Quantifying the Performance of European Agriculture Through the New European Sustainability Model
Abstract
:1. Introduction
2. Literature Review
2.1. Agricultural Sustainability in the European Context
2.2. Synthetic Sustainability Indicators
2.3. European Agricultural Policies and the Transition to Sustainability
2.4. Regional Disparities and Current Challenges
3. Methodology
3.1. Collection and Processing of Data
3.2. Creating Composite Indicators
3.3. Statistical Analysis
3.4. Conceptualizing the Econometric Model of Agricultural Sustainability
3.4.1. Conceptualizing the Linear Econometric Model of Agricultural Sustainability
- : the dependent variable (Sustainable Agricultural Performance Index);
- : independent variables;
- : the residual error.
3.4.2. Conceptualizing the Dynamic Arellano–Bond Panel Model of Agricultural Sustainability
- is the dependent variable (for unit i at time t);
- is the first lag of ISPAS;
- is the second ISPAS lag;
- log(IREAit), log(ISACit), log(IESAit) are independent explanatory variables;
- , is the error term;
- , is the constant.
4. Results
4.1. Results of Linear Econometric Model of Agricultural Sustainability
4.2. Results of Dynamic Arellano–Bond Panel Model of Agricultural Sustainability
5. Discussions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission a European Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 3 December 2024).
- Bergez, J.-E.; Béthinger, A.; Bockstaller, C.; Cederberg, C.; Ceschia, E.; Guilpart, N.; Lange, S.; Müller, F.; Reidsma, P.; Riviere, C.; et al. Integrating Agri-Environmental Indicators, Ecosystem Services Assessment, Life Cycle Assessment and Yield Gap Analysis to Assess the Environmental Sustainability of Agriculture. Ecol. Indic. 2022, 141, 109107. [Google Scholar] [CrossRef]
- Pandey, S.C.; Modi, P.; Pereira, V.; Fosso Wamba, S. Empowering Small Farmers for Sustainable Agriculture: A Human Resource Approach to SDG-Driven Training and Innovation. Int. J. Manpow. 2024. [Google Scholar] [CrossRef]
- Streimikis, J.; Balezentis, T. Agricultural Sustainability Assessment Framework Integrating Sustainable Development Goals and Interlinked Priorities of Environmental, Climate and Agriculture Policies. Sustain. Dev. 2020, 28, 1702–1712. [Google Scholar] [CrossRef]
- Shang, L.; Wang, J.; Schäfer, D.; Heckelei, T.; Gall, J.; Appel, F.; Storm, H. Surrogate Modelling of a Detailed Farm-Level Model Using Deep Learning. J. Agric. Econ. 2024, 75, 235–260. [Google Scholar] [CrossRef]
- Reidsma, P.; Accatino, F.; Appel, F.; Gavrilescu, C.; Krupin, V.; Manevska Tasevska, G.; Meuwissen, M.P.M.; Peneva, M.; Severini, S.; Soriano, B.; et al. Alternative Systems and Strategies to Improve Future Sustainability and Resilience of Farming Systems across Europe: From Adaptation to Transformation. Land Use Policy 2023, 134, 106881. [Google Scholar] [CrossRef]
- Chomać-Pierzecka, E. Pharmaceutical Companies in the Light of the Idea of Sustainable Development—An Analysis of Selected Aspects of Sustainable Management. Sustainability 2023, 15, 8889. [Google Scholar] [CrossRef]
- Hariram, N.P.; Mekha, K.B.; Suganthan, V.; Sudhakar, K. Sustainalism: An Integrated Socio-Economic-Environmental Model to Address Sustainable Development and Sustainability. Sustainability 2023, 15, 10682. [Google Scholar] [CrossRef]
- Robinson, G.M. Global Sustainable Agriculture and Land Management Systems. Geogr. Sustain. 2024, 5, 637–646. [Google Scholar] [CrossRef]
- European Commission Farm to Fork Strategy. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 4 December 2024).
- Karunathilake, E.M.B.M.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The Path to Smart Farming: Innovations and Opportunities in Precision Agriculture. Agriculture 2023, 13, 1539. [Google Scholar] [CrossRef]
- Balyan, S.; Jangir, H.; Tripathi, S.N.; Tripathi, A.; Jhang, T.; Pandey, P. Seeding a Sustainable Future: Navigating the Digital Horizon of Smart Agriculture. Sustainability 2024, 16, 475. [Google Scholar] [CrossRef]
- Darmaun, M.; Chevallier, T.; Hossard, L.; Lairez, J.; Scopel, E.; Chotte, J.-L.; Lambert-Derkimba, A.; de Tourdonnet, S. Multidimensional and Multiscale Assessment of Agroecological Transitions. A Review. Int. J. Agric. Sustain. 2023, 21, 2193028. [Google Scholar] [CrossRef]
- Maraveas, C.; Karavas, C.-S.; Loukatos, D.; Bartzanas, T.; Arvanitis, K.G.; Symeonaki, E. Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions. Agriculture 2023, 13, 1464. [Google Scholar] [CrossRef]
- Bhatti, U.A.; Bhatti, M.A.; Tang, H.; Syam, M.S.; Awwad, E.M.; Sharaf, M.; Ghadi, Y.Y. Global Production Patterns: Understanding the Relationship between Greenhouse Gas Emissions, Agriculture Greening and Climate Variability. Environ. Res. 2024, 245, 118049. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Xiong, R.; Huan, P. Productive Use of Natural Resources in Agriculture: The Main Policy Lessons. Resour. Policy 2023, 85, 103793. [Google Scholar] [CrossRef]
- Nelson, K.S.; Nguyen, T.D.; Francois, J.R.; Ojha, S. Rural Sustainability Methods, Drivers, and Outcomes: A Systematic Review. Sustain. Dev. 2023, 31, 1226–1249. [Google Scholar] [CrossRef]
- Stanciu, S.; Virlanuta, F.O.; Dinu, V.; Zungun, D.; Antohi, V.M. The Perception of the Social Economy by Agricultural Producers in the North-East Development Region of Romania. Transform. Bus. Econ. 2019, 18, 879–899. [Google Scholar]
- European Commission Biodiversity Strategy for 2030. Available online: https://environment.ec.europa.eu/strategy/biodiversity-strategy-2030_en (accessed on 4 December 2024).
- European Commission Main Initiatives: Strategic Dialogue on the Future of EU Agriculture. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/main-initiatives-strategic-dialogue-future-eu-agriculture_en (accessed on 3 December 2024).
- OECD. Policies for the Future of Farming and Food in the European Union; OECD: Paris, France, 2023. [Google Scholar]
- Manta, A.G.; Doran, N.M.; Bădîrcea, R.M.; Badareu, G.; Gherțescu, C.; Lăpădat, C.V. Does Common Agricultural Policy Influence Regional Disparities and Environmental Sustainability in European Union Countries? Agriculture 2024, 14, 2242. [Google Scholar] [CrossRef]
- European Commission. The Common Agricultural Policy at a Glance. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-glance_en (accessed on 3 December 2024).
- Kumar, V.; Sharma, K.V.; Kedam, N.; Patel, A.; Kate, T.R.; Rathnayake, U. A Comprehensive Review on Smart and Sustainable Agriculture Using IoT Technologies. Smart Agric. Technol. 2024, 8, 100487. [Google Scholar] [CrossRef]
- Godavari, H.; Vidya Madhuri, E.; Tulasi, B.; Manoj, M.S.; Manideep, S.; Keerthika, N.; Paschapur, A.U. Precision Farming Solutions: Integrating Technology for Sustainable Pest Management. J. Adv. Biol. Biotechnol. 2024, 27, 33–54. [Google Scholar] [CrossRef]
- Padhiary, M.; Saha, D.; Kumar, R.; Sethi, L.N.; Kumar, A. Enhancing Precision Agriculture: A Comprehensive Review of Machine Learning and AI Vision Applications in All-Terrain Vehicle for Farm Automation. Smart Agric. Technol. 2024, 8, 100483. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2023—Revealing the True Cost of Food to Transform Agrifood Systems. Available online: https://www.fao.org/agrifood-economics/publications/detail/en/c/1661488/?utm_source=chatgpt.com (accessed on 3 December 2024).
- Tomar, S.; Sharma, N.; Kumar, R. Effect of Organic Food Production and Consumption on the Affective and Cognitive Well-Being of Farmers: Analysis Using Prism of NVivo, Etic and Emic Approach. Environ. Dev. Sustain. 2024, 26, 11027–11048. [Google Scholar] [CrossRef]
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Jayasinghe, N.; Kodikara, N.; Suraweera, P.; Merah, O. Role of Organic Farming for Achieving Sustainability in Agriculture. Farming Syst. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Saud, S.; Haseeb, A.; Haider Zaidi, S.A.; Khan, I.; Li, H. Moving towards Green Growth? Harnessing Natural Resources and Economic Complexity for Sustainable Development through the Lens of the N-Shaped EKC Framework for the European Union. Resour. Policy 2024, 91, 104804. [Google Scholar] [CrossRef]
- Matthews, P.G.; Fish, R.D.; Tzanopoulos, J. Overcoming Barriers to Agri-Environmental Management at Landscape Scale: Balancing Farmer Coordination and Collaboration with the Aid of Facilitators and Pioneers. J. Environ. Manag. 2024, 369, 122278. [Google Scholar] [CrossRef] [PubMed]
- Memo, U.; Pieńkowski, D. Sustainable rural development indicators in Bulgaria, Germany, Poland, Romania and the Netherlands: A Review of Data. Front. Environ. Sci. 2023, 11, 1323688. [Google Scholar] [CrossRef]
- Orou Sannou, R.; Kirschke, S.; Günther, E. Integrating the Social Perspective into the Sustainability Assessment of Agri-Food Systems: A Review of Indicators. Sustain. Prod. Consum. 2023, 39, 175–190. [Google Scholar] [CrossRef]
- Amaruzaman, S.; Bardsley, D.K.; Stringer, R. Analysing Agricultural Policy Outcomes in the Uplands of Indonesia: A Multi-Dimensional Sustainability Assessment. Sustain. Dev. 2023, 31, 1937–1950. [Google Scholar] [CrossRef]
- Sass, K.S.; Konak, A.; Batalini de Macedo, M.; Benso, M.R.; Shrimpton, E.; Balta-Ozkan, N.; Sarmah, T.; Mendiondo, E.M.; Jesus da Silva, G.; Câmara da Silva, P.G.; et al. Enhancing Drought Resilience and Vulnerability Assessment in Small Farms: A Global Expert Survey on Multidimensional Indicators. Int. J. Disaster Risk Reduct. 2024, 110, 104616. [Google Scholar] [CrossRef]
- Espinel, R.; Herrera-Franco, G.; Rivadeneira García, J.L.; Escandón-Panchana, P. Artificial Intelligence in Agricultural Mapping: A Review. Agriculture 2024, 14, 1071. [Google Scholar] [CrossRef]
- Mana, A.A.; Allouhi, A.; Hamrani, A.; Rehman, S.; el Jamaoui, I.; Jayachandran, K. Sustainable AI-Based Production Agriculture: Exploring AI Applications and Implications in Agricultural Practices. Smart Agric. Technol. 2024, 7, 100416. [Google Scholar] [CrossRef]
- Sarku, R.; Clemen, U.A.; Clemen, T. The Application of Artificial Intelligence Models for Food Security: A Review. Agriculture 2023, 13, 2037. [Google Scholar] [CrossRef]
- Egala, S.B.; Amoah, J.; Bashiru Jibril, A.; Opoku, R.; Bruce, E. Digital Transformation in an Emerging Economy: Exploring Organizational Drivers. Cogent Soc. Sci. 2024, 10, 2302217. [Google Scholar] [CrossRef]
- Delechat, C.C.; Melina, G.; Newiak, M.; Papageorgiou, C.; Wang, K.; Spatafora, N. Economic Diversification in Developing Countries—Lessons from Country Experiences with Broad-Based and Industrial Policies. Dep. Pap. 2024, A001. [Google Scholar] [CrossRef]
- Memarian, B.; Doleck, T. A Review of Assessment for Learning with Artificial Intelligence. Comput. Hum. Behav. Artif. Hum. 2024, 2, 100040. [Google Scholar] [CrossRef]
- Doukas, Y.E.; Salvati, L.; Vardopoulos, I. Unraveling the European Agricultural Policy Sustainable Development Trajectory. Land 2023, 12, 1749. [Google Scholar] [CrossRef]
- Cuadros-Casanova, I.; Cristiano, A.; Biancolini, D.; Cimatti, M.; Sessa, A.A.; Mendez Angarita, V.Y.; Dragonetti, C.; Pacifici, M.; Rondinini, C.; Di Marco, M. Opportunities and Challenges for Common Agricultural Policy Reform to Support the European Green Deal. Conserv. Biol. 2023, 37, e14052. [Google Scholar] [CrossRef] [PubMed]
- European Commission. The Common Agricultural Policy: 2023-27. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-2023-27_en (accessed on 3 December 2024).
- Wang, D.; Dong, L.; Mei, J. An Advanced Review of Climate Change Mitigation Policies in Germany, France, and the Netherlands. Environ. Res. Lett. 2023, 18, 103001. [Google Scholar] [CrossRef]
- Geels, F.W.; Pereira, G.I.; Pinkse, J. Moving beyond Opportunity Narratives in COVID-19 Green Recoveries: A Comparative Analysis of Public Investment Plans in France, Germany, and the United Kingdom. Energy Res. Soc. Sci. 2022, 84, 102368. [Google Scholar] [CrossRef]
- Borisov, P.; Petrov, K.; Tsonkov, N. Integration Perspectives for Improving Regional Policy in Rural Areas of Bulgaria. Agric. Resour. Econ. Int. Sci. E-J. 2024, 10, 260–283. [Google Scholar] [CrossRef]
- Feurich, M.; Kourilova, J.; Pelucha, M.; Kasabov, E. Bridging the Urban-Rural Digital Divide: Taxonomy of the Best Practice and Critical Reflection of the EU Countries’ Approach. Eur. Plan. Stud. 2024, 32, 483–505. [Google Scholar] [CrossRef]
- European Commission. Common Agricultural Policy Funds. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/financing-cap/cap-funds_en (accessed on 3 December 2024).
- European Commission. Rural Development. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/rural-development_en (accessed on 3 December 2024).
- Masi, M.; De Rosa, M.; Vecchio, Y.; Bartoli, L.; Adinolfi, F. The Long Way to Innovation Adoption: Insights from Precision Agriculture. Agric. Food Econ. 2022, 10, 27. [Google Scholar] [CrossRef]
- Bocean, C.G. A Cross-Sectional Analysis of the Relationship between Digital Technology Use and Agricultural Productivity in EU Countries. Agriculture 2024, 14, 519. [Google Scholar] [CrossRef]
- Shvets, N.; Shevtsova, H.; Pidorycheva, I.; Prokopenko, O.; Maslosh, O. Sustainable Development of Agriculture Based on the Smart Specialisation Approach: Cases of the Central and Eastern European Countries. Agric. Resour. Econ. Int. Sci. E-J. 2023, 9, 260–282. [Google Scholar] [CrossRef]
- Hurduzeu, G.; Pânzaru, R.L.; Medelete, D.M.; Ciobanu, A.; Enea, C. The Development of Sustainable Agriculture in EU Countries and the Potential Achievement of Sustainable Development Goals Specific Targets (SDG 2). Sustainability 2022, 14, 15798. [Google Scholar] [CrossRef]
- Giua, C.; Materia, V.C.; Camanzi, L. Smart Farming Technologies Adoption: Which Factors Play a Role in the Digital Transition? Technol. Soc. 2022, 68, 101869. [Google Scholar] [CrossRef]
- MacPherson, J.; Voglhuber-Slavinsky, A.; Olbrisch, M.; Schöbel, P.; Dönitz, E.; Mouratiadou, I.; Helming, K. Future Agricultural Systems and the Role of Digitalization for Achieving Sustainability Goals: A Review. Agron. Sustain. Dev. 2022, 42, 70. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.; Frecassetti, S.; Rossini, M.; Portioli-Staudacher, A. Industry 4.0 Digital Technologies Enhancing Sustainability: Applications and Barriers from the Agricultural Industry in an Emerging Economy. J. Clean. Prod. 2023, 408, 137208. [Google Scholar] [CrossRef]
- Geppert, F.; Krachunova, T.; Bellingrath-Kimura, S.D. Digital and Smart Technologies in Agriculture in Germany: Identification of Key Recommendations for Sustainability Actions; Expertenkommission Forschung und Innovation (EFI): Berlin, Germany, 2024. [Google Scholar]
- Eurostat Economic Accounts for Agriculture—Values at Current Prices. Available online: https://ec.europa.eu/eurostat/databrowser/view/AACT_EAA01/default/table?lang=en (accessed on 5 December 2024).
- Eurostat Gross Value Added of the Agricultural Industry—Basic and Producer Prices. Available online: https://ec.europa.eu/eurostat/databrowser/view/tag00056/default/table?lang=en (accessed on 5 December 2024).
- Eurostat Greenhouse Gas Emissions from Agriculture. Available online: https://ec.europa.eu/eurostat/databrowser/view/tai08/default/table?lang=en (accessed on 5 December 2024).
- Eurostat Net Greenhouse Gas Emissions. Available online: https://ec.europa.eu/eurostat/databrowser/view/sdg_13_10/default/table?lang=en (accessed on 5 December 2024).
- Eurostat Ammonia Emissions from Agriculture. 2024. Available online: https://ec.europa.eu/eurostat/databrowser/view/sdg_02_60/default/table?lang=en&category=sdg.sdg_02 (accessed on 5 December 2024).
- Eurostat Area Under Organic Farming. Available online: https://ec.europa.eu/eurostat/databrowser/view/sdg_02_40/default/table?lang=en (accessed on 5 December 2024).
- Eurostat Utilised Agricultural Area by Categories. Available online: https://ec.europa.eu/eurostat/databrowser/view/tag00025/default/table?lang=en (accessed on 5 December 2024).
- European Commission. Climate Action. Available online: https://climate.ec.europa.eu/news-your-voice/news/looking-how-mitigate-emissions-agriculture-2023-11-13_en (accessed on 5 December 2024).
- Luo, B.; Rauf, A.; Osei-Kusi, F.; Sundas, R.; Mehmood, R. Exploring the Impacts of Agricultural Emissions from Natural Gas on Ecological Footprint. Ecol. Process. 2024, 13, 83. [Google Scholar] [CrossRef]
- Burland, A.; von Cossel, M. Towards Managing Biodiversity of European Marginal Agricultural Land for Biodiversity-Friendly Biomass Production. Agronomy 2023, 13, 1651. [Google Scholar] [CrossRef]
- Kreft, C.; Finger, R.; Huber, R. Action-versus Results-Based Policy Designs for Agricultural Climate Change Mitigation. Appl. Econ. Perspect. Policy 2024, 46, 1010–1037. [Google Scholar] [CrossRef]
- Khanna, M.; Chen, L.; Basso, B.; Cai, X.; Field, J.L.; Guan, K.; Jiang, C.; Lark, T.J.; Richard, T.L.; Spawn-Lee, S.A.; et al. Redefining Marginal Land for Bioenergy Crop Production. GCB Bioenergy 2021, 13, 1590–1609. [Google Scholar] [CrossRef]
- Rosli, M.N.; Abdul Mutalib, M.; Shamsuddin, A.S.; Lani, M.; Ariati, I.; Tang, S. Navigating the Environmental, Economic and Social Impacts of Sustainable Agriculture and Food Systems: A Review. Front. Agric. Sci. Eng. 2024, 11, 652–673. [Google Scholar] [CrossRef]
- Rizzo, G.; Migliore, G.; Schifani, G.; Vecchio, R. Key Factors Influencing Farmers’ Adoption of Sustainable Innovations: A Systematic Literature Review and Research Agenda. Org. Agric. 2024, 14, 57–84. [Google Scholar] [CrossRef]
- Fusco, G.; Campobasso, F.; Laureti, L.; Frittelli, M.; Valente, D.; Petrosillo, I. The Environmental Impact of Agriculture: An Instrument to Support Public Policy. Ecol. Indic. 2023, 147, 109961. [Google Scholar] [CrossRef]
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural Land Systems Importance for Supporting Food Security and Sustainable Development Goals: A Systematic Review. Sci. Total Environ. 2022, 806, 150718. [Google Scholar] [CrossRef]
- Ma, Y.; Zheng, M.; Zheng, X.; Huang, Y.; Feng, X.; Wang, X.; Liu, J.; Lv, Y.; Liu, W. Land Use Efficiency Assessment under Sustainable Development Goals: A Systematic Review. Land 2023, 12, 894. [Google Scholar] [CrossRef]
- Hasler, B.; Termansen, M.; Nielsen, H.Ø.; Daugbjerg, C.; Wunder, S.; Latacz-Lohmann, U. European Agri-Environmental Policy: Evolution, Effectiveness, and Challenges. Rev. Environ. Econ. Policy 2022, 16, 105–125. [Google Scholar] [CrossRef]
- Nowak, A.; Różańska-Boczula, M. A Comparative View of the Level of Agricultural Sustainability—The Case of European Union Member States. Sustain. Dev. 2024, 32, 2638–2652. [Google Scholar] [CrossRef]
- European Commission. EU Agricultural Outlook for Markets, 2023–2035. Available online: https://agriculture.ec.europa.eu/system/files/2024-01/agricultural-outlook-2023-report_en_0.pdf (accessed on 3 December 2024).
- Castillo-Díaz, F.J.; Belmonte-Ureña, L.J.; López-Serrano, M.J.; Camacho-Ferre, F. Assessment of the Sustainability of the European Agri-Food Sector in the Context of the Circular Economy. Sustain. Prod. Consum. 2023, 40, 398–411. [Google Scholar] [CrossRef]
- Peng, B.; Melnikiene, R.; Balezentis, T.; Agnusdei, G.P. Structural Dynamics and Sustainability in the Agricultural Sector: The Case of the European Union. Agric. Food Econ. 2024, 12, 31. [Google Scholar] [CrossRef]
- European Commission. Strategic Dialogue on the Future of EU Agriculture. Available online: https://agriculture.ec.europa.eu/document/download/171329ff-0f50-4fa5-946f-aea11032172e_en?filename=strategic-dialogue-report-2024_en.pdf (accessed on 3 December 2024).
- Abbate, S.; Centobelli, P.; Cerchione, R. The Digital and Sustainable Transition of the Agri-Food Sector. Technol. Forecast. Soc. Change 2023, 187, 122222. [Google Scholar] [CrossRef]
- Metta, M.; Ciliberti, S.; Obi, C.; Bartolini, F.; Klerkx, L.; Brunori, G. An Integrated Socio-Cyber-Physical System Framework to Assess Responsible Digitalisation in Agriculture: A First Application with Living Labs in Europe. Agric. Syst. 2022, 203, 103533. [Google Scholar] [CrossRef]
- Herman, E. Sustainable Agriculture and Its Impact on the Rural Development in EU Countries: A Multivariate Analysis. Land 2024, 13, 947. [Google Scholar] [CrossRef]
- Huseynov, R.; Aliyeva, N.; Bezpalov, V.; Syromyatnikov, D. Cluster Analysis as a Tool for Improving the Performance of Agricultural Enterprises in the Agro-Industrial Sector. Environ. Dev. Sustain. 2024, 26, 4119–4132. [Google Scholar] [CrossRef]
- Di Vita, G.; Zanchini, R.; De Cianni, R.; Pippinato, L.; Mancuso, T.; Brun, F. Sustainable Livestock Farming in the European Union: A Study on Beef Farms in NUTS 2 Regions. Sustainability 2024, 16, 1098. [Google Scholar] [CrossRef]
Variables | VIF | 1/VIF |
---|---|---|
IESA | 1.656 | 0.604 |
IREA | 1.591 | 0.628 |
ISAC | 1.159 | 0.863 |
Mean VIF | 1.469 | 0.000 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
(1) ISPAS | 1.000 | |||
(2) IREA | 0.950 *** | 1.000 | ||
(3) ISAC | 0.312 *** | 0.119 ** | 1.000 | |
(4) IESA | 0.573 *** | 0.550 *** | −0.237 *** | 1.000 |
ISPAS | Coef. | St.Err. | t-Value | p-Value | [95% Conf Interval] | Sig | |
---|---|---|---|---|---|---|---|
IREA | 0.920 | 0.017 | 53.12 | 0.000 | 0.886 | 0.954 | *** |
ISAC | 1.908 | 0.096 | 19.84 | 0.000 | 1.718 | 2.097 | *** |
IESA | 0.991 | 0.083 | 11.93 | 0.000 | 0.828 | 1.155 | *** |
Constant | −5.403 | 0.121 | −44.50 | 0.000 | −5.642 | −5.164 | *** |
Mean dependent var | 3.587 | SD dependent var | 0.572 | ||||
R-squared | 0.964 | Number of obs | 250 | ||||
F-test | 2169.529 | Prob > F | 0.000 | ||||
Akaike crit. (AIC) | −390.933 | Bayesian crit. (BIC) | −376.847 |
ISPAS | Coef. | St.Err. | t-Value | p-Value | [95% Conf Interval] | Sig | |
---|---|---|---|---|---|---|---|
L | 0.193 | 0.031 | 6.28 | 0.000 | 0.133 | 0.254 | *** |
L2 | 0.094 | 0.025 | 3.79 | 0.000 | 0.045 | 0.142 | *** |
IREA | 0.126 | 0.031 | 4.03 | 0.000 | 0.065 | 0.187 | *** |
ISAC | 1.513 | 0.034 | 44.20 | 0.000 | 1.446 | 1.58 | *** |
IESA | 1.578 | 0.052 | 30.45 | 0.000 | 1.476 | 1.679 | *** |
Constant | −0.924 | 0.296 | −3.12 | 0.002 | −1.505 | −0.343 | *** |
Mean dependent var | 3.591 | SD dependent var | 0.572 | ||||
Number of obs | 200 | Wald Chi-square (5) | 5660.468 | ||||
Number of instruments | 48 | Prob > Chi-square | 0.000 |
Indicator | N | Mean | Std. Deviation | Minimum | Maximum | Percentiles | ||
---|---|---|---|---|---|---|---|---|
25th | 50th (Median) | 75th | ||||||
ISPAS | 275 | 3.584853 | 0.5713003 | 2.4895 | 4.6505 | 3.165100 | 3.572100 | 3.979000 |
IREA | 275 | 7.069645 | 0.5083147 | 6.1133 | 8.0161 | 6.686700 | 7.061200 | 7.341900 |
ISAC | 275 | 0.891145 | 0.0789199 | 0.6531 | 1.0652 | 0.839000 | 0.892900 | 0.950100 |
IESA | 275 | 0.789098 | 0.1081901 | 0.5119 | 1.0866 | 0.714100 | 0.799000 | 0.856400 |
Test | DMU | Mean Rank | N | ISPAS | IREA | ISAC | IESA |
---|---|---|---|---|---|---|---|
Kruskal–Wallis Test | Belgium | 1 | 11 | 156.73 | 143.18 | 101.45 | 218.55 |
Bulgaria | 2 | 11 | 99.09 | 107.55 | 15.91 | 166.55 | |
Czechia | 3 | 11 | 112.91 | 150.00 | 151.14 | 48.27 | |
Denmark | 4 | 11 | 151.45 | 147.09 | 154.00 | 131.82 | |
Germany | 5 | 11 | 246.36 | 252.27 | 162.73 | 198.68 | |
Estonia | 6 | 11 | 14.82 | 6.55 | 185.77 | 9.09 | |
Ireland | 7 | 11 | 119.82 | 215.00 | 9.82 | 245.64 | |
Greece | 8 | 11 | 193.36 | 141.18 | 237.00 | 140.09 | |
Spain | 9 | 11 | 241.36 | 258.55 | 211.23 | 166.23 | |
France | 10 | 11 | 259.73 | 265.73 | 168.18 | 205.00 | |
Croatia | 11 | 11 | 64.64 | 67.91 | 92.45 | 124.64 | |
Italy | 12 | 11 | 266.55 | 237.09 | 261.27 | 212.59 | |
Cyprus | 13 | 11 | 10.73 | 16.45 | 49.45 | 254.18 | |
Latvia | 14 | 11 | 30.09 | 28.00 | 153.05 | 14.36 | |
Lithuania | 15 | 11 | 68.55 | 67.27 | 101.00 | 69.64 | |
Hungary | 16 | 11 | 170.27 | 166.45 | 69.59 | 157.91 | |
Netherlands | 17 | 11 | 224.91 | 202.73 | 149.45 | 270.00 | |
Austria | 18 | 11 | 158.00 | 176.27 | 255.18 | 87.14 | |
Poland | 19 | 11 | 216.09 | 226.36 | 62.23 | 177.59 | |
Portugal | 20 | 11 | 154.18 | 116.27 | 179.50 | 118.23 | |
Romania | 21 | 11 | 203.64 | 194.27 | 69.95 | 208.36 | |
Slovenia | 22 | 11 | 34.64 | 40.73 | 105.18 | 88.64 | |
Slovakia | 23 | 11 | 51.91 | 49.18 | 92.36 | 27.73 | |
Finland | 24 | 11 | 84.18 | 90.55 | 181.05 | 61.00 | |
Sweden | 25 | 11 | 116.00 | 83.36 | 231.05 | 48.09 | |
K-Means | Cluster | ISPAS | IREA | ISAC | IESA | ||
Cluster 1 | 3.56 | 6.99 | 0.94 | 0.75 | |||
Cluster 2 | 2.93 | 6.50 | 0.89 | 0.66 | |||
Cluster 3 | 4.45 | 7.79 | 0.94 | 0.89 | |||
Cluster 4 | 2.77 | 6.38 | 0.81 | 0.89 | |||
Cluster 5 | 3.70 | 7.29 | 0.79 | 0.85 |
Test Statistics a,b | ISPAS | IREA | ISAC | IESA | ||
---|---|---|---|---|---|---|
Kruskal–Wallis H | 268.175 | 270.279 | 214.056 | 256.859 | ||
df | 24 | 24 | 24 | 24 | ||
Asymp. Sig. | 0.000 | 0.000 | 0.000 | 0.000 | ||
Monte Carlo Sig. | Sig. | 0.000 c | 0.000 c | 0.000 c | 0.000 c | |
99% Confidence Interval | Lower Bound | 0.000 | 0.000 | 0.000 | 0.000 | |
Upper Bound | 0.000 | 0.000 | 0.000 | 0.000 |
DMU | Belgium | Bulgaria | Czechia | Denmark | Germany | Estonia | Ireland | Greece | Spain | France | Croatia | Italy | Cyprus | Latvia | Lithuania | Hungary | Netherlands | Austria | Poland | Portugal | Romania | Slovenia | Slovakia | Finland | Sweden | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | ||
ISPAS | >Median | 9 | 1 | 1 | 8 | 11 | 0 | 1 | 11 | 11 | 11 | 0 | 11 | 0 | 0 | 0 | 11 | 11 | 10 | 11 | 7 | 11 | 0 | 0 | 0 | 1 |
≤Median | 2 | 10 | 10 | 3 | 0 | 11 | 10 | 0 | 0 | 0 | 11 | 0 | 11 | 11 | 11 | 0 | 0 | 1 | 0 | 4 | 0 | 11 | 11 | 11 | 10 | |
IREA | >Median | 7 | 0 | 7 | 7 | 11 | 0 | 11 | 5 | 11 | 11 | 0 | 11 | 0 | 0 | 0 | 11 | 11 | 11 | 11 | 1 | 11 | 0 | 0 | 0 | 0 |
≤Median | 4 | 11 | 4 | 4 | 0 | 11 | 0 | 6 | 0 | 0 | 11 | 0 | 11 | 11 | 11 | 0 | 0 | 0 | 0 | 10 | 0 | 11 | 11 | 11 | 11 | |
ISAC | >Median | 1 | 0 | 5 | 7 | 8 | 10 | 0 | 11 | 11 | 7 | 2 | 11 | 0 | 6 | 3 | 0 | 6 | 11 | 0 | 10 | 2 | 4 | 2 | 8 | 11 |
≤Median | 10 | 11 | 6 | 4 | 3 | 1 | 11 | 0 | 0 | 4 | 9 | 0 | 11 | 5 | 8 | 11 | 5 | 0 | 11 | 1 | 9 | 7 | 9 | 3 | 0 | |
IESA | >Median | 11 | 5 | 0 | 4 | 11 | 0 | 11 | 7 | 11 | 11 | 2 | 11 | 11 | 0 | 0 | 8 | 11 | 0 | 11 | 1 | 11 | 0 | 0 | 0 | 0 |
≤Median | 0 | 6 | 11 | 7 | 0 | 11 | 0 | 4 | 0 | 0 | 9 | 0 | 0 | 11 | 11 | 3 | 0 | 11 | 0 | 10 | 0 | 11 | 11 | 11 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgescu, P.-L.; Barbuta-Misu, N.; Zlati, M.L.; Fortea, C.; Antohi, V.M. Quantifying the Performance of European Agriculture Through the New European Sustainability Model. Agriculture 2025, 15, 210. https://doi.org/10.3390/agriculture15020210
Georgescu P-L, Barbuta-Misu N, Zlati ML, Fortea C, Antohi VM. Quantifying the Performance of European Agriculture Through the New European Sustainability Model. Agriculture. 2025; 15(2):210. https://doi.org/10.3390/agriculture15020210
Chicago/Turabian StyleGeorgescu, Puiu-Lucian, Nicoleta Barbuta-Misu, Monica Laura Zlati, Costinela Fortea, and Valentin Marian Antohi. 2025. "Quantifying the Performance of European Agriculture Through the New European Sustainability Model" Agriculture 15, no. 2: 210. https://doi.org/10.3390/agriculture15020210
APA StyleGeorgescu, P.-L., Barbuta-Misu, N., Zlati, M. L., Fortea, C., & Antohi, V. M. (2025). Quantifying the Performance of European Agriculture Through the New European Sustainability Model. Agriculture, 15(2), 210. https://doi.org/10.3390/agriculture15020210