Transcriptomic and Metabolomic Analyses Reveal Differences in Flavonoid Synthesis During Fruit Development of Capsicum frutescens pericarp
Abstract
:1. Introduction
2. Materials and Methods
2.1. C. frutescens Material Germination Treatment, Growth Conditions, and Management Methods
2.2. Sample Preparation and Extraction for Metabolite Analysis
2.3. Differential Metabolites Analysis
2.4. KEGG Annotation and Enrichment Analysis
2.5. Transcriptome Sequencing and Data Analysis
2.6. qRT-PCR Validation of Candidate Genes
3. Results
3.1. Analysis of Pericarp Metabolomics Data of C. frutescens at Different Principal Growth Periods
3.1.1. PCA Analysis of Metabolomics Data of C. frutescens Peel at Different Growth Stages
3.1.2. Screening for Differential Metabolites in the Pericarp of C. frutescens at Different Growth Periods
3.1.3. Identification of Flavonoid Compounds in the Pericarp of C. frutescens in Different Growth Periods
3.2. Analysis of Pericarp Transcriptomics Data of C. frutescens at Different Growth Stages
3.3. Joint Transcriptome–Metabolome Analysis
4. Discussion
- An RNA-Seq analysis identified 28 key genes involved in the core flavonoid biosynthesis pathway. These genes were similar to the flavonoid biosynthesis genes involved in peel coloration in melon [36], although 4CL, IFS, and UFGT did not show significant differential expression in this study, which we hypothesized may be due to interspecies differences. CHS was a crucial enzyme in the synthesis of flavonoid compounds in plants and played a vital role in producing flavonoid derivatives and supporting plant growth and development [37,38,39]. In our study, p-coumaroyl-CoA was catalyzed by CHS to produce naringenin chalcone. Similarly, another study found a significant increase in anthocyanin content during pepper maturation, which was associated with the color transition from green to red [3]. Their study highlighted the upregulation of genes involved in anthocyanin biosynthesis, such as CHS and DFR, highlighting the role of flavonoids in pepper coloration at later stages of fruit development. Studies on Marchantia polymorpha have shown that PabHLH1 can catalyze the synthesis of flavonoids [40], while CmMYB012 in chrysanthemum negatively regulates flavonoids [31]. Studies on Medicago have also mentioned that MtWD40 can regulate the production of anthocyanins [41]. In this study, we screened a total of eight MBW complex genes (MYB–bHLH–WD repeat) by Pearson correlation coefficient and analyzed their expression patterns. We found that all eight genes showed high expression during the early growth of plants and decreased expression as the plants grew. A correlation analysis of the eight genes screened and the flavonoid metabolites with significant differences found that they were all positively correlated. We speculate that the regulation of flavonoid biosynthesis may be involved in these eight genes.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Timberlake, C.F. Plant pigments for colouring food. Nutr. Bull. 1989, 14, 113–125. [Google Scholar] [CrossRef]
- Facteau, T.; Chestnut, N.; Rowe, K. Relationship between fruit weight, firmness, and leaf/fruit ratio in Lambert and Bing sweet cherries. Can. J. Plant Sci. 1983, 63, 763–765. [Google Scholar] [CrossRef]
- Lightbourn, G.J.; Griesbach, R.J.; Novotny, J.A.; Clevidence, B.A.; Rao, D.D.; Stommel, J.R. Effects of anthocyanin and carotenoid combinations on foliage and immature fruit color of Capsicum annuum L. J. Hered. 2008, 99, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, J.-L.; Austin, M.; Stewart Jr, C.; Noel, J. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol. Biochem. 2008, 46, 356–370. [Google Scholar] [CrossRef]
- Chen, W.; Gao, Y.; Xie, W.; Gong, L.; Lu, K.; Wang, W.; Li, Y.; Liu, X.; Zhang, H.; Dong, H. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat. Genet. 2014, 46, 714–721. [Google Scholar] [CrossRef]
- Cheng, A.X.; Han, X.J.; Wu, Y.F.; Lou, H.X. The function and catalysis of 2-oxoglutarate-dependent oxygenases involved in plant flavonoid biosynthesis. Int. J. Mol. Sci. 2014, 15, 1080–1095. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, K.; Sun, S.; Yan, P.; Lu, X.; Liu, Z.; Li, Q.; Li, L.; Gao, Y.; Liu, J. Transcriptome and Metabolome Analysis Reveals Salt-Tolerance Pathways in the Leaves and Roots of ZM-4 (Malus zumi) in the Early Stages of Salt Stress. Int. J. Mol. Sci. 2023, 24, 3638. [Google Scholar] [CrossRef] [PubMed]
- Forkmann, G. Flavonoids as Flower Pigments; The Formation of the Natural Spectrum and its Extension by Genetic Engineering. Plant Breed. 1991, 106, 1–26. [Google Scholar] [CrossRef]
- Koes, R.; Verweij, W.; Quattrocchio, F. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 2005, 10, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Dubos, C.; Stracke, R.; Grotewold, E.; Weisshaar, B.; Martin, C.; Lepiniec, L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010, 15, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lv, J.; Liu, Z.; Wang, J.; Yang, B.; Chen, W.; Ou, L.; Dai, X.; Zhang, Z.; Zou, X. Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in pepper fruit (Capsicum annuum L.). Food Chem. 2020, 306, 125629. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Li, L.; Hu, Z.; Chen, Y.; Tan, T.; Jia, Y.; Xie, Q.; Chen, G. Anthocyanin accumulation and transcriptional regulation of anthocyanin biosynthesis in purple pepper. J. Agric. Food Chem. 2020, 68, 12152–12163. [Google Scholar] [CrossRef] [PubMed]
- Howard, L.R.; Talcott, S.T.; Brenes, C.H.; Villalon, B. Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J. Agric. Food Chem. 2000, 48, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Dozmorov, M.G. Epigenomic annotation-based interpretation of genomic data: From enrichment analysis to machine learning. Bioinformatics 2017, 33, 3323–3330. [Google Scholar] [CrossRef] [PubMed]
- Shu, P.; Zhang, Z.; Wu, Y.; Chen, Y.; Li, K.; Deng, H.; Zhang, J.; Zhang, X.; Wang, J.; Liu, Z. A comprehensive metabolic map reveals major quality regulations in red-flesh kiwifruit (Actinidia chinensis). New Phytol. 2023, 238, 2064–2079. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq. Genome Biol. 2014, 15, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Varet, H.; Brillet-Guéguen, L.; Coppée, J.-Y.; Dillies, M.-A. SARTools: A DESeq2-and EdgeR-based R pipeline for comprehensive differential analysis of RNA-Seq data. PLoS ONE 2016, 11, e0157022. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, P.; Chen, J. 2dGBH: Two-dimensional group Benjamini–Hochberg procedure for false discovery rate control in two-way multiple testing of genomic data. Bioinformatics 2024, 40, btae035. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Wahyuni, Y.; Ballester, A.R.; Sudarmonowati, E.; Bino, R.J.; Bovy, A.G. Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: Variation in health-related compounds and implications for breeding. Phytochemistry 2011, 72, 1358–1370. [Google Scholar] [CrossRef] [PubMed]
- Bashir, M.A.; Alvi, A.M.; Khan, K.A.; Rehmani, M.I.A.; Ansari, M.J.; Atta, S.; Ghramh, H.A.; Batool, T.; Tariq, M. Role of pollination in yield and physicochemical properties of tomatoes (Lycopersicon esculentum). Saudi J. Biol. Sci. 2018, 25, 1291–1297. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.I.; Hwang, I.; Goswami, G.; Jung, H.J.; Nath, U.K.; Yoo, H.J.; Lee, J.M.; Nou, I.S. Molecular Insights Reveal Psy1, SGR, and SlMYB12 Genes are Associated with Diverse Fruit Color Pigments in Tomato (Solanum lycopersicum L.). Molecules 2017, 22, 2180. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.J.; Pao, L.H.; Hsiong, C.H.; Shih, T.Y.; Lee, M.S.; Hu, O.Y. Dietary flavonoids modulate CYP2C to improve drug oral bioavailability and their qualitative/quantitative structure-activity relationship. Aaps J. 2014, 16, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Khoo, B.Y.; Chua, S.L.; Balaram, P. Apoptotic effects of chrysin in human cancer cell lines. Int. J. Mol. Sci. 2010, 11, 2188–2199. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, C.; Ding, G.; Quan, W. Artificial intelligence assisted ultrasonic extraction of total flavonoids from Rosa sterilis. Molecules 2021, 26, 3835. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021, 22, 12824. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, C.; Liu, C.; Wei, F. Luteolin attenuates doxorubicin-induced cardiotoxicity by modulating the PHLPP1/AKT/Bcl-2 signalling pathway. PeerJ 2020, 8, e8845. [Google Scholar] [CrossRef] [PubMed]
- Dymarska, M.; Janeczko, T.; Kostrzewa-Suslow, E. Glycosylation of Methoxylated Flavonoids in the Cultures of Isaria fumosorosea KCH J2. Molecules 2018, 23, 2578. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.-J.; Geng, Z.; Wang, Y.; Wang, Y.; Liu, S.; Chen, C.; Song, A.; Jiang, J.; Chen, S.; Chen, F. A novel transcription factor CmMYB012 inhibits flavone and anthocyanin biosynthesis in response to high temperatures in chrysanthemum. Hortic. Res. 2021, 8, 248. [Google Scholar] [CrossRef]
- Adato, A.; Mandel, T.; Mintz-Oron, S.; Venger, I.; Levy, D.; Yativ, M.; Domínguez, E.; Wang, Z.; De Vos, R.C.; Jetter, R.; et al. Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genet. 2009, 5, e1000777. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-J.; Hu, C.-T.; Yan, Y.; Wu, S.; Wang, J. A novel microfluidic aqueous two-phase system with immobilized enzyme enhances cyanidin-3-O-glucoside content in red pigments from mulberry fruits. Biochem. Eng. J. 2020, 158. [Google Scholar] [CrossRef]
- Allwood, J.W.; Woznicki, T.L.; Xu, Y.; Foito, A.; Aaby, K.; Sungurtas, J.; Freitag, S.; Goodacre, R.; Stewart, D.; Remberg, S.F.; et al. Application of HPLC-PDA-MS metabolite profiling to investigate the effect of growth temperature and day length on blackcurrant fruit. Metabolomics 2019, 15, 12. [Google Scholar] [CrossRef] [PubMed]
- Heng, Z.; Xu, X.; Xu, X.; Li, Y.; Wang, H.; Huang, W.; Yan, S.; Li, T. Integrated transcriptomic and metabolomic analysis of C frutescens fruits provides new insight into the regulation of the branched chain esters and capsaicin biosynthesis. Food Res. Int. 2023, 169, 112856. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Zheng, J.; Chen, X.; Shi, X.; Wang, H.; Fu, Q. Comprehensive Analysis of Transcriptome and Metabolome Reveals the Flavonoid Metabolic Pathway Is Associated with Fruit Peel Coloration of Melon. Molecules 2021, 26, 2830. [Google Scholar] [CrossRef] [PubMed]
- Aksamit-Stachurska, A.; Korobczak-Sosna, A.; Kulma, A.; Szopa, J. Glycosyltransferase efficiently controls phenylpropanoid pathway. BMC Biotechnol. 2008, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Khan, A.; Li, Z.; You, J.; Munsif, F.; Kang, H.; Zhou, R. Identification of chalcone synthase genes and their expression patterns reveal pollen abortion in cotton. Saudi J. Biol. Sci. 2020, 27, 3691–3699. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yu, Q.; Shen, W.; El Mohtar, C.A.; Zhao, X.; Gmitter, F.G., Jr. Functional study of CHS gene family members in citrus revealed a novel CHS gene affecting the production of flavonoids. BMC Plant Biol. 2018, 18, 189. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, Y.-Y.; Liu, H.; Zhang, X.-S.; Ni, R.; Wang, P.-Y.; Gao, S.; Lou, H.-X.; Cheng, A.-X. Functional characterization of a liverworts bHLH transcription factor involved in the regulation of bisbibenzyls and flavonoids biosynthesis. BMC Plant Biol. 2019, 19, 1–13. [Google Scholar] [CrossRef]
- Pang, Y.; Wenger, J.P.; Saathoff, K.; Peel, G.J.; Wen, J.; Huhman, D.; Allen, S.N.; Tang, Y.; Cheng, X.; Tadege, M. A WD40 repeat protein from Medicago truncatula is necessary for tissue-specific anthocyanin and proanthocyanidin biosynthesis but not for trichome development. Plant Physiol. 2009, 151, 1114–1129. [Google Scholar] [CrossRef]
- Castellarin, S.D.; Matthews, M.A.; Di Gaspero, G.; Gambetta, G.A. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 2007, 227, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.; Cao, G.; Martin, A.; Sofi, E.; Mcewen, J.; O’Brien, C.; Lischner, N.; Ehlenfeldt, M.; Kalt, W.; Krewer, G. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J. Agric. Food Chem. 1998, 46, 2686–2693. [Google Scholar] [CrossRef]
- Zoratti, L.; Karppinen, K.; Luengo Escobar, A.; Häggman, H.; Jaakola, L. Light-controlled flavonoid biosynthesis in fruits. Front. Plant Sci. 2014, 5, 534. [Google Scholar] [CrossRef] [PubMed]
- Ralley, L.; Enfissi, E.M.; Misawa, N.; Schuch, W.; Bramley, P.M.; Fraser, P.D. Metabolic engineering of ketocarotenoid formation in higher plants. Plant J. 2004, 39, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Zanoaga, O.; Braicu, C.; Jurj, A.; Rusu, A.; Buiga, R.; Berindan-Neagoe, I. Progress in Research on the Role of Flavonoids in Lung Cancer. Int. J. Mol. Sci. 2019, 20, 4291. [Google Scholar] [CrossRef]
Serial Number | Name | Gene ID | Forward Primer (5′→3′) | Reverse Primer (5′→3′) |
---|---|---|---|---|
1 | HCT 2 | Caz11g15030 | GTTGGGAAGTTGTTGCCAGT | AGTGTCCATGAAAGGAGCAAC |
2 | E5.2.1.6 1 | Caz11g20530 | ACCACCTTGTTCCTTGCTGG | AGCAAGAAATGGAACGGCAC |
3 | E5.2.1.6 2 | Caz05g17210 | TTGAGGCTATTGTTAACGCTCC | ATAGCGCTCTCTAGCTGCAC |
4 | CYP73A 1 | Caz06g02540 | GGCCTTTCTTGAGGGGCTAC | AGCATTGCTGTCCATGCTCT |
5 | CYP73A 1 | Caz06g02530 | GTAACTGAGCCAGACACCCA | TTAGCCAACCACCAAGGGTT |
6 | F3H 1 | Caz02g22300 | CTTGGGCTGAAACGACACAC | AACGGGCTGAACAGTGATCC |
7 | C3′H 1 | Caz10g22080 | GGACAGTACTAAGCCTGGCAAT | GGTTTTCCAGCCATTTTAATCCCA |
8 | DFR 1 | Caz12g17770 | CAGGAGGAAGTGGTTATCTTGG | CACATCCCTTTTAAGGTCTGGATG |
9 | FLS 1 | Caz01g28820 | ACAGGGTAAAGGCAGCTCAG | TCTCCCGTTAGTTAGAACCTCAA |
10 | MYB 16 | Caz02g29850 | GGTCGATCTCCATGCTGTGA | TAATGCACGCCAGCTACCAT |
11 | MYB 15 | Caz07g15260 | TGGAAATAGGTGGTCGGCG | TGATTCATCACTTGAGTTTGTCGC |
12 | MYB 61 | Caz08g15240 | GGCTTCAGAATCAAACGCCG | GAATTGACCGAAGACGGCAG |
13 | bHLH 68 | Caz03g02530 | CAGCCTCCGTCTTGTCAGAA | CACAACCCTCTGCTCCTCAA |
14 | bHLH 3 | Caz04g05400 | AGGTGGACTCCCCATGCTAA | TCTCGTGCGATCGAGTAAGC |
15 | bHLH 105 | Caz07g14570 | TTCTCGGCCGTTTAGTTCCC | GAGGAGGCCGGTCAGAAAAG |
16 | bHLH 13 | Caz11g13500 | GCGTGGCATTTCCAAACCAA | CTGGAACGACGGAAGGTAGC |
17 | WD 40 | Caz12g11340 | AATACGCGTGTGGAAGTTGC | TACGCCACACCCGAATCTTACC |
18 | UBI3 | Caz06g27840 | GTCCATCTGCTCTCTGTTG | CACCCCAAGCACAATAAGAC |
Serial Number | Sample | Clean Base (Gb) | Q30 (%) | CG Content (%) | Reads Mapped (%) |
---|---|---|---|---|---|
1 | RE1 | 8.49 | 96.71 | 43.1 | 94.14 |
2 | RE2 | 8.38 | 96.82 | 43.24 | 94.08 |
3 | RE3 | 10.3 | 96.96 | 43.22 | 94.34 |
4 | OR1 | 10.19 | 96.87 | 43.13 | 94.43 |
5 | OR2 | 7.49 | 97.05 | 43.15 | 94.36 |
6 | OR3 | 11.97 | 97.14 | 43.37 | 93.18 |
7 | GR1 | 7.19 | 96.8 | 43.6 | 94.36 |
8 | GR2 | 8.23 | 96.8 | 43.35 | 93.83 |
9 | GR3 | 9.92 | 96.77 | 43.86 | 94.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Cai, Q.; Wang, X.; Yang, Y.; Li, L.; Sun, Z.; Li, W. Transcriptomic and Metabolomic Analyses Reveal Differences in Flavonoid Synthesis During Fruit Development of Capsicum frutescens pericarp. Agriculture 2025, 15, 222. https://doi.org/10.3390/agriculture15020222
Yang Y, Cai Q, Wang X, Yang Y, Li L, Sun Z, Li W. Transcriptomic and Metabolomic Analyses Reveal Differences in Flavonoid Synthesis During Fruit Development of Capsicum frutescens pericarp. Agriculture. 2025; 15(2):222. https://doi.org/10.3390/agriculture15020222
Chicago/Turabian StyleYang, Yinxin, Qihang Cai, Xuan Wang, Yanbo Yang, Liping Li, Zhenghai Sun, and Weiwei Li. 2025. "Transcriptomic and Metabolomic Analyses Reveal Differences in Flavonoid Synthesis During Fruit Development of Capsicum frutescens pericarp" Agriculture 15, no. 2: 222. https://doi.org/10.3390/agriculture15020222
APA StyleYang, Y., Cai, Q., Wang, X., Yang, Y., Li, L., Sun, Z., & Li, W. (2025). Transcriptomic and Metabolomic Analyses Reveal Differences in Flavonoid Synthesis During Fruit Development of Capsicum frutescens pericarp. Agriculture, 15(2), 222. https://doi.org/10.3390/agriculture15020222