Effect of Biodegradable Mulch and Different Synthetic Mulches on Growth and Yield of Field-Grown Small-Fruited Tomato (Lycopersicon esculentum Mill.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Analysis Methodology
2.2. Weather Conditions
2.3. Experimental Design and Statistical Analyses
3. Results and Discussion
3.1. Morphological Characteristics
3.2. Yield Performance
3.3. Chemical Composition of Tomato Fruits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data (accessed on 4 December 2024).
- Mansoor, Z.; Tchuenbou-Magaia, F.; Kowalczuk, M.; Adamus, G.; Manning, G.; Parati, M.; Radecka, I.; Khan, H. Polymers Use as Mulch Films in Agriculture—A Review of History, Problems and Current Trends. Polymers 2022, 14, 5062. [Google Scholar] [CrossRef]
- Mormile, P.; Stahl, N.; Malinconico, M. The world in plasticulture. In Soil Degradable Bioplastics for a Sustainable Modern Agriculture, Green Chemistry and Sustainable Technology; Malinconico, M., Ed.; Springer-Verlag GmbH: Berlin/Heidelberg, Germany, 2017; pp. 1–21. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total. Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Yan, C.; Liu, Q.; Ding, W.; Chen, B.; Li, Z. Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis. Sci. Total Environ. 2019, 651, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ding, F.; Flury, M.; Wang, Z.; Xu, L.; Li, S.; Jones, D.L.; Wang, J. Macro- and microplastic accumulation in soil after 32 years of plastic film mulching. Environ. Pollut. 2022, 300, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Kader, M.A.; Singha, A.; Begum, M.A.; Jewel, A.; Khan, F.H.; Khan, N.I. Mulching as water-saving technique in dryland agriculture: Review article. Bull. Natl. Res. Cent. 2019, 43, 1–6. [Google Scholar] [CrossRef]
- Amare, G.; Desta, B. Coloured plastic mulches: Impact on soil properties and crop productivity. Chem. Biol. Technol. Agric. 2021, 8, 4. [Google Scholar] [CrossRef]
- Bucki, P.; Siwek, P. Organic and non-organic mulches—Impact on environmental conditions, yield, and quality of Cucurbitaceae. Folia Hort. 2019, 31, 129–145. [Google Scholar] [CrossRef]
- Decoteau, D.R. The emergence and early development of colored reflective plastic mulch technology in agriculture. In Recent Advances in Agriculture; Research Signpost: Thiruananthapuram, India, 2008; pp. 1–17. [Google Scholar]
- Mutoro, K. Effect of organic and inorganic mulching materials on tomato growth and development in Western Kenya. Acad. Lett. 2021, 1131, 2–7. [Google Scholar] [CrossRef]
- Bhujbal, P.D.; Tambe, T.B.; Ulemale, P.H. Effect of mulches on flowering, fruiting, yield and pest-disease incidence of tomato (Lycopersicon esculentum Mill). Bioscan 2015, 10, 465–468. [Google Scholar]
- Adamczewska-Sowińska, K.; Krygier, M.; Turczuk, J. The yield of eggplant depending on climate conditions and mulching. Folia Hort. 2016, 28, 19–24. [Google Scholar] [CrossRef]
- Sękara, A.; Pokluda, R.; Cozzolino, E.; Del Piano, L.; Cuciniello, A.; Caruso, G. Plant growth, yield, and fruit quality of tomato affected by biodegradable and non-degradable mulches. Hort. Sci. 2019, 46, 138–145. [Google Scholar] [CrossRef]
- Gabryś, T.; Fryczkowska, B.; Grzybowska-Pietraś, J.; Biniaś, D. Modification and Properties of Cellulose Nonwoven Fabric-Multifunctioanl Mulching Material for Agricultural Applications. Materials 2021, 14, 4335. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://biobagworld.com/products/agriculture/ (accessed on 4 December 2024).
- Adamczewska-Sowińska, K.; Sowiński, J. Reaction of Sweet Maize to the Use of Polyethylene Film and Polypropylene Non-Woven Fabric in the Initial Growth Phase. Agronomy 2020, 10, 141. [Google Scholar] [CrossRef]
- Boote, K.J.; Rybak, M.R.; Scholberg, J.M.; Jones, J.W. Improving the CROPGRO-tomato model for predicting growth and yield response to temperature. Hort. Sci. 2012, 47, 1038–1049. [Google Scholar] [CrossRef]
- Heisenberg, C.; Stewart, K. Field crop management. In The Tomato Crop; Springer: Berlin/Heidelberg, Germany, 1986; pp. 511–557. [Google Scholar]
- Van Dam, B.; Goffau, M.; van Lidt, J.; Naika, S. La culture de la tomate: Production, transformation et commercialisation. Ser. Agrodok 2005, 17, 6–104. [Google Scholar]
- Ayankojo, I.T.; Morgan, K.T. Increasing air temperatures and its effects on growth and productivity of tomato in south Florida. Plants 2020, 9, 2–16. [Google Scholar] [CrossRef]
- Pinder, R.; Rana, R.; Maan, D.; Kumar, K. Impact of different mulching materials on the growth and yield of tomato (Solanum lycopersicum) in Dehradun region of Uttarakhand. Int. J. Environ. Agric. Biotechnol. IJEAB 2016, 1, 631–636. [Google Scholar] [CrossRef]
- Islam, S. Effects of raised bed furrow irrigation and various mulching techniques on the growth, yield and water use efficiency of tomato cultivation. Int. J. Hort. Sci. Technol. 2023, 10, 33–40. [Google Scholar] [CrossRef]
- Onunva, A.O.; Nwaiwu, C.J.; Madueke, C.O.; Nnabuihe, E.C.; Nwosu, T.V.; Iwuchukwu, T. Effect of different mulch materials on soil properties, growth and yield of tomato (Lycopersicon esculentum mill) at Awka. In Proceedings of the First Faculty of Agriculture International Conference, Nnamdi Azikiwe University, Awka, Nigeria, 22–24 March 2023; pp. 108–114. [Google Scholar]
- Agrawal, N.; Panigrahi, H.K.; Sharma, D.; Agrawal, R. Effect of different colour mulches on the growth and yield of tomato under Chhattisgarh region. Indian J. Hort. 2010, 67, 295–300. [Google Scholar]
- Kosterna, E. The effect of covering and mulching on the soil temperature, growth and yield of tomato. Folia Hort. 2014, 26, 91–101. [Google Scholar] [CrossRef]
- Mutetwa, M.; Mtaita, T. Effects of mulching and fertilizer sources on growth and yield of onion. J. Glob. Innov. Agric. Soc. Sci. 2014, 2, 102–106. [Google Scholar] [CrossRef]
- Haque, M.A.; Jahiruddin, M.; Clarke, D. Effect of plastic mulch on crop yield and land degradation in south coastal saline soils of Bangladesh. Int. Soil Water Conserv. Res. 2018, 6, 317–324. [Google Scholar] [CrossRef]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Riccardi, R.; Spigno, P.; Petriccione, M.; Fiorentino, N.; Fagnano, M.; Mori, M. Biodegradable Mulching Film vs. Traditional Polyethylene: Effects on Yield and Quality of San Marzano Tomato Fruits. Plants 2023, 12, 3203. [Google Scholar] [CrossRef] [PubMed]
- Rajablariani, H.R.; Hassankhan, F.; Rafezi, R. Effect of colored plastic mulches on yield of tomato and weed biomass. Int. J. Environ. Sci. Dev. 2012, 3, 590–593. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Dayal, D.; Bandyopadhyay, K.K.; Mohanty, M. Evaluation of straw and polythene mulch for enhancing productivity of irrigated summer groundnut. Field Crops Res. 2006, 99, 76–86. [Google Scholar] [CrossRef]
- Kuti, J.O.; Konuru, H.B. Effects of genotype and cultivation environment on lycopene content in red-ripe tomatoes. J. Sci. Food Agric. 2005, 85, 2021–2026. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Zhang, Y.; Martin, C. Can the world’s favorite fruit, tomato, provide an effective biosynthetic chassis for high-value metabolites? Plant Cell Rep. 2018, 37, 1443–1450. [Google Scholar] [CrossRef]
- Cruz-Carrion, A.; Calani, L.; Ruiz de Azua Ma, J.; Mena, P.; Del Rio, D.; Suarez, M.; Arola-Arnal, A. (Poly) phenolic composition of tomatoes from different growing locations and their absorption in rats: A comparative study. Food Chem. 2022, 388, 132984. [Google Scholar] [CrossRef]
- Raffo, A.; Leonardi, C.; Fogliano, V.; Ambrosino, P.; Salucci, M.; Gennaro, L.; Bugianesi, R.; Giuffrida, F.; Quaglia, G. Nutritional value of cherry tomatoes (Lycopersicon esculentum Cv. Naomi F1) harvested at different ripening stages. J. Agric. Food Chem. 2002, 50, 6550–6556. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef]
- Hallmann, E.; Rembiałowska, E. Estimation of fruits quality of selected tomato cultivars from organic and conventional cultivation with special consideration of bioactive compounds content. J. Res. Appl. Agric. Eng. 2007, 52, 55–60. (In Polish) [Google Scholar]
- Shahzad, T.; Ahmad, I.; Choudhry, S.; Saeed, M.K.; Khan, M.N. DPPH free radical scavenging activity of tomato, cherry tomato and watermelon: Lycopene extraction, purification and quantification. Int. J. Pharm. Pharm. Sci. 2014, 6, 224–228. [Google Scholar]
- Kowalczyk, K.; Gajc-Wolska, J.; Radzanowska, J.; Marcinkowska, M. Assesment of chemical composition and sensory quality of tomato fruit depending on cultivar and growing conditions. Acta Sci. Pol. Hortorum Cultus 2011, 10, 133–140. [Google Scholar]
- Gharezi, M.; Joshi, N.; Indiresh, K.M. Physico—Chemical and sensory characteristics of different cultivars of cherry tomato. Mysore J. Agric. Sci. 2012, 46, 610–613. [Google Scholar]
- Dobromilska, R.; Mikiciuk, M.; Gubarewicz, K. Evaluation of cherry tomato yielding and fruit mineral composition after using of BIO-ALGEEN S-90 preparation. J. Elem. 2008, 13, 491–499. [Google Scholar] [CrossRef]
- Bilalis, D.; Krokida, M.; Roussis, I.; Papastylianou, P.; Travlos, I.; Cheimona, N.; Dede, A. Effects of organic and inorganic fertilization on yield and quality of processing tomato (Lycopersicon esculentum Mill). Folia Hort. 2018, 30, 321–332. [Google Scholar] [CrossRef]
- Jędrszczyk, E.; Ambroszczyk, A.M. The influence of NANO-GRO® organic stimulator on the yielding and fruit quality of field tomato (Lycopersicon esculentum Mill). Folia Hort. 2016, 28, 87–94. [Google Scholar] [CrossRef]
- Morra, L.; Cozzolino, E.; Salluzzo, A.; Modestia, F.; Bilotto, M.; Baiano, S.; del Piano, L. Plant Growth, Yields and Fruit Quality of Processing Tomato (Solanum lycopersicon L.) as Affected by the Combination of Biodegradable Mulching and Digestate. Agronomy 2021, 11, 100. [Google Scholar] [CrossRef]
- Minoggio, M.; Bramati, L.; Simonetti, P.; Gardana, C.; Iemoli, L.; Santangelo, E.; Mauri, P.L.; Spigno, P.; Soressi, G.P.; Pietta, P.G. Polyphenol Pattern and Antioxidant Activity of Different Tomato Lines and Cultivars. Ann. Nutr. Metab. 2003, 47, 64–69. [Google Scholar] [CrossRef]
Parameters | 2014 | 2015 | 2016 | |||
---|---|---|---|---|---|---|
July | August | July | August | July | August | |
Plant height (cm) | 112.0 *a | 148.5 A | 124.2 b | 152.5 B | 110.5 a | 153.4 B |
Plant stem diameter (cm) | 1.8 a | 2.3 A | 1.9 a | 2.3 A | 1.9 a | 2.4 A |
Lateral spread (cm) | 23.5 a | 29.8 A | 39.6 c | 46.0 C | 32.8 b | 41.9 B |
Number of leaves (szt.) | 10.7 | 46.4 B | 21.3 | 34.2 A | 20.9 | 34.7 A |
Type of Mulch | Total Yield | Marketable Yield | Early Yield | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | Mean | 2014 | 2015 | 2016 | Mean | 2014 | 2015 | 2016 | Mean | |
PP black | 11.36 | 26.96 | 19.30 | 19.71 **c | 9.95 | 19.59 | 11.33 | 13.62 d | 1.44 | 3.53 | 3.22 | 2.73 ab |
PP brown | 7.86 | 28.45 | 15.13 | 17.15 ab | 6.38 | 20.65 | 8.93 | 11.99 c | 1.16 | 3.85 | 2.32 | 2.44 a |
PE black | 4.35 | 27.28 | 17.82 | 16.48 ab | 3.77 | 19.58 | 10.38 | 11.24 abc | 0.79 | 4.03 | 3.85 | 2.89 b |
PE white | 8.23 | 25.31 | 19.08 | 17.54 ab | 6.49 | 17.87 | 10.87 | 11.74 bc | 1.71 | 4.56 | 4.08 | 3.45 cd |
PE red | 6.06 | 23.39 | 17.65 | 15.70 a | 5.45 | 16.21 | 9.47 | 10.38 ab | 2.00 | 4.28 | 3.43 | 3.24 |
PE alu | 6.73 | 27.09 | 20.88 | 18.23 bc | 5.58 | 18.20 | 12.33 | 11.97 c | 1.83 | 4.41 | 5.02 | 3.75 d |
Fbio | 8.59 | 23.49 | 17.38 | 16.49 ab | 6.72 | 17.34 | 9.12 | 11.06 abc | 2.17 | 3.88 | 2.00 | 2.68 ab |
Mean | 7.58 | 26.00 | 18.18 | 17.25 | 6.33 | 18.49 | 10.25 | 11.72 | 1.59 | 4.08 | 3.42 | 3.03 |
Control | 11.21 | 15.51 | 21.55 | 16.09 a | 9.14 | 10.15 | 10.10 | 9.80 a | 2.54 | 3.34 | 3.27 | 3.05 bc |
Mean | 8.04 *A | 24.69 C | 18.60 B | 17.10 | 6.67 A | 17.45 C | 10.29 B | 11.48 | 1.70 A | 3.99 B | 3.40 B | 3.03 |
Type of Mulch | Dry Matter | Total Sugars | P | K | Mg | Ca |
---|---|---|---|---|---|---|
% | ||||||
PP black | 9.02 *cd | 4.11 a | 0.25 a | 3.43 cd | 0.16 a | 0.26 |
PP brown | 8.71 ab | 4.32 ab | 0.31 bc | 3.00 a | 0.22 bc | 0.27 |
PE black | 8.48 a | 4.09 a | 0.35 d | 3.48 d | 0.20 abc | 0.25 |
PE white | 9.22 de | 5.41 d | 0.27 a | 3.31 bc | 0.22 bc | 0.28 |
PE red | 9.38 e | 4.85 c | 0.32 cd | 3.31 bc | 0.19 ab | 0.28 |
PE alu | 8.51 a | 4.50 bc | 0.32 cd | 3.10 a | 0.24 c | 0.26 |
Fbio | 8.81 bc | 4.06 a | 0.28 ab | 3.82 e | 0.20 abc | 0.23 |
Control | 8.57 a | 4.71 c | 0.33 c | 3.25 b | 0.20 abc | 0.29 |
Type of Mulch | Vitamin C | Polyphenols | Carotenoids [µg·100 g−1 f.m.] | Lycopene [mg·kg−1 f.m.] | DPPH [%] | N-NO3− [mg·kg−1 f.m.] |
---|---|---|---|---|---|---|
[mg·100 g−1 f.m.] | ||||||
PP black | 36.81 *a | 16.19 a | 38.22 c | 19.10 abc | 58.73 b | 120.33 d |
PP brown | 39.87 cd | 24.32 c | 37.27 c | 16.36 a | 68.96 d | 118.18 cd |
PE black | 41.79 e | 19.57 b | 41.44 d | 17.67 ab | 56.42 a | 102.35 ab |
PE white | 41.88 e | 21.11 b | 39.26 cd | 18.65 abc | 71.52 e | 98.86 a |
PE red | 39.74 c | 26.97 d | 32.27 ab | 20.91 cd | 65.22 c | 118.54 cd |
PE alu | 40.59 d | 36.46 f | 30.10 a | 20.33 bcd | 70.45 de | 106.69 abc |
Fbio | 37.84 b | 30.69 e | 31.11 ab | 22.31 d | 59.61 b | 107.57 abcd |
Control | 36.57 a | 27.41 d | 33.64 b | 20.35 bcd | 56.18 a | 111.55 abcd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamczewska-Sowińska, K.; Bykowy, J.; Jaworska, J. Effect of Biodegradable Mulch and Different Synthetic Mulches on Growth and Yield of Field-Grown Small-Fruited Tomato (Lycopersicon esculentum Mill.). Agriculture 2025, 15, 212. https://doi.org/10.3390/agriculture15020212
Adamczewska-Sowińska K, Bykowy J, Jaworska J. Effect of Biodegradable Mulch and Different Synthetic Mulches on Growth and Yield of Field-Grown Small-Fruited Tomato (Lycopersicon esculentum Mill.). Agriculture. 2025; 15(2):212. https://doi.org/10.3390/agriculture15020212
Chicago/Turabian StyleAdamczewska-Sowińska, Katarzyna, Joanna Bykowy, and Janina Jaworska. 2025. "Effect of Biodegradable Mulch and Different Synthetic Mulches on Growth and Yield of Field-Grown Small-Fruited Tomato (Lycopersicon esculentum Mill.)" Agriculture 15, no. 2: 212. https://doi.org/10.3390/agriculture15020212
APA StyleAdamczewska-Sowińska, K., Bykowy, J., & Jaworska, J. (2025). Effect of Biodegradable Mulch and Different Synthetic Mulches on Growth and Yield of Field-Grown Small-Fruited Tomato (Lycopersicon esculentum Mill.). Agriculture, 15(2), 212. https://doi.org/10.3390/agriculture15020212