Quantifying and Mapping the Impact of Construction Land Expansion on Cultivated Land Fragmentation—A Case Study of Fuqing City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Framework
2.3. Data Processing
- (1)
- The spatial dataset was clipped, projected, and transformed using QGIS 3.30.0 software to ensure uniformity in the spatial reference coordinates of all the data, which were standardized as Xian_1980_3_Degree_GK_CM_120E. Based on the topographic conditions, the study area was divided according to township administrative divisions.
- (2)
- Morphological spatial pattern analysis was conducted on the cultivated land by reclassifying land use data, assigning a value of 2 to cultivated land and 1 to other categories. The resulting dataset was then input into Guidos Toolbox 3.0 software to generate MSPA images specifically for cultivated land.
- (3)
- The quantitative characteristics of the construction land and cultivated land were analyzed by processing three periods of land use data using QGIS software to calculate the area. The land use transition matrix from 2000 to 2010 and 2010 to 2020 was obtained, along with the dynamic change rates of the area for both construction and cultivated lands.
- (4)
- The spillover effect of construction land expansion was analyzed by extracting the vector data of both the construction and cultivated land, utilizing Global Moran’s I and Local Moran’s I indices, selecting an inverse distance spatial relationship for analysis, and obtaining the spatial correlation types between the construction land and cultivated land.
- (5)
- Landscape pattern indices analysis. Through geospatial analysis, the land use data were reclassified into cultivated land, woodland, grassland, waters (including wetlands, waterbody, and sea areas), construction land, and bare ground. Then, the land use reclassification results of three periods in each subdivision were input into Fragstats 4.2 software and the landscape pattern indices were calculated.
2.4. Methodology
- (1)
- Morphological spatial pattern analysis (MSPA)
- (2)
- Landscape pattern analysis
- (3)
- Dynamic change rate of land use
- (4)
- Spillover effect analysis
- (5)
- Land use transition matrix
3. Results
3.1. Spatio-Temporal Characteristics of Cultivated Land Fragmentation
3.1.1. Analysis of Dynamic Changes in Cultivated Land
3.1.2. Spatial Pattern Analysis of Cultivated Land Morphology
3.2. Characteristics of Construction Land Expansion
3.2.1. Analysis of Construction Land Expansion
3.2.2. Spillover Effects of Construction Land Expansion
3.3. Impact of Construction Land Expansion on Cultivated Land Fragmentation
3.3.1. Land Use Transition
3.3.2. Landscape Pattern
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, X.; Xu, X.; Cai, H.; Li, J. Assessment the impact of urban expansion on cropland net primary productivity in Northeast China. Ecol. Indic. 2024, 159, 111698. [Google Scholar] [CrossRef]
- Zhang, X.; Song, W.; Lang, Y.; Feng, X.; Yuan, Q.; Wang, J. Land use changes in the coastal zone of China’s Hebei Province and the corresponding impacts on habitat quality. Land Use Policy 2020, 99, 104957. [Google Scholar] [CrossRef]
- Wang, W.; Deng, X.; Wang, Y.; Peng, L.; Yu, Z. Impacts of infrastructure construction on ecosystem services in new-type urbanization area of North China Plain. Resour. Conserv. Recycl. 2022, 185, 106376. [Google Scholar] [CrossRef]
- Wu, Y.; Shan, L.; Guo, Z.; Peng, Y. Cultivated land protection policies in China facing 2030: Dynamic balance system versus basic farmland zoning. Habitat Int. 2017, 69, 126–138. [Google Scholar] [CrossRef]
- Guo, J.; Qin, Y.; Du, X.; Han, Z. Dynamic measurements and mechanisms of coastal port–city relationships based on the DCI model: Empirical evidence from China. Cities 2020, 96, 102440. [Google Scholar] [CrossRef]
- Guo, J.; Qin, Y. Coupling characteristics of coastal ports and urban network systems based on flow space theory: Empirical evidence from China. Habitat Int. 2022, 126, 102624. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, M.; Liang, C. Urbanization of county in China: Spatial patterns and influencing factors. J. Geogr. Sci. 2022, 32, 1241–1260. [Google Scholar] [CrossRef]
- Chen, Y.; Li, M.; Zhang, Z. Does the Rural Land Transfer Promote the Non-Grain Production of Cultivated Land in China? Land 2023, 12, 688. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Cultivated land protection and rational use in China. Land Use Policy 2021, 106, 105454. [Google Scholar] [CrossRef]
- Zhai, H.; Lv, C.; Liu, W.; Yang, C.; Fan, D.; Wang, Z.; Guan, Q. Understanding spatio-temporal patterns of land use/land cover change under urbanization in Wuhan, China, 2000–2019. Remote Sens. 2021, 13, 3331. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, G. Exploring the impact of landscape changes on runoff under climate change and urban development: Implications for landscape ecological engineering in the Yangmei River Basin. Ecol. Eng. 2022, 184, 106794. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Q.; Zhang, K. Influence of the variation in rural population on farmland preservation in the rapid urbanization area of China. J. Geogr. Sci. 2021, 31, 1365–1380. [Google Scholar] [CrossRef]
- Qian, F.; Chi, Y.; Lal, R.; Lorenz, K. Spatio-temporal characteristics of cultivated land fragmentation in different landform areas with a case study in Northeast China. Ecosyst. Health Sustain. 2020, 6, 1800415. [Google Scholar] [CrossRef]
- Fu, F.; Deng, S.; Wu, D.; Liu, W.; Bai, Z. Research on the spatiotemporal evolution of land use landscape pattern in a county area based on CA-Markov model. Sustain. Cities Soc. 2022, 80, 103760. [Google Scholar] [CrossRef]
- Su, S.; Jiang, Z.; Zhang, Q.; Zhang, Y. Transformation of agricultural landscapes under rapid urbanization: A threat to sustainability in Hang-Jia-Hu region, China. Appl. Geogr. 2011, 31, 439–449. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, Z.; Zhou, X.; Hu, C.; Li, J. Spatial-Temporal Driving Factors of Urban Landscape Changes in the Karst Mountainous Regions of Southwest China: A Case Study in Central Urban Area of Guiyang City. Sustainability 2022, 14, 8274. [Google Scholar] [CrossRef]
- Velázquez, J.; Gutiérrez, J.; Hernando, A.; García-Abril, A. Evaluating landscape connectivity in fragmented habitats: Cantabrian capercaillie (Tetrao urogallus cantabricus) in northern Spain. For. Ecol. Manag. 2017, 389, 59–67. [Google Scholar] [CrossRef]
- Lin, J.; Huang, C.; Wen, Y.; Liu, X. An assessment framework for improving protected areas based on morphological spatial pattern analysis and graph-based indicators. Ecol. Indic. 2021, 130, 108138. [Google Scholar] [CrossRef]
- Riitters, K.H.; Vogt, P.; Soille, P.; Kozak, J.; Estreguil, C. Neutral model analysis of landscape patterns from mathematical morphology. Landsc. Ecol. 2007, 22, 1033–1043. [Google Scholar] [CrossRef]
- Carlier, J.; Moran, J. Landscape typology and ecological connectivity assessment to inform Greenway design. Sci. Total Environ. 2019, 651, 3241–3252. [Google Scholar] [CrossRef]
- Ferrari, B.; Quatrini, V.; Barbati, A.; Corona, P.; Masini, E.; Russo, D. Conservation and enhancement of the green infrastructure as a nature-based solution for Rome’s sustainable development. Urban Ecosyst. 2019, 22, 865–878. [Google Scholar] [CrossRef]
- Shi, F.; Liu, S.; An, Y.; Sun, Y.; Dong, S.; Wu, X. Dynamic change of landscape fragmentation and connectivity in the context of urbanization: A case study of Kunming City. Acta Ecol. Sin. 2020, 40, 3303–3314. [Google Scholar]
- Jiang, P.; Chen, D.; Li, M. Farmland landscape fragmentation evolution and its driving mechanism from rural to urban: A case study of Changzhou City. J. Rural. Stud. 2021, 82, 1–18. [Google Scholar]
- Bi, S.; Dai, F.; Chen, M.; Xu, S. A new framework for analysis of the morphological spatial patterns of urban green space to reduce PM2. 5 pollution: A case study in Wuhan, China. Sustain. Cities Soc. 2022, 82, 103900. [Google Scholar] [CrossRef]
- Saura, S.; Vogt, P.; Velázquez, J.; Hernando, A.; Tejera, R. Key structural forest connectors can be identified by combining landscape spatial pattern and network analyses. For. Ecol. Manag. 2011, 262, 150–160. [Google Scholar] [CrossRef]
- Soille, P.; Vogt, P. Morphological segmentation of binary patterns. Pattern Recognit. Lett. 2008, 30, 456–459. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, S.; Liu, Y.; Wang, F.; Liu, H.; Yu, L. Effects of urban agglomeration and expansion on landscape connectivity in the river valley region, Qinghai-Tibet Plateau. Glob. Ecol. Conserv. 2022, 34, e02004. [Google Scholar] [CrossRef]
- Jia, Y.; Tang, L.; Xu, M.; Yang, X. Landscape pattern indices for evaluating urban spatial morphology—A case study of Chinese cities. Ecol. Indic. 2019, 99, 27–37. [Google Scholar] [CrossRef]
- Ma, L.; Bo, J.; Li, X.; Fang, F.; Cheng, W. Identifying key landscape pattern indices influencing the ecological security of inland river basin: The middle and lower reaches of Shule River Basin as an example. Sci. Total Environ. 2019, 674, 424–438. [Google Scholar] [CrossRef]
- Mantyka-pringle, C.S.; Martin, T.G.; Rhodes, J.R. Interactions between climate and habitat loss effects on biodiversity: A systematic review and meta-analysis. Glob. Change Biol. 2012, 18, 1239–1252. [Google Scholar] [CrossRef]
- Lyu, Y.; Wang, M.; Zou, Y.; Wu, C. Mapping trade-offs among urban fringe land use functions to accurately support spatial planning. Sci. Total Environ. 2022, 802, 149915. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Xiu, C.; Feng, X.; Liu, D. Influence of urbanization on regional habitat quality: A case study of Changchun City. Habitat Int. 2019, 93, 102042. [Google Scholar] [CrossRef]
- Shi, Z.; Ma, L.; Zhang, W.; Gong, M. Differentiation and correlation of spatial pattern and multifunction in rural settlements considering topographic gradients: Evidence from Loess Hilly Region, China. J. Environ. Manag. 2022, 315, 115127. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Y.; Zhang, Y.-Z.; Jiang, Z.-Y.; Guo, C.-X.; Zhao, M.-Y.; Yang, Z.-G.; Guo, M.-Y.; Wu, B.-Y.; Chen, Q.-L. Integrating morphological spatial pattern analysis and the minimal cumulative resistance model to optimize urban ecological networks: A case study in Shenzhen City, China. Ecol. Process. 2021, 10, 63. [Google Scholar] [CrossRef]
- Huang, K.; Peng, L.; Wang, X.; Deng, W. Integrating circuit theory and landscape pattern index to identify and optimize ecological networks: A case study of the Sichuan Basin, China. Environ. Sci. Pollut. Res. 2022, 29, 66874–66887. [Google Scholar] [CrossRef]
- Ostapowicz, K.; Vogt, P.; Riitters, K.H.; Kozak, J.; Estreguil, C. Impact of scale on morphological spatial pattern of forest. Landsc. Ecol. 2008, 23, 1107–1117. [Google Scholar] [CrossRef]
- Xu, L.; Yu, H.; Zhong, L. Evolution of the landscape pattern in the Xin’an River Basin and its response to tourism activities. Sci. Total Environ. 2023, 880, 163472. [Google Scholar] [CrossRef]
- Xu, W.; Jin, X.; Liu, J.; Zhou, Y. Analysis of influencing factors of cultivated land fragmentation based on hierarchical linear model: A case study of Jiangsu Province, China. Land Use Policy 2021, 101, 105119. [Google Scholar] [CrossRef]
- Fei, R.; Lin, Z.; Chunga, J. How land transfer affects agricultural land use efficiency: Evidence from China’s agricultural sector. Land Use Policy 2021, 103, 105300. [Google Scholar] [CrossRef]
- Hurlimann, A.; Moosavi, S.; Browne, G.R. Urban planning policy must do more to integrate climate change adaptation and mitigation actions. Land Use Policy 2021, 101, 105188. [Google Scholar] [CrossRef]
- Brown, G.; Sanders, S.; Reed, P. Using public participatory mapping to inform general land use planning and zoning. Landsc. Urban Plan. 2018, 177, 64–74. [Google Scholar] [CrossRef]
Landscape Type | Ecological Implications |
---|---|
Core | An internal precinct of the cultivated land landscape area. |
Islet | The area is too small to form a cultivated land area in the core area, and it exists in isolation. |
Perforation | The edge of the patch inside the core area, i.e., the transition area between the core area and the non-cultivated land area. |
Edge | The junction line between the core area and the non-cultivated land area. |
Loop | A narrow area that connects the same core area. |
Bridge | A narrow area that connects at least two different core areas. |
Branch | Only one end is connected to the edge zone, connecting bridge, loop, or core area. |
Index | Definition | Unit and the Range of Values |
---|---|---|
Number of patches (NP) | Type or number of patches in a landscape mosaic. The higher the value is, the more patches of this type it has. | pcs [1, +∞) |
Patch density (PD) | The number of patches in the unit area (100 ha). The higher the value, the finer the patch segmentation. | Pcs/100 ha (0, +∞) |
Patch Area_Mean (AREA_MN) | The area of each type of patch is averaged to describe the granularity of the landscape. The smaller the value is, the greater the degree of fragmentation is. | ha (0, +∞) |
Aggregation index (AI) | Description of the extent to which landscape patches converge. The higher the value is, the better the aggregation is. | % (0, 100] |
Landscape shape index (LSI) | Description of the characteristics of the shape of the patches within the entire landscape. The higher the value is, the more the patches are separated. | No units [0, +∞) |
Region | Period | Area Reduction (km2) | Dynamic Change Rate (%) |
---|---|---|---|
Central urban area | 2000–2010 | 2.83 | 0.24 |
2010–2020 | 17.69 | 1.55 | |
North mountain area | 2000–2010 | 0.28 | 0.03 |
2010–2020 | 3.37 | 0.36 | |
South coastal area | 2000–2010 | 19.16 | 0.41 |
2010–2020 | 41.35 | 0.93 | |
Total | 2000–2010 | 22.27 | 0.33 |
2010–2020 | 62.41 | 0.96 |
Landscape Features | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | |
Core | 547.40 | 81.15 | 523.43 | 80.20 | 461.72 | 78.28 |
Islet | 0.45 | 0.07 | 0.53 | 0.08 | 0.62 | 0.11 |
Perforation | 33.49 | 4.97 | 27.30 | 4.18 | 21.66 | 3.67 |
Edge | 80.44 | 11.92 | 87.09 | 13.34 | 91.59 | 15.53 |
Loop | 2.21 | 0.33 | 2.08 | 0.32 | 1.75 | 0.30 |
Bridge | 3.67 | 0.54 | 4.00 | 0.61 | 4.23 | 0.72 |
Branch | 6.88 | 1.02 | 8.20 | 1.26 | 8.22 | 1.39 |
Total | 674.54 | 100.00 | 652.62 | 100.00 | 589.80 | 100.00 |
Core Area Classification | 2000 | 2010 | 2020 | ||||||
---|---|---|---|---|---|---|---|---|---|
Quantity (pcs) | Area (km2) | Proportion (%) | Quantity (pcs) | Area (km2) | Proportion (%) | Quantity (pcs) | Area (km2) | Proportion (%) | |
Super-large core | 1 | 328.48 | 60.01 | 1 | 215.37 | 41.15 | 1 | 234.47 | 50.78 |
Large core | 2 | 80.67 | 14.74 | 3 | 136.68 | 26.11 | 2 | 41.76 | 9.04 |
Medium core | 23 | 94.84 | 17.33 | 25 | 118.34 | 22.61 | 33 | 129.65 | 28.08 |
Small core | 998 | 43.41 | 7.93 | 1056 | 53.04 | 10.13 | 1110 | 55.84 | 12.09 |
Total | 1024 | 547.40 | 100.00 | 1085 | 523.43 | 100.00 | 1146 | 461.72 | 100.00 |
Region | Period | Expansion Area (km2) | Change Rate (%). |
---|---|---|---|
Central urban area | 2000–2010 | 3.80 | 1.07 |
2010–2020 | 16.65 | 4.22 | |
North mountain area | 2000–2010 | 0.35 | 0.55 |
2010–2020 | 3.32 | 5.04 | |
South coastal area | 2000–2010 | 22.51 | 2.70 |
2010–2020 | 52.81 | 4.98 | |
Entire study area | 2000–2010 | 26.66 | 2.13 |
2010–2020 | 72.78 | 4.79 |
Year | Land Use Type | 2010 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Grassland | Sea Area | Construction Land | Woodland | Bare Ground | Cultivated Land | Wetland | Waterbodies | Total | ||
2000 | Grassland | 34.92 | 0.98 | 0.39 | 20.01 | 0.84 | 4.00 | 0.12 | 0.10 | 61.36 |
Sea area | 0.06 | 28.03 | 0.10 | 0.19 | 0.11 | 0.54 | 0.71 | 0.35 | 30.09 | |
Construction land | 0.25 | 0.06 | 109.19 | 0.57 | 0.01 | 14.79 | 0.09 | 0.36 | 125.32 | |
Woodland | 19.16 | 8.40 | 5.11 | 510.08 | 2.03 | 17.13 | 0.27 | 1.73 | 563.91 | |
Bare ground | 0.85 | 0.22 | 0.23 | 1.89 | 3.37 | 0.60 | 0.05 | 0.15 | 7.36 | |
Cultivated land | 4.60 | 1.31 | 35.96 | 17.29 | 0.46 | 607.56 | 1.20 | 5.62 | 674.00 | |
Wetland | 0.08 | 0.61 | 0.51 | 0.23 | 0.03 | 1.48 | 40.49 | 2.32 | 45.75 | |
Waterbodies | 0.11 | 0.44 | 0.49 | 1.61 | 0.14 | 5.63 | 2.20 | 123.15 | 133.77 | |
Total | 60.03 | 40.05 | 151.98 | 551.87 | 6.99 | 651.73 | 45.13 | 133.78 | 1641.56 |
Year | Land Use Type | 2020 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Grassland | Sea Area | Construction Land | Woodland | Bare Ground | Cultivated Land | Wetland | Waterbodies | Total | ||
2010 | Grassland | 25.53 | 0.13 | 1.04 | 25.58 | 0.82 | 6.57 | 0.11 | 0.25 | 60.03 |
Sea area | 0.05 | 3.96 | 8.59 | 8.68 | 0.13 | 0.68 | 16.85 | 1.11 | 40.05 | |
Construction land | 0.38 | 0.04 | 126.25 | 1.30 | 0.06 | 22.62 | 0.28 | 1.05 | 151.98 | |
Woodland | 26.28 | 0.32 | 3.27 | 485.79 | 1.83 | 27.27 | 0.47 | 6.64 | 551.87 | |
Bare ground | 0.89 | 0.26 | 0.18 | 3.48 | 1.06 | 0.69 | 0.15 | 0.28 | 6.99 | |
Cultivated land | 6.19 | 0.88 | 68.01 | 26.57 | 0.57 | 523.40 | 3.48 | 22.63 | 651.73 | |
Wetland | 0.20 | 0.25 | 3.14 | 0.69 | 0.06 | 1.77 | 31.63 | 7.39 | 45.13 | |
Waterbodies | 0.17 | 0.20 | 14.28 | 1.56 | 0.16 | 6.32 | 10.70 | 100.39 | 133.78 | |
Total | 59.69 | 6.04 | 224.76 | 553.65 | 4.69 | 589.32 | 63.67 | 139.74 | 1641.56 |
Index | Region | Cultivated Land | Construction Land | ||||
---|---|---|---|---|---|---|---|
2000 a | 2010 a | 2020 a | 2000 a | 2010 a | 2020 a | ||
NP (pcs) | Entire study area | 306 | 383 | 414 | 694 | 630 | 572 |
Central urban area | 95 | 104 | 133 | 143 | 130 | 114 | |
North mountain area | 92 | 79 | 96 | 79 | 78 | 70 | |
South coastal area | 201 | 271 | 291 | 483 | 433 | 406 | |
PD (pcs/100 ha) | Entire study area | 0.19 | 0.23 | 0.25 | 0.42 | 0.38 | 0.35 |
Central urban area | 0.35 | 0.39 | 0.49 | 0.53 | 0.48 | 0.42 | |
North mountain area | 0.27 | 0.23 | 0.28 | 0.23 | 0.23 | 0.20 | |
South coastal area | 0.20 | 0.26 | 0.28 | 0.47 | 0.42 | 0.39 | |
AREA_MN (ha) | Entire study area | 220.50 | 170.40 | 142.46 | 18.07 | 23.99 | 39.38 |
Central urban area | 122.99 | 109.49 | 72.42 | 24.99 | 30.24 | 49.04 | |
North mountain area | 103.18 | 119.78 | 94.89 | 7.96 | 8.42 | 14.16 | |
South coastal area | 229.83 | 163.63 | 137.97 | 17.34 | 24.46 | 39.17 | |
AI (%) | Entire study area | 95.19 | 94.92 | 94.37 | 90.98 | 91.70 | 93.93 |
Central urban area | 94.80 | 94.61 | 93.87 | 93.00 | 93.49 | 95.53 | |
North mountain area | 93.68 | 93.64 | 93.25 | 87.05 | 87.20 | 90.21 | |
South coastal area | 95.52 | 95.14 | 94.68 | 90.67 | 91.46 | 93.73 | |
LSI (No units) | Entire study area | 42.57 | 44.16 | 46.51 | 34.56 | 34.86 | 31.29 |
Central urban area | 19.67 | 20.09 | 20.96 | 14.86 | 14.53 | 12.08 | |
North mountain area | 21.46 | 21.54 | 22.37 | 11.64 | 11.80 | 11.17 | |
South coastal area | 33.08 | 35.05 | 36.45 | 29.32 | 30.16 | 27.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Zheng, X.; Yu, X. Quantifying and Mapping the Impact of Construction Land Expansion on Cultivated Land Fragmentation—A Case Study of Fuqing City, China. Agriculture 2025, 15, 184. https://doi.org/10.3390/agriculture15020184
Yang X, Zheng X, Yu X. Quantifying and Mapping the Impact of Construction Land Expansion on Cultivated Land Fragmentation—A Case Study of Fuqing City, China. Agriculture. 2025; 15(2):184. https://doi.org/10.3390/agriculture15020184
Chicago/Turabian StyleYang, Xiaoran, Xiping Zheng, and Xinyang Yu. 2025. "Quantifying and Mapping the Impact of Construction Land Expansion on Cultivated Land Fragmentation—A Case Study of Fuqing City, China" Agriculture 15, no. 2: 184. https://doi.org/10.3390/agriculture15020184
APA StyleYang, X., Zheng, X., & Yu, X. (2025). Quantifying and Mapping the Impact of Construction Land Expansion on Cultivated Land Fragmentation—A Case Study of Fuqing City, China. Agriculture, 15(2), 184. https://doi.org/10.3390/agriculture15020184