Characterization of the Pore Network of a Cohesive Oxisol Through Morphological and Pore Complexity Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area and Soil Sampling
2.2. Sample Imaging
2.3. Quantification of Physical and Morphometric Properties Analyzed Using 3D Imaging
2.4. Soil Water Retention Curve (SWRC) and Physical–Hydric Attributes
3. Results and Discussion
3.1. 3D Lacunarities, 3D Multifractal Spectra, and Normalized Shannon Entropy
3.2. Multifractal Analysis Versus Soil Physical–Hydric Behavior
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Giarola, N.F.B.; Silva, A.P.d. Conceitos sobre solos coesos e hardsetting. Sci. Agric. 2002, 59, 613–620. [Google Scholar] [CrossRef]
- Jacomine, P. Distribuição geográfica, características e classificação dos solos coesos dos Tabuleiros Costeiros. In Reunião Técnica Sobre Solos Coesos dos Tabuleiros Costeiros, Cruz das Almas; 1996; pp. 13–26. Available online: https://www.scielo.br/j/sa/a/sjLYWg3QvZPbtLgGMTtqdZQ/?format=pdf&lang=pt (accessed on 11 December 2024).
- Lima Neto, J.d.A.; Ribeiro, M.R.; Corrêa, M.M.; Souza-Júnior, V.S.d.; Araújo Filho, J.C.d.; Lima, J.F.W. Atributos químicos, mineralógicos e micromorfológicos de horizontes coesos de latossolos e argissolos dos tabuleiros costeiros do estado de Alagoas. Rev. Bras. Ciênc. Solo 2010, 34, 473–486. [Google Scholar] [CrossRef]
- Lima, R.P.; Rolim, M.M.; Oliveira, V.S.; Silva, A.R.; Pedrosa, E.M.R.; Ferreira, R.L.C. Load-bearing capacity and its relationships with the physical and mechanical attributes of cohesive soil. J. Terramech. 2015, 58, 51–58. [Google Scholar] [CrossRef]
- Gomes, J.B.V.; Araújo Filho, J.C.; Vidal-Torrado, P.; Cooper, M.; Silva, E.A.d.; Curi, N. Cemented Horizons and Hardpans in the Coastal Tablelands of Northeastern Brazil. Rev. Bras. Ciênc. Solo 2017, 41, e0150453. [Google Scholar] [CrossRef]
- Corrêa, M.M.; Ker, J.C.; Barrón, V.; Torrent, J.; Curi, N.; Torres, T.C.P. Caracterização física, química, mineralógica e micromorfológica de horizontes coesos e fragipãs de solos vermelhos e amarelos do ambiente Tabuleiros Costeiros. Rev. Bras. Ciênc. Solo 2008, 32, 297–313. [Google Scholar] [CrossRef]
- Pessoa, T.N.; Bovi, R.C.; Nunes, M.R.; Cooper, M.; Uteau, D.; Peth, S.; Libardi, P.L. Clay mineral composition drives soil structure behavior and the associated physical properties in Brazilian Oxisols. Geoderma Reg. 2024, 38, e00837. [Google Scholar] [CrossRef]
- Cavalcanti, R.Q.; Rolim, M.M.; de Lima, R.P.; Tavares, U.E.; Pedrosa, E.M.; Gomes, I.F. Soil physical and mechanical attributes in response to successive harvests under sugarcane cultivation in Northeastern Brazil. Soil Tillage Res. 2019, 189, 140–147. [Google Scholar] [CrossRef]
- Menezes, A.S.; Alencar, T.L.; Assis Júnior, R.N.; Toma, R.S.; Romero, R.E.; Costa, M.C.G.; Cooper, M.; Mota, J.C.A. Functionality of the porous network of Bt horizons of soils with and without cohesive character. Geoderma 2018, 313, 290–297. [Google Scholar] [CrossRef]
- Lima, H.V.d.; Silva, Á.P.d.; Giarola, N.F.B.; Imhoff, S. Index of soil physical quality of hardsetting soils on the brazilian coast. Rev. Bras. Ciênc. Solo 2014, 38, 1722–1730. [Google Scholar] [CrossRef]
- Mota, J.C.A.; Menezes, A.S.; do Nascimento, C.D.V.; de Alencar, T.L.; de Assis Júnior, R.N.; Toma, R.S.; Romero, R.E.; Costa, M.C.G.; Cooper, M. Pore shape, size distribution and orientation in Bt horizons of two Alfisols with and without cohesive character from Brazil. Geoderma Reg. 2018, 15, e00197. [Google Scholar] [CrossRef]
- Schossler, T.R.; Mantovanelli, B.C.; de Almeida, B.G.; Freire, F.J.; da Silva, M.M.; de Almeida, C.D.G.C.; Freire, M.B.G.d.S. Geospatial variation of physical attributes and sugarcane productivity in cohesive soils. Precis. Agric. 2019, 20, 1274–1291. [Google Scholar] [CrossRef]
- dos Santos Queiroz, A.; dos Santos Dias, C.T.; da Silva Lopes, A.; do Nascimento, Í.V.; de Sousa Oliveira, L.; de Almeida, B.G.; de Araújo Filho, J.C.; da Silva Souza, L.; e Silva, M.B.; Romero, R.E. Water content as a deterministic factor in the assessment of cohesive character in soils of Coastal Tablelands (Northeast, Brazil). Geoderma Reg. 2023, 32, e00600. [Google Scholar] [CrossRef]
- Pessoa, T.N.; Cooper, M.; Nunes, M.R.; Uteau, D.; Peth, S.; Vaz, C.M.P.; Libardi, P.L. 2D and 3D techniques to assess the structure and porosity of Oxisols and their correlations with other soil properties. CATENA 2022, 210, 105899. [Google Scholar] [CrossRef]
- Pires, L.F.; Ferreira, T.R.; Cássaro, F.A.M.; Cooper, H.V.; Mooney, S.J. A Comparison of the Differences in Soil Structure under Long-Term Conservation Agriculture Relative to a Secondary Forest. Agriculture 2022, 12, 1783. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Zhang, W.; Zhang, Z.; Zhang, M. Quantification of Root Systems and Soil Macropore Networks Association to Soil Saturated Hydraulic Conductivity in Forested Wetland Soils. Forests 2023, 14, 132. [Google Scholar] [CrossRef]
- Li, Q.; Qian, Y.; Wang, Y.; Peng, X. The Relation between Soil Moisture Phase Transitions and Soil Pore Structure under Freeze–Thaw Cycling. Agronomy 2024, 14, 1608. [Google Scholar] [CrossRef]
- Phalempin, M.; Rosskopf, U.; Schlüter, S.; Vetterlein, D.; Peth, S. Can we use X-ray CT to generate 3D penetration resistance data? Geoderma 2023, 439, 116700. [Google Scholar] [CrossRef]
- Liu, J.; Leung, A.K.; Jiang, Z.; Kootahi, K.; Zhang, Z. X-ray CT quantification of in situ fabric evolution and shearing behaviour of granular soils of different particle shapes. Can. Geotech. J. 2024, 61, 2450–2467. [Google Scholar] [CrossRef]
- Pereira, E.C.; Bell, C.A.; Urwin, P.E.; Tracy, S. The use of X-ray Computed Tomography revolutionises soil pathogen detection. bioRxiv 2024. [Google Scholar] [CrossRef]
- Ogilvie, C.M.; Ashiq, W.; Vasava, H.B.; Biswas, A. Quantifying Root-Soil Interactions in Cover Crop Systems: A Review. Agriculture 2021, 11, 218. [Google Scholar] [CrossRef]
- Kan, X.; Zheng, W.; Cheng, J.; Zhangzhong, L.; Li, J.; Liu, B.; Zhang, X. Investigating Soil Pore Network Connectivity in Varied Vegetation Types Using X-ray Tomography. Water 2023, 15, 3823. [Google Scholar] [CrossRef]
- Gaspareto, J.V.; Pires, L.F. X-ray Microtomography Analysis of Integrated Crop–Livestock Production’s Impact on Soil Pore Architecture. AgriEngineering 2024, 6, 2249–2268. [Google Scholar] [CrossRef]
- Chun, H.C.; Giménez, D.; Yoon, S.W. Morphology, lacunarity and entropy of intra-aggregate pores: Aggregate size and soil management effects. Geoderma 2008, 146, 83–93. [Google Scholar] [CrossRef]
- San José Martínez, F.; Caniego, F.; García-Gutiérrez, C. Lacunarity of soil macropore space arrangement of CT images: Effect of soil management and depth. Geoderma 2017, 287, 80–89. [Google Scholar] [CrossRef]
- de Oliveira, J.A.T.; Cássaro, F.A.M.; Posadas, A.N.D.; Pires, L.F. Soil Pore Network Complexity Changes Induced by Wetting and Drying Cycles—A Study Using X-ray Microtomography and 3D Multifractal Analyses. Int. J. Environ. Res. Public Health 2022, 19, 10582. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Boast, C.W.; Bullock, D.G. Multifractal Analysis of Soil Spatial Variability. Agron. J. 1999, 91, 1033–1041. [Google Scholar] [CrossRef]
- Soto-Gómez, D.; Pérez-Rodríguez, P.; Vázquez Juíz, L.; Paradelo, M.; López-Periago, J.E. 3D multifractal characterization of computed tomography images of soils under different tillage management: Linking multifractal parameters to physical properties. Geoderma 2020, 363, 114129. [Google Scholar] [CrossRef]
- San José Martínez, F.; Martín, M.; Caniego, F.; Tuller, M.; Guber, A.; Pachepsky, Y.; García-Gutiérrez, C. Multifractal analysis of discretized X-ray CT images for the characterization of soil macropore structures. Geoderma 2010, 156, 32–42. [Google Scholar] [CrossRef]
- Ju, X.; Jia, Y.; Li, T.; Gao, L.; Gan, M. Morphology and multifractal characteristics of soil pores and their functional implication. CATENA 2021, 196, 104822. [Google Scholar] [CrossRef]
- Torre, I.; Losada, J.; Heck, R.; Tarquis, A. Multifractal analysis of 3D images of tillage soil. Geoderma 2018, 311, 167–174. [Google Scholar] [CrossRef]
- Tarquis, A.; Heck, R.; Andina, D.; Alvarez, A.; Antón, J. Pore network complexity and thresholding of 3D soil images. Ecol. Complex. 2009, 6, 230–239. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2022.
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo; Embrapa: Brasília, Brazil, 2017. [Google Scholar]
- Dong, P. Lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns. Comput. Geosci. 2009, 35, 2100–2110. [Google Scholar] [CrossRef]
- Lee, B.H.; Lee, S.K. Effects of specific surface area and porosity on cube counting fractal dimension, lacunarity, configurational entropy, and permeability of model porous networks: Random packing simulations and NMR micro-imaging study. J. Hydrol. 2013, 496, 122–141. [Google Scholar] [CrossRef]
- Roy, A.; Perfect, E.; Dunne, W.M.; McKay, L.D. A technique for revealing scale-dependent patterns in fracture spacing data. J. Geophys. Res. Solid Earth 2014, 119, 5979–5986. [Google Scholar] [CrossRef]
- The MathWorks, I. MATLAB, Version R2018a. 2018. Available online: https://www.mathworks.com (accessed on 5 October 2024).
- Posadas, A.N.D.; Giménez, D.; Quiroz, R.; Protz, R. Multifractal Characterization of Soil Pore Systems. Soil Sci. Soc. Am. J. 2003, 67, 1361–1369. [Google Scholar] [CrossRef]
- Posadas, A.N.D.; Quiroz, R.; Zorogastúa, P.E.; León-Velarde, C. Multifractal characterization of the spatial distribution of ulexite in a Bolivian salt flat. Int. J. Remote. Sens. 2005, 26, 615–627. [Google Scholar] [CrossRef]
- Posadas, A.N.D.; Lourenço, A.L.F. NASS: Non-Linear Analysis Scaling System; Version II; Software Developed with the Support of the Department of Environmental Science; Rutgers, The State University of New Jersey: New Brunswick, NJ, USA, 2023. [Google Scholar]
- Chun, H.C.; Gimenez, D.; Yoon, S.W.; Park, C.W.; Moon, Y.H.; Sonn, Y.K.; Hyun, B.K. Review of Soil Structure Quantification from Soil Images. Korean J. Soil Sci. Fertil. 2011, 44, 517–526. [Google Scholar] [CrossRef]
- Klute, A.; Dirksen, C. Hydraulic conductivity and diffusivity: Laboratory methods. Methods Soil Anal. Part 1 Phys. Mineral. Methods 1986, 5, 687–734. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef]
- Klute, A. Laboratory measurement of hydraulic conductivity of saturated soil. Methods Soil Anal. Part 1 Phys. Mineral. Prop. Incl. Stat. Meas. Sampl. 1965, 9, 210–221. [Google Scholar] [CrossRef]
- Pessoa, T.N.; Libardi, P.L. Physical-hydric properties of Oxisols as influenced by soil structure and clay mineralogy. CATENA 2022, 211, 106009. [Google Scholar] [CrossRef]
- Brewer, R. Fabric and mineral analysis of soils. Soil Sci. 1965, 100, 73. [Google Scholar] [CrossRef]
- Santos, C.R.d.; Antonino, A.C.D.; Heck, R.J.; Lucena, L.R.R.d.; Oliveira, A.C.H.d.; Silva, A.S.A.d.; Stosic, B.; Menezes, R.S.C. 3D soil void space lacunarity as an index of degradation after land use change. Acta Sci. Agron. 2020, 42, e42491. [Google Scholar] [CrossRef]
- Zeng, Y.; Payton, R.L.; Gantzer, C.J.; Anderson, S.H. Fractal Dimension and Lacunarity of Bulk Density Determined with X-ray Computed Tomography. Soil Sci. Soc. Am. J. 1996, 60, 1718–1724. [Google Scholar] [CrossRef]
- Nunes, V.d.J.; Leite, E.d.S.; Maria de Lima, J.; Barbosa, R.S.; Santos, D.N.; Dias, F.P.M.; Nóbrega, J.C.A. Soil preparation systems and type of fertilization as affecting physical attributes of cohesive soil under eucalyptus in Northeastern Brazil. Acta Sci. Agron. 2022, 45, e58010. [Google Scholar] [CrossRef]
- Vidal-Vázquez, E.; Camargo, O.; Vieira, S.; Miranda, J.; Menk, J.; Siqueira, G.; Mirás-Avalos, J.; Paz González, A. Multifractal Analysis of Soil Properties along Two Perpendicular Transects. Vadose Zone J. 2013, 12, 1–13. [Google Scholar] [CrossRef]
- Yang, C.; Wu, J.; Li, P.; Wang, Y.; Yang, N. Evaluation of Soil-Water Characteristic Curves for Different Textural Soils Using Fractal Analysis. Water 2023, 15, 772. [Google Scholar] [CrossRef]
- Chen, K.; Liang, F.; Wang, C. A fractal hydraulic model for water retention and hydraulic conductivity considering adsorption and capillarity. J. Hydrol. 2021, 602, 126763. [Google Scholar] [CrossRef]
- Gao, Y.; Fu, Y.; Chen, J.; Sun, D. A novel equation for simulating the bimodal soil–water retention curve of unsaturated soils. Acta Geotech. 2024, 19, 5347–5362. [Google Scholar] [CrossRef]
- Ribeiro, K.D.; Menezes, S.M.; Mesquita, M.d.G.B.d.F.; Sampaio, F.d.M.T. Propriedades físicas do solo, influenciadas pela distribuição de poros, de seis classes de solos da região de Lavras-MG. Ciênc. Agrotec. 2007, 31, 1167–1175. [Google Scholar] [CrossRef]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review. Agric. Water Manag. 2022, 260, 107324. [Google Scholar] [CrossRef]
Physical Attributes | Unit | Value |
---|---|---|
Clay | % | 29.50 |
Silt | % | 1.58 |
Very coarse sand | % | 7.95 |
Coarse sand | % | 22.10 |
Medium sand | % | 21.38 |
Fine sand | % | 13.85 |
Very fine sand | % | 3.64 |
Soil bulk density () | g cm−3 | 1.68 ± 0.02 |
Particle density () | g cm−3 | 2.73 ± 0.01 |
Total porosity () | cm3 cm−3 | 0.38 ± 0.01 |
Saturated hydraulic conductivity () | mm h−1 | 82.87 ± 0.26 |
n | m | RMSE | ||||
---|---|---|---|---|---|---|
cm3 cm−3 | kPa−1 | |||||
0.386 | 0.162 | 0.930 | 1.776 | 0.437 | 1.97 × 10−4 | 0.956 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, J.A.T.d.; Pessoa, T.N.; Gaspareto, J.V.; Posadas, A.N.D.; Lourenço, A.L.F.; Libardi, P.L.; Pires, L.F. Characterization of the Pore Network of a Cohesive Oxisol Through Morphological and Pore Complexity Analyses. Agriculture 2025, 15, 200. https://doi.org/10.3390/agriculture15020200
Oliveira JATd, Pessoa TN, Gaspareto JV, Posadas AND, Lourenço ALF, Libardi PL, Pires LF. Characterization of the Pore Network of a Cohesive Oxisol Through Morphological and Pore Complexity Analyses. Agriculture. 2025; 15(2):200. https://doi.org/10.3390/agriculture15020200
Chicago/Turabian StyleOliveira, Jocenei A. T. de, Thaís N. Pessoa, José V. Gaspareto, Adolfo N. D. Posadas, André L. F. Lourenço, Paulo L. Libardi, and Luiz F. Pires. 2025. "Characterization of the Pore Network of a Cohesive Oxisol Through Morphological and Pore Complexity Analyses" Agriculture 15, no. 2: 200. https://doi.org/10.3390/agriculture15020200
APA StyleOliveira, J. A. T. d., Pessoa, T. N., Gaspareto, J. V., Posadas, A. N. D., Lourenço, A. L. F., Libardi, P. L., & Pires, L. F. (2025). Characterization of the Pore Network of a Cohesive Oxisol Through Morphological and Pore Complexity Analyses. Agriculture, 15(2), 200. https://doi.org/10.3390/agriculture15020200