greenhouse gas emissions—A case study from the city of Berlin. Resour. Conserv. Recycl. 2022, 187, 106598. [Google Scholar] [CrossRef]
- Park, J.; Kang, S.; Kim, S.; Kim, H.; Kim, S.K. Optimizing green hydrogen systems: Balancing economic viability and reliability in the face of supply-demand volatility. Appl. Energy 2024, 368, 123492. [Google Scholar] [CrossRef]
- Li, M.; Zhou, S. Pollutive cooking fuels and rural labor supply: Evidence from a large-scale population census in China. Energy Policy 2023, 183, 113780. [Google Scholar] [CrossRef]
- Zhang, H.; Li, S. Carbon emissions’ spatial-temporal heterogeneity and identification from rural energy consumption in China. J. Environ. Manag. 2022, 304, 114286. [Google Scholar] [CrossRef] [PubMed]
- Glushkov, D.O.; Nyashina, G.S.; Anand, R.; Strizhak, P.A. Composition of gas produced from the direct combustion and pyrolysis of biomass. Process Saf. Environ. Prot. 2021, 156, 43–56. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Zhou, T.; Lei, X.; Liu, X.; Wang, Y. Household cooking energy transition in rural mountainous areas of China: Characteristics, drivers, and effects. J. Clean. Prod. 2023, 385, 135728. [Google Scholar] [CrossRef]
- Korberg, A.D.; Skov, I.R.; Mathiesen, B.V. The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark. Energy 2020, 199, 117426. [Google Scholar] [CrossRef]
- Tarighaleslami, A.H.; Ghannadzadeh, A.; Atkins, M.J.; Walmsley, M.R.W. Environmental life cycle assessment for a cheese production plant towards sustainable energy transition: Natural gas to biomass vs. natural gas to geothermal. J. Clean. Prod. 2020, 275, 122999. [Google Scholar] [CrossRef]
- Yan, B.; Yan, J.; Li, Y.; Qin, Y.; Yang, L. Spatial distribution of biogas potential, utilization ratio and development potential of biogas from agricultural waste in China. J. Clean. Prod. 2021, 292, 126077. [Google Scholar] [CrossRef]
- Daniel Fournier, E.; Cudd, R.; Federico, F.; Pincetl, S. Implications of the timing of residential natural gas use for appliance electrification efforts. Environ. Res. Lett. 2020, 15, 124008. [Google Scholar] [CrossRef]
- Yu, F.; Xu, X. A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network. Appl. Energy 2014, 134, 102–113. [Google Scholar] [CrossRef]
- Yin, P.; Xie, J.; Ji, Y.; Liu, J.; Hou, Q.; Zhao, S.; Jing, P. Winter indoor thermal environment and heating demand of low-quality centrally heated houses in cold climates. Appl. Energy 2023, 331, 120480. [Google Scholar] [CrossRef]
- Tian, N.; Shao, B.; Bian, G.; Zeng, H.; Li, X.; Zhao, W. Application of forecasting strategies and techniques to natural gas consumption: A comprehensive review and comparative study. Eng. Appl. Artif. Intell. 2024, 129, 107644. [Google Scholar] [CrossRef]
- Dominguez, C.; Orehounig, K.; Carmeliet, J. Estimating hourly lighting load profiles of rural households in East Africa applying a data-driven characterization of occupant behavior and lighting devices ownership. Dev. Eng. 2021, 6, 100073. [Google Scholar] [CrossRef]
- Li, L.; Xia, H.; Chen, Z.; Duan, M. Spatiotemporal characteristics and driving mechanisms of household energy transition in rural China: Micro-evidence from 2005 to 2017. Sci. Total Environ. 2024, 909, 168554. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Zhou, X.; Renwick, A. Impact of off-farm income on household energy expenditures in China: Implications for rural energy transition. Energy Policy 2019, 127, 248–258. [Google Scholar] [CrossRef]
- Ma, X.; Li, C.; Kang, Q.; Chen, D.; Sun, Q. Rural household nonagricultural income and energy transition: Evidence from central China. Energy Policy 2024, 188, 114099. [Google Scholar] [CrossRef]
- Luo, T.; Shen, B.; Mei, Z.; Hove, A.; Ju, K. Unlocking the potential of biogas systems for energy production and climate solutions in rural communities. Nat. Commun. 2024, 15, 5900. [Google Scholar] [CrossRef] [PubMed]
- Castor, V.; Georgiou, M.; Jackson, T.; Hodgkinson, I.; Jackson, L.; Lockwood, S. Digital data demand and renewable energy limits: Forecasting the impacts on global electricity supply and sustainability. Energy Policy 2024, 195, 114404. [Google Scholar] [CrossRef]
- Yin, Q.; Wang, Q.; Du, M.; Wang, F.; Sun, W.; Chen, L.; Tang, H. Promoting the resource utilization of agricultural wastes in China with public-private-partnership mode: An evolutionary game perspective. J. Clean. Prod. 2023, 434, 140206. [Google Scholar] [CrossRef]
- Lisiak-Zielińska, M.; Jałoszyńska, S.; Borowiak, K.; Budka, A.; Dach, J. Perception of biogas plants: A public awareness and preference—A case study for the agricultural landscape. Renew. Energy 2023, 217, 119212. [Google Scholar] [CrossRef]
- Liu, T.; Ferrari, G.; Pezzuolo, A.; Alengebawy, A.; Jin, K.; Yang, G.; Li, Q.; Ai, P. Evaluation and analysis of biogas potential from agricultural waste in Hubei Province, China. Agric. Syst. 2023, 205, 103577. [Google Scholar] [CrossRef]
- Dittmer, C.; Krümpel, J.; Lemmer, A. Power demand forecasting for demand-driven energy production with biogas plants. Renew. Energy 2021, 163, 1871–1877. [Google Scholar] [CrossRef]
- Cao, A.; Su, M.; Li, H. Digitizing the green revolution: E-commerce as a catalyst for clean energy transition in rural China. Energy Econ. 2024, 137, 107778. [Google Scholar] [CrossRef]
- Qin, D.; Liu, G.; Li, Z.; Guan, W.; Zhao, S.; Wang, Y. Federated deep contrastive learning for mid-term natural gas demand forecast-ing. Appl. Energy 2023, 347, 121503. [Google Scholar] [CrossRef]
- Moltames, R.; Noorollahi, Y.; Yousefi, H.; Azizimehr, B.; Nase-ri, A. Assessment of potential sites for biogas production plants from domestic, agricultural, and livestock waste. Fuel Commun. 2025, 22, 100132. [Google Scholar] [CrossRef]
- Şenol, H.; Çolak, E.; Oda, V. Forecasting of biogas potential using artificial neural networks and time series models for Türkiye to 2035. Energy 2024, 302, 131949. [Google Scholar] [CrossRef]
- National Bureau of Statistics. China Energy Statistical Yearbook 2023; China Statistics Press: Beijing, China, 2023. Available online: https://www.stats.gov.cn/hd/lyzx/zxgk/nytj/ (accessed on 1 March 2023). (In Chinese)
- Chen, Y.H.; Li, Y.Z.; Jiang, H.; Huang, Z. Research on household energy demand patterns, data acquisition and influencing factors: A review. Sustain. Cities Soc. 2023, 99, 104916. [Google Scholar] [CrossRef]
- Wu, W.; Kanamori, Y.; Zhang, R.; Zhou, Q.; Takahashi, K.; Masui, T. Implications of declining household economies of scale on electricity consumption and sustainability in China. Ecol. Econ. 2021, 184, 106981. [Google Scholar] [CrossRef]
- Yue, L.; Chen, Z. Seasonal thermal comfort and adaptive behaviours for the occupants of residential buildings: Shaoxing as a case study. Energy Build. 2023, 292, 113165. [Google Scholar] [CrossRef]
- National Bureau of Statistics. China Statistical Yearbook 2022; China Statistics Press: Beijing, China, 2022. Available online: https://www.stats.gov.cn/sj/ndsj/2022/indexch.htm (accessed on 1 March 2023). (In Chinese)
- National Bureau of Statistics. China Population Census Yearbook 2020; China Statistics Press: Beijing, China, 2020. Available online: https://cnki.ctbu.edu.cn/CSYDMirror/trade/Yearbook/Single/N2023030104?z=Z001 (accessed on 1 March 2023). (In Chinese).
- Hokoi, S.; Ogura, D.; Fu, X.; Rao, Y. Field survey on energy consumption due to hot water supply and cooking in Nanjing and Hefei, China. Front. Archit. Res. 2013, 2, 134–146. [Google Scholar] [CrossRef]
- Liao, W.; Liu, X.; Kang, N.; Song, Y.; Wang, L.; Yuchi, Y.; Huo, W.; Mao, Z.; Hou, J.; Wang, C. Associations of cooking fuel types and daily cooking duration with sleep quality in rural adults: Effect modification of kitchen ventilation. Sci. Total Environ. 2023, 854, 158827. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; He, L.; Panpan, G. Energy consumption analysis and energy-saving suggestions for a food processing plant. Constr. Mater. Decor. 2018, 5, 188. (In Chinese) [Google Scholar] [CrossRef]
- Cao, Y.Q. Analysis of Rural Household Energy Consumption Status and Influence Factor in Chongqing. Master’s Thesis, Chongqing University, Chongqing, China, 2019. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Y.F.; Wang, P.; Luo, X.; Zhang, M.; Zhao, T.; Yang, Y.; Sun, Y.; Liu, X.; Liu, J. Analysis of flexible energy use behavior of rural residents based on two stage questionnaire: A case study in Xi’an, China. Energy Build. 2022, 269, 112246. [Google Scholar] [CrossRef]
- Li, S.; Zhang, L.; Wang, X.; Zhu, C. A decision-making and planning optimization framework for multi-regional rural hybrid renewable energy system. Energy Convers. Manag. 2022, 273, 116402. [Google Scholar] [CrossRef]
- Zheng, G.; Bu, W. Review of Heating Methods for Rural Houses in China. Energies 2018, 11, 3402. [Google Scholar] [CrossRef]
- Huang, C.; Wei, W.; Sun, Y.; Wang, W.; Li, Z.; Wang, S.; Deng, S. Energy saving and peak load shifting performance of tail water source heat pump integrated with large-scale thermal storage pool space heating system in technology park. Energy Convers. Manag. 2023, 287, 117032. [Google Scholar] [CrossRef]
- Sun, J. Real rural residential energy consumption in China, 1990. Energy Policy 1996, 24, 827–839. [Google Scholar] [CrossRef]
- Guo, J.; Huang, Y.; Wei, C. North–South debate on district heating: Evidence from a household survey. Energy Policy 2015, 86, 295–302. [Google Scholar] [CrossRef]
- Peng, J.; Zhou, Y.; Zhang, Z.; Luo, Y.; Cheng, L. The development logic, scientific Connotation, and promotion path of rural eco-industries in China. Heliyon 2023, 9, e17780. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics. China City Statistical Yearbook 2021; China Statistics Press: Beijing, China, 2021. Available online: https://cnki.ctbu.edu.cn/CSYDMirror/area/Yearbook/Single/N2022040095?z=D26 (accessed on 4 March 2023). (In Chinese).
- Chen, Z.; Zhang, Y.; Qin, C.; Duan, P. Combustion performance of domestic gas cookers with swirling strip-port and normal round-port on various natural gas compositions. Case Stud. Therm. Eng. 2019, 13, 100366. [Google Scholar] [CrossRef]
- Jia, Z.; Feng, J.; Wang, H.; Wang, P.; Zhang, A.; Liu, P.; Wang, Y.; Chen, T.; Sun, L.; Zhang, X.; et al. Design Standard for Urban Heating Network CJJ/T34-2022; Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2022. Available online: https://www.mohurd.gov.cn/gongkai/zc/wjk/art/2024/art_17339_767030.html (accessed on 5 March 2023). (In Chinese)
- Zhou, K.; Peng, N.; Hu, D.; Shao, Z. Industrial park electric power load pattern recognition: An ensemble clustering-based framework. Energy Build. 2023, 279, 112687. [Google Scholar] [CrossRef]
- Šimandl, M.; Královec, J. Filtering, Prediction and Smoothing with Gaussian Sum Representation. IFAC Proc. Vol. 2000, 33, 1157–1162. [Google Scholar] [CrossRef]
- Luo, T.; Zhu, N.; Shen, F.; Long, E.; Long, Y.; Chen, X.; Mei, Z. A Case Study Assessment of the Suitability of Small-Scale Biogas Plants to the Dispersed Agricultural Structure of China. Waste Biomass Valoriz. 2016, 7, 1131–1139. [Google Scholar] [CrossRef]
- González, A.; Lagos, V. Do LPG prices react to the entry of natural gas? Implications for competition policy. Energy Policy 2021, 152, 111806. [Google Scholar] [CrossRef]
- Ma, X.; Wang, M.; Lan, J.; Li, C.; Zou, L. Influencing factors and paths of direct carbon emissions from the energy consumption of rural residents in central China determined using a questionnaire survey. Adv. Clim. Change Res. 2022, 13, 759–767. [Google Scholar] [CrossRef]
- Li, Z.; Meng, F.; Wu, S.; Afthanorhan, A.; Hao, Y. Guiding clean energy transitions in rural households: Insights from China’s pilot low-carbon policies. J. Environ. Manag. 2024, 370, 122782. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Yang, Q.; Zhang, L. What are the priorities for improving the cleanliness of energy consumption in rural China? Urbanisation advancement or agriculture development? Energy Sustain. Dev. 2022, 70, 106–114. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, L.; Zhao, J.; Wang, M.; Cheng, Z. The outdoor pedestrian thermal comfort and behavior in a traditional residential settlement—A case study of the cave dwellings in cold winter of China. Sol. Energy 2021, 220, 130–143. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, J.; Wang, W.; Sheng, G.; Wang, S.; Wu, J.; Li, J. Evaluating the sustainability of demand oriented biogas supply programs under different flexible hierarchies: A suggested approach based on the triple bottom line principle. Sci. Total Environ. 2023, 895, 165047. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Ginige, M.; Cheng, K.; Qie, T.; Peacock, C.; Kaksonen, A. Dynamics of gas distribution in batch-scale fermentation experiments: The unpredictive distribution of biogas between headspace and gas collection device. J. Clean. Prod. 2023, 400, 136641. [Google Scholar] [CrossRef]
Type | Villages | Townships | Counties | ||||
---|---|---|---|---|---|---|---|
Autumn and Winter | Spring and Summer | Autumn and Winter | Spring and Summer | Autumn and Winter | Spring and Summer | ||
Number of households | 312 | 312 | 9328 | 9328 | 152,985 | 152,985 | |
Cooking | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
Cooking time (h) | 1.47 | 1.47 | 1.47 | 1.47 | 1.47 | 1.47 | |
Heating | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ | |
Living space (m2) | 111.92 | 111.92 | |||||
Heating time (h) | 3.67 | 3.67 | |||||
Small-scale industry | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | |
Number of | 24 | 24 | |||||
Single-unit biogas consumption (m3) | 364,283.33 | 364,283.33 |
Area | Location | Climate | Terrain | GDP per Capita (RMB) |
---|---|---|---|---|
Sichuan | Southwest inland | Subtropical monsoon climate | Mountain, Hilly, Plain, Plateau | 30,679 |
Jilin | Northeast region | Temperate monsoon climate | Mountain, Plain | 27,975 |
Guangdong | Southern China | Subtropical monsoon climate | Mountain, Hilly, Plain, Terrace | 47,065 |
Hubei | Central China | Subtropical monsoon climate | Mountain, Hilly, Plain, Downland | 32,914 |
Jiangxi | Eastern China | Subtropical monsoon humid climate | Mountain, Hilly | 32,419 |
Family Size | Biogas Consumption (m3) | Relative Error (%) | ||
---|---|---|---|---|
Max | Min | Mean | ||
2 | 864.35 | 108.04 | 413.52 | 8.09 |
3 | 1273.95 | 72.03 | 458.57 | 17.12 |
4 | 1176.47 | 20.17 | 394.90 | 3.76 |
5 | 864.35 | 36.01 | 370.11 | 2.69 |
6 | 864.35 | 15.13 | 376.68 | 0.90 |
7 | 1296.53 | 108.04 | 404.27 | 5.98 |
8 | 432.18 | 180.07 | 378.15 | 0.50 |
Month | Correction Factor |
---|---|
Spring | 1.1223 |
Summer | 0.8431 |
Autumn | 0.9375 |
Winter | 1.0972 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Luo, T.; Xiong, J.; Gao, Y.; Meng, X.; Zuo, Y.; Liu, Y.; Ma, J.; Chen, Q.; Liu, Y.; et al. Analysis of Dynamic Biogas Consumption in Chinese Rural Areas at Village, Township, and County Levels. Agriculture 2025, 15, 149. https://doi.org/10.3390/agriculture15020149
Li G, Luo T, Xiong J, Gao Y, Meng X, Zuo Y, Liu Y, Ma J, Chen Q, Liu Y, et al. Analysis of Dynamic Biogas Consumption in Chinese Rural Areas at Village, Township, and County Levels. Agriculture. 2025; 15(2):149. https://doi.org/10.3390/agriculture15020149
Chicago/Turabian StyleLi, Gongyi, Tao Luo, Jianghua Xiong, Yanna Gao, Xi Meng, Yaoguo Zuo, Yi Liu, Jing Ma, Qiuwen Chen, Yuxin Liu, and et al. 2025. "Analysis of Dynamic Biogas Consumption in Chinese Rural Areas at Village, Township, and County Levels" Agriculture 15, no. 2: 149. https://doi.org/10.3390/agriculture15020149
APA StyleLi, G., Luo, T., Xiong, J., Gao, Y., Meng, X., Zuo, Y., Liu, Y., Ma, J., Chen, Q., Liu, Y., Xin, Y., & Ye, Y. (2025). Analysis of Dynamic Biogas Consumption in Chinese Rural Areas at Village, Township, and County Levels. Agriculture, 15(2), 149. https://doi.org/10.3390/agriculture15020149