Exploring the Influence of Environmental and Crop Management Factors on Sorghum Nutrient Composition and Amino Acid Digestibility in Broilers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tannin-Free Sorghum Samples
2.2. Weather Information
2.3. Experimental Design and Statistical Analysis
3. Results
3.1. Influence of Agronomic Factors on Grain Composition and Digestibility
- Fertilization: As shown in Table 4, the amount of N applied to sorghum crops was positively correlated to dry matter and starch content (r ≥ +0.89; p < 0.0001). On the other hand, it was negatively correlated to the SIAD of Ser, Trp, Tyr and His (r ≤ −0.82; p < 0.0001).
- Yield: It was positively correlated with the overall AA digestibility of sorghum grain, particularly for Met, Cys, Pro, Ile, Val, and Phe (r ≥ 0.86; p < 0.0001; Table 4).
- Seeding rate: It was negatively correlated with dry matter and Lys content (r ≤ −0.83; p < 0.0001), while it was positively correlated with the amount of Tyr (r > +0.92; p < 0.0001; Table 4).
3.2. Influence of Climate Factors on Grain Composition and Digestibility
- Temperature and precipitation: There was not enough statistical evidence to report that temperature and rainfall were correlated significantly with the nutrient composition or SIAD of sorghum (−0.8 ≤ r ≥ +0.8; p > 0.05).
3.3. Influence of Sorghum Composition on Digestibility
- Dry matter: Grain dry matter was linked to starch, ash and Lys content (r ≥ +0.83; p < 0.0001) but negatively correlated with the SIAD of Ser (r ≤ −0.85; p < 0.0001).
- Crude protein: Sorghum total protein content was strongly associated with BCAA (Leu, Ile, Val), His and Phe levels (r ≥ +0.93; p < 0.0001).
- Crude fiber: There was an inverse relationship between sorghum crude fiber and crude protein as well for BCAA, His and Phe (r ≤ −0.84; p < 0.0001).
- Neutral fiber detergent: The content of NFD of grain sorghum was negatively correlated with the SIAD of Leu, Val, Arg, Glu, Gly, Ala (r ≤ −0.81; p < 0.0001).
- Ash content: It was positively correlated with Lys levels and with the SIAD of Leu, Ala, and Glu (r ≥ +0.88; p < 0.0001).
- Methionine: The amount of Met found in grain sorghum was positively linked to the SIAD of Gly and Thr (r ≥ +0.81; p < 0.0001).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beyene, A.; Hussien, S.; Pangirayi, T.; Mark, L. Physiological mechanisms of drought tolerance in sorghum, genetic basis and breeding methods: A review. Afr. J. Agric. Res. 2015, 10, 3029–3040. [Google Scholar] [CrossRef]
- El Naim, A.M.; Jabereldar, A.A.; El Naim, A.M.; Abdalla, A.A.; Dagash, Y.M. Effect of Water Stress on Yield and Water Use Efficiency of Sorghum (Sorghum bicolor L. Moench) in Semi-Arid Environment. Int. J. Agric. For. 2017, 7, 1–6. [Google Scholar]
- Bean, B. Why Sorghum? 2019. Available online: https://www.sorghumcheckoff.com/agronomy-insights/why-sorghum/ (accessed on 14 March 2024).
- Rooney, L. Ten myths about tannins in sorghums. J. SAT Agric. Res. 2005, 1, 1–3. [Google Scholar]
- Selle, P.H.; Cadogan, D.J.; Li, X.; Bryden, W.L. Implications of sorghum in broiler chicken nutrition. Anim. Feed. Sci. Technol. 2010, 156, 57–74. [Google Scholar] [CrossRef]
- Sasia, S.; Bridges, W.; Lumpkins, B.; Arguelles-Ramos, M. Effects of sorghum-based diets with phytase superdosing on broiler performance. Appl. Anim. Sci. 2023, 39, 433–442. [Google Scholar] [CrossRef]
- Manyelo, T.G.; Ng’ambi, J.W.; Norris, D.; Mabelebele, M. Influence of low-tannin sorghum on performance and bone morphometrics of male Ross 308 broilers aged 1–42 days. S. Afr. J. Anim. Sci. 2019, 49, 477–484. [Google Scholar] [CrossRef]
- Taylor, J.; Bean, S.R.; Ioerger, B.P.; Taylor, J.R.N. Preferential binding of sorghum tannins with γ-kafirin and the influence of tannin binding on kafirin digestibility and biodegradation. J. Cereal Sci. 2007, 46, 22–31. [Google Scholar] [CrossRef]
- McCuistion, K.C.; Selle, P.H.; Liu, S.Y.; Goodband, R.D. Sorghum as a Feed Grain for Animal Production. In Sorghum and Millets: Chemistry, Technology, and Nutritional Attributes; Woodhead Publishing: Cambridge, UK; AACC International Press: Saint Paul, MN, USA, 2018. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Narayanan, S.; Erdayani, E.; Prasad, P.V.V. Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biol. 2020, 20, 268. [Google Scholar] [CrossRef]
- Diatta-Holgate, E.; Hugghis, E.; Weil, C.; Faye, J.M.; Danquah, A.; Diatta, C.; Tongoona, P.; Danquah, E.Y.; Cisse, N.; Tuinstra, M.R. Natural variability for protein digestibility and grain quality traits in a West African Sorghum Association Panel. J. Cereal Sci. 2022, 107, 103504. [Google Scholar] [CrossRef]
- Khoddami, A.; Tan, D.K.Y.; Messina, V.; Chrystal, P.V.; Thistlethwaite, R.; Caldwell, R.A.; Trethowan, R.; Toghyani, M.; Macelline, S.; Bai, Y.; et al. Climatic Conditions Influence the Nutritive Value of Wheat as a Feedstuff for Broiler Chickens. Agriculture 2024, 14, 645. [Google Scholar] [CrossRef]
- Liu, L.; Maier, A.; Klocke, N.L.; Yan, S.; Rogers, D.H.; Tesso, T.; Wang, D. Impact of deficit irrigation on sorghum physical and chemical properties and ethanol yield. Trans. ASABE 2013, 56, 1541–1549. [Google Scholar]
- Kluth, H.; Rodehutscord, M. Effect of inclusion of cellulose in the diet on the inevitable endogenous amino acid losses in the ileum of broiler chicken. Poult. Sci. 2009, 88, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wu, S.B.; Choct, M.; Swick, R.A. Performance, intestinal microflora, and amino acid digestibility altered by exogenous enzymes in broilers fed wheat-or sorghum-based diets. J. Anim. Sci. 2017, 95, 740–751. [Google Scholar] [CrossRef]
- Siegert, W.; Boguhn, J.; Maurer, H.P.; Weiss, J.; Zuber, T.; Möhring, J.; Rodehutscord, M. Effect of nitrogen fertilisation on the amino acid digestibility of different triticale genotypes in caecectomised laying hens. J. Sci. Food Agric. 2017, 97, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Chisi, M.; Peterson, G. Breeding and Agronomy. In Sorghum and Millets: Chemistry, Technology, and Nutritional Attributes; Woodhead Publishing: Cambridge, UK; AACC International Press: Saint Paul, MN, USA, 2018. [Google Scholar] [CrossRef]
- Sasia, S.; Bridges, W.; Arguelles-Ramos, M. Determination of the Standardized Ileal Amino Acid Digestibility of U.S. Tannin-Free Sorghum in Broilers. Agriculture 2025, 15, 109. [Google Scholar] [CrossRef]
- NASA. POWER Data Access Viewer v2.0.0. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 17 March 2024).
- Roozeboom, K.L.; Prasad, P.V.V. Sorghum growth and development. In Sorghum: State of the Art and Future Perspectives; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019. [Google Scholar] [CrossRef]
- SAS Institute Inc. JMP® 2021; Pro 16. Available online: https://www.jmp.com/en_is/events/mastering/topics/new-in-jmp16-and-jmp-pro16.html (accessed on 15 February 2024).
- Kaufman, R.C.; Wilson, J.D.; Bean, S.R.; Presley, D.R.; Blanco-Canqui, H.; Mikha, M. Effect of nitrogen fertilization and cover cropping systems on sorghum grain characteristics. J. Agric. Food Chem. 2013, 61, 5715–5719. [Google Scholar] [CrossRef]
- Ahmed, S.O.; Abdalla, A.W.H.; Inoue, T.; Ping, A.; Babiker, E.E. Nutritional quality of grains of sorghum cultivar grown under different levels of micronutrients fertilization. Food Chem. 2014, 159, 374–380. [Google Scholar] [CrossRef]
- Yang, G.D.; Hu, Z.Y.; Huang, R.D.; Hao, Z.Y.; Li, J.H.; Wang, Q.; Meng, X.; Zhou, Y. Effect of nitrogen on the starch formation and yield of high-density sorghum [Sorghum bicolor (L.) moench] in northern China. Appl. Ecol. Environ. Res. 2020, 18, 5727–5741. [Google Scholar] [CrossRef]
- Huang, Y.; Tian, L.; Yang, Q.; Zhang, M.; Liu, G.; Yu, S.; Feng, B. Nitrogenous Fertilizer Levels Affect the Physicochemical Properties of Sorghum Starch. Foods 2022, 11, 3690. [Google Scholar] [CrossRef]
- Khan, A.; Khan, N.A.; Bean, S.R.; Chen, J.; Xin, Z.; Jiao, Y. Variations in Total Protein and Amino Acids in the Sequenced Sorghum Mutant Library. Plants 2023, 12, 1662. [Google Scholar] [CrossRef]
- Mosse, J.; Huet, J.; Baudet, J. The Amino Acid Composition of Whole Sorghum Grain in Relation to Its Nitrogen Content. Cereal Chem. 1988, 65, 271–277. [Google Scholar]
- Wu, G. Principles of Animal Nutrition; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Ebadi, M.R.; Sedghi, M.; Golian, A.; Ahmadi, H. Prediction of the true digestible amino acid contents from the chemical composition of sorghum grain for poultry. Poult. Sci. 2011, 90, 2397–2401. [Google Scholar] [CrossRef] [PubMed]
- Maiti, R.K. Germination and Seedling Establishment; Sorghum ScienceScience Publishers, Inc.: Lebanon, NH, USA, 1996; pp. 41–98. [Google Scholar]
- Chadalavada, K.; Kumari, B.D.R.; Kumar, T.S. Sorghum mitigates climate variability and change on crop yield and quality. Planta 2021, 253, 113. [Google Scholar] [CrossRef] [PubMed]
- Assefa, Y.; Staggenborg, S.A.; Prasad, V.P.V. Grain Sorghum Water Requirement and Responses to Drought Stress: A Review. Crop Manag. 2010, 9, 1–11. [Google Scholar] [CrossRef]
- Wu, G.; Johnson, S.K.; Bornman, J.F.; Bennett, S.J.; Singh, V.; Simic, A.; Fang, Z. Effects of genotype and growth temperature on the contents of tannin, phytate and in vitro iron availability of sorghum grains. PLoS ONE 2016, 11, e0148712. [Google Scholar] [CrossRef]
- Taleon, V.; Dykes, L.; Rooney, W.L.; Rooney, L.W. Effect of genotype and environment on flavonoid concentration and profile of black sorghum grains. J. Cereal Sci. 2012, 56, 470–475. [Google Scholar] [CrossRef]
- Truong, H.H.; Neilson, K.A.; McInerney, B.V.; Khoddami, A.; Roberts, T.H.; Cadogan, D.J.; Liu, S.Y.; Selle, P.H. Comparative performance of broiler chickens offered nutritionally equivalent diets based on six diverse, “tannin-free” sorghum varieties with quantified concentrations of phenolic compounds, kafirin, and phytate. Anim. Prod. Sci. 2017, 57, 828–838. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Djanaguiraman, M.; Perumal, R.; Ciampitti, I.A. Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum: Sensitive stages and thresholds for temperature and duration. Front. Plant Sci. 2015, 6, 820. [Google Scholar] [CrossRef]
- Craufurd, P.Q.; Qi, A.; Ellis, R.H.; Summerfield, R.J.; Roberts, E.H.; Mahalakshmi, V. Effect of temperature on time to panicle initiation and leaf appearance in sorghum. Crop Sci. 1998, 38, 942–947. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Boote, K.J.; Allen, L.H. Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric. For. Meteorol. 2006, 139, 237–251. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Prasad, P.V.V.; Murugan, M.; Perumal, R.; Reddy, U.K. Physiological differences among sorghum (Sorghum bicolor L. Moench) genotypes under high temperature stress. Environ. Exp. Bot. 2014, 100, 43–54. [Google Scholar] [CrossRef]
- Downes, R.W. Effect of temperature on the phenology and grain yield of Sorghum Bicolor. Aust. J. Agric. Res. 1972, 23, 585–594. [Google Scholar] [CrossRef]
- Singh, V.; Nguyen, C.T.; van Oosterom, E.J.; Chapman, S.C.; Jordan, D.R.; Hammer, G.L. Sorghum genotypes differ in high temperature responses for seed set. Field Crops Res. 2015, 171, 32–40. [Google Scholar] [CrossRef]
- Johnson, W.B.; Ratnayake, W.S.; Jackson, D.S.; Lee, K.M.; Herrman, T.J.; Bean, S.R.; Mason, S.C. Factors affecting the alkaline cooking performance of selected corn and sorghum hybrids. Cereal Chem. 2010, 87, 524–531. [Google Scholar] [CrossRef]
- Impa, S.M.; Perumal, R.; Bean, S.R.; Sunoj, V.S.J.; Jagadish, S.V.K. Water deficit and heat stress induced alterations in grain physico-chemical characteristics and micronutrient composition in field grown grain sorghum. J. Cereal Sci. 2019, 86, 124–131. [Google Scholar] [CrossRef]
- Ostmeyer, T.; Bheemanahalli, R.; Srikanthan, D.; Bean, S.; Peiris, K.H.S.; Madasamy, P.; Perumal, R.; Jagadish, S.K. Quantifying the agronomic performance of new grain sorghum hybrids for enhanced early-stage chilling tolerance. Field Crops Res. 2020, 258, 107955. [Google Scholar] [CrossRef]
- Chiluwal, A.; Bheemanahalli, R.; Perumal, R.; Asebedo, A.R.; Bashir, E.; Lamsal, A.; Sebela, D.; Shetty, N.J.; Jagadish, S.K. Integrated aerial and destructive phenotyping differentiates chilling stress tolerance during early seedling growth in sorghum. Field Crops Res. 2018, 227, 1–10. [Google Scholar] [CrossRef]
- Pazdernik, D.L.; Plehn, S.J.; Halgerson, J.L.; Orf, J.H. Effect of Temperature and Genotype on the Crude Glycinin Fraction (11S) of Soybean and Its Analysis by Near-Infrared Reflectance Spectroscopy (Near-IRS). J. Agric. Food Chem. 1996, 44, 2278–2281. [Google Scholar] [CrossRef]
- Thomas, J.M.G.; Boote, K.J.; Allen, L.H.; Gallo-Meagher, M.; Davis, J.M. Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Sci. 2003, 43, 1548–1557. [Google Scholar] [CrossRef]
- Thitisaksakul, M.; Jiménez, R.C.; Arias, M.C.; Beckles, D.M. Effects of environmental factors on cereal starch biosynthesis and composition. J. Cereal Sci. 2012, 56, 67–80. [Google Scholar] [CrossRef]
- McDonald, M.P.; Galwey, N.W.; Colmer, T.D. Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dryland grass species. Plant Cell Environ. 2002, 25, 441–451. [Google Scholar] [CrossRef]
- Setter, T.; Belford, B. Waterlogging: How it reduces plant growth and how plants can overcome its effects. J. Dep. Agric. West. Aust. Ser. 1990, 4, 51–55. [Google Scholar]
Crop Information | SC-Flo | SC-Pei | GA-Gf | NC-LW | NC-Pl | NC-T2 |
---|---|---|---|---|---|---|
Country | USA | USA | USA | USA | USA | USA |
State | SC | SC | GA | NC | NC | NC |
Town | Florence | Pelion | Griffin | Windsor | Plymouth | Plymouth |
Type of grower | Research Station | Private Grower | Research Station | Research Station | Research Station | Research Station |
Soil type | Sandy loam | Sandy loam | Sandy loam | Sandy loam | Sandy loam | Sandy loam |
Seeding rate (seeds/acre) | 87,120 | 71,000 | 80,000 | 120,000 | 120,000 | 120,000 |
Total N applied (gal N/acre) | 141 | 215 | 173 | 144 | 144 | 144 |
Days grown | 111 | 113 | 122 | 103 | 145 | 103 |
Yield (bush/acre) | 125.6 | 75 | 83.5 | 60.4 | 97.3 | 69.3 |
Stage | GDD |
---|---|
Period 1: Vegetative (planting date—panicle initiation) | 0–600 |
Period 2: Reproductive (panicle initiation—Flowering) | 600–1100 |
Period 3: Grain Fill (flowering—harvest) | 1100-Harvest |
Grain | Grow Stage | Age (Weeks) | Cum. GDDs 1 (°C) | Precipitation (mm) | Average Temp (°C) | Max. Temp (°C) | Min. Temp (°C) |
---|---|---|---|---|---|---|---|
SC-Flo | |||||||
1. Vegetative | 7 | 595 | 195 | 23.8 | 33.4 | 12.4 | |
2. Reproductive stage | 10 | 1094 | 123 | 28.5 | 35.6 | 20.2 | |
3. Grain fill | 16 | 1831 | 226 | 28.0 | 37.8 | 16.2 | |
GA-Gf | |||||||
1. Vegetative | 7 | 598 | 188 | 22.5 | 33.8 | 9.7 | |
2. Reproductive stage | 11 | 1090 | 80 | 27.6 | 38.1 | 17.2 | |
3. Grain fill | 22 | 2409 | 180 | 26.9 | 39.9 | 12.8 | |
NC-LW | |||||||
1. Vegetative | 5 | 595 | 121 | 28.6 | 36.2 | 20.8 | |
2. Reproductive stage | 9 | 1090 | 65 | 28.3 | 38.3 | 19.3 | |
3. Grain fill | 15 | 1645 | 237 | 22.6 | 35.1 | 6.5 | |
NC-PT | |||||||
1. Vegetative | 7 | 581 | 115 | 22.9 | 34.4 | 12.1 | |
2. Reproductive stage | 11 | 1087 | 120 | 28.7 | 36.2 | 21.3 | |
3. Grain fill | 21 | 2184 | 303 | 25.0 | 38.3 | 6.5 | |
NC-T2 | |||||||
1. Vegetative | 5 | 595 | 121 | 28.6 | 36.2 | 20.8 | |
2. Reproductive stage | 9 | 1089 | 56 | 28.3 | 38.3 | 19.3 | |
3. Grain fill | 15 | 1655 | 246 | 22.8 | 35.1 | 6.5 | |
SC-Pei | |||||||
1. Vegetative | 7 | 595 | 243 | 22.9 | 32.9 | 12.6 | |
2. Reproductive stage | 11 | 1083 | 108 | 28.1 | 35.4 | 20.1 | |
3. Grain fill | 17 | 1805 | 170 | 28.1 | 38.8 | 16.8 |
Variables | Correlation Coefficient | Significance |
---|---|---|
Fertilization | ||
SIAD 1 Ser | −0.96 | <0.0001 |
SIAD Trp | −0.83 | <0.0001 |
SIAD Tyr | −0.87 | <0.0001 |
SIAD His | −0.82 | <0.0001 |
Dry matter | 0.94 | <0.0001 |
Starch | 0.89 | <0.0001 |
Yield | ||
Mean SIAD | 0.88 | <0.0001 |
SIAD Cys | 0.91 | <0.0001 |
SIAD Ile | 0.94 | <0.0001 |
SIAD Met | 0.95 | <0.0001 |
SIAD Phe | 0.85 | <0.0001 |
SIAD Pro | 0.95 | <0.0001 |
SIAD Val | 0.86 | <0.0001 |
Seeding Rate | ||
Dry matter | −0.83 | <0.0001 |
Lys | −0.92 | <0.0001 |
Tyr | 0.92 | <0.0001 |
Variables | Correlation Coefficient | Significance |
---|---|---|
Dry Matter | ||
Starch | 0.9164 | <0.0001 |
Ash | 0.8276 | <0.0001 |
Lys | 0.9041 | <0.0001 |
SIAD 1 Ser | −0.8451 | <0.0001 |
Crude Protein | ||
His | 0.93 | <0.0001 |
Ile | 0.99 | <0.0001 |
Leu | 1.00 | <0.0001 |
Phe | 0.99 | <0.0001 |
Val | 0.98 | <0.0001 |
Crude fiber | ||
Crude protein | −0.87 | <0.0001 |
His | −0.85 | <0.0001 |
Ile | −0.86 | <0.0001 |
Leu | −0.84 | <0.0001 |
Phe | −0.86 | <0.0001 |
Val | −0.90 | <0.0001 |
Neutral detergent fiber | ||
SIAD Ala | −0.88 | <0.0001 |
SIAD Arg | −0.83 | <0.0001 |
SIAD Glu | −0.88 | <0.0001 |
SIAD Gly | −0.81 | <0.0001 |
SIAD Leu | −0.86 | <0.0001 |
SIAD Val | −0.81 | <0.0001 |
Ash | ||
Lys | 0.88 | <0.0001 |
SIAD Ala | 0.91 | <0.0001 |
SIAD Glu | 0.91 | <0.0001 |
SIAD Leu | 0.90 | <0.0001 |
Methionine | ||
SIAD Gly | 0.92 | <0.0001 |
SIAD Thr | 0.81 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasia, S.; Bridges, W.; Boyles, R.E.; Arguelles-Ramos, M. Exploring the Influence of Environmental and Crop Management Factors on Sorghum Nutrient Composition and Amino Acid Digestibility in Broilers. Agriculture 2025, 15, 232. https://doi.org/10.3390/agriculture15030232
Sasia S, Bridges W, Boyles RE, Arguelles-Ramos M. Exploring the Influence of Environmental and Crop Management Factors on Sorghum Nutrient Composition and Amino Acid Digestibility in Broilers. Agriculture. 2025; 15(3):232. https://doi.org/10.3390/agriculture15030232
Chicago/Turabian StyleSasia, Santiago, William Bridges, Richard E. Boyles, and Mireille Arguelles-Ramos. 2025. "Exploring the Influence of Environmental and Crop Management Factors on Sorghum Nutrient Composition and Amino Acid Digestibility in Broilers" Agriculture 15, no. 3: 232. https://doi.org/10.3390/agriculture15030232
APA StyleSasia, S., Bridges, W., Boyles, R. E., & Arguelles-Ramos, M. (2025). Exploring the Influence of Environmental and Crop Management Factors on Sorghum Nutrient Composition and Amino Acid Digestibility in Broilers. Agriculture, 15(3), 232. https://doi.org/10.3390/agriculture15030232