Mitigating the Negative Impact of Certain Erosion Events: Development and Verification of Innovative Agricultural Machinery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Evaluation of Erosion Event
2.3. Vegetation Assessment
2.4. Development of Appropriate Technology for Erosion Sediment Relocation
3. Results
3.1. Evaluation of Erosion Events with the Objective of Quantifying the Amount of Transported Erosional Sediment
3.2. Working Tool for Eroded Sediment Removal
- -
- 0.7 m standard spring height with H blade (working blade);
- -
- Roll angle β = 65°;
- -
- Cutting angle γ = 55°;
- -
- Material of standard spring with the blade-rolled steel thickness of 0.015 m and width of 0.10 m.
- -
- Weight 800 kg;
- -
- Working width 2.0 m;
- -
- Transport width 2.5 m;
- -
- Lateral tilting + 0.2 m;
- -
- Attachment (aggregation) through a standard three-point hitch and the use of standard hydraulic systems of agricultural tractors.
3.3. Amount of Work Performed and the Costs
3.4. Impact of Erosion Sediment on Vegetation Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Levers, C.; Butsic, V.; Verburg, P.H.; Müller, D.; Kuemmerle, T. Drivers of Changes in Agricultural Intensity in Europe. Land Use Policy 2016, 58, 380–393. [Google Scholar] [CrossRef]
- Malek, Ž.; Verburg, P.H.; R Geijzendorffer, I.; Bondeau, A.; Cramer, W. Global Change Effects on Land Management in the Mediterranean Region. Glob. Environ. Chang. 2018, 50, 238–254. [Google Scholar] [CrossRef]
- Groeneveld, A.N.; Peerlings, J.H.M.; Bakker, M.M.; Polman, N.B.P.; Heijman, W.J.M. Effects on Participation and Biodiversity of Reforming the Implementation of Agri-Environmental Schemes in the Netherlands. Ecol. Complex. 2019, 40, 100726. [Google Scholar] [CrossRef]
- Stoate, C.; Boatman, N.D.; Borralho, R.J.; Carvalho, C.R.; De Snoo, G.R.; Eden, P. Ecological Impacts of Arable Intensification in Europe. J. Environ. Manag. 2001, 63, 337–365. [Google Scholar] [CrossRef] [PubMed]
- Tanentzap, A.J.; Lamb, A.; Walker, S.; Farmer, A. Resolving Conflicts between Agriculture and the Natural Environment. PLoS Biol. 2015, 13, e1002242. [Google Scholar] [CrossRef] [PubMed]
- Kleijn, D.; Kohler, F.; Báldi, A.; Batáry, P.; Concepción, E.D.; Clough, Y.; Díaz, M.; Gabriel, D.; Holzschuh, A.; Knop, E.; et al. On the Relationship between Farmland Biodiversity and Land-Use Intensity in Europe. Proc. R. Soc. B Biol. Sci. 2012, 276, 903–909. [Google Scholar] [CrossRef]
- Maia, A.G.; Miyamoto, B.C.B.; Garcia, J.R. Climate Change and Agriculture: Do Environmental Preservation and Ecosystem Services Matter? Ecol. Econ. 2018, 152, 27–39. [Google Scholar] [CrossRef]
- Marada, P.; Cukor, J.; Kuběnka, M.; Linda, R.; Vacek, Z.; Vacek, S. New Agri-Environmental Measures Have a Direct Effect on Wildlife and Economy on Conventional Agricultural Land. PeerJ 2023, 11, e15000. [Google Scholar] [CrossRef] [PubMed]
- European Communities. Wind Erosion: Average Field Size in Ha; European Communities: Ispra, Italy, 2008. [Google Scholar]
- Panagos, P.; Imeson, A.; Meusburger, K.; Borrelli, P.; Poesen, J.; Alewell, C. Soil Conservation in Europe: Wish or Reality? Land. Degrad. Dev. 2016, 27, 1547–1551. [Google Scholar] [CrossRef]
- Vacek, Z.; Řeháček, D.; Cukor, J.; Vacek, S.; Khel, T.; Sharma, R.P.; Kučera, J.; Král, J.; Papaj, V. Windbreak Efficiency in Agricultural Landscape of the Central Europe: Multiple Approaches to Wind Erosion Control. Environ. Manag. 2018, 62, 942–954. [Google Scholar] [CrossRef]
- Kertész, Á.; Nagy, L.A.; Balázs, B. Effect of Land Use Change on Ecosystem Services in Lake Balaton Catchment. Land Use Policy 2019, 80, 430–438. [Google Scholar] [CrossRef]
- Irvem, A.; Topaloǧlu, F.; Uygur, V. Estimating Spatial Distribution of Soil Loss over Seyhan River Basin in Turkey. J. Hydrol. 2007, 336, 30–37. [Google Scholar] [CrossRef]
- Hessel, R.; Jetten, V. Suitability of Transport Equations in Modelling Soil Erosion for a Small Loess Plateau Catchment. Eng. Geol. 2007, 91, 56–71. [Google Scholar] [CrossRef]
- Kosmas, C.; Danalatos, N.; Cammeraat, L.H.; Chabart, M.; Diamantopoulos, J.; Farand, R.; Gutierrez, L.; Jacob, A.; Marques, H.; Martinez-Fernandez, J.; et al. The Effect of Land Use on Runoff and Soil Erosion Rates under Mediterranean Conditions. Catena 1997, 29, 45–59. [Google Scholar] [CrossRef]
- Marston, R.A. Geomorphology and Vegetation on Hillslopes: Interactions, Dependencies, and Feedback Loops. Geomorphology 2010, 116, 206–217. [Google Scholar] [CrossRef]
- Cogez, A.; Meynadier, L.; Allègre, C.; Limmois, D.; Herman, F.; Gaillardet, J. Constraints on the Role of Tectonic and Climate on Erosion Revealed by Two Time Series Analysis of Marine Cores around New Zealand. Earth Planet. Sci. Lett. 2015, 410, 174–185. [Google Scholar] [CrossRef]
- Vrieling, A.; de Jong, S.M.; Sterk, G.; Rodrigues, S.C. Timing of Erosion and Satellite Data: A Multi-Resolution Approach to Soil Erosion Risk Mapping. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 267–281. [Google Scholar] [CrossRef]
- van Leeuwen, C.C.E.; Cammeraat, E.L.H.; de Vente, J.; Boix-Fayos, C. The Evolution of Soil Conservation Policies Targeting Land Abandonment and Soil Erosion in Spain: A Review. Land Use Policy 2019, 83, 174–186. [Google Scholar] [CrossRef]
- Tripathi, M.P.; Panda, R.K.; Raghuwanshi, N.S. Identification and Prioritisation of Critical Sub-Watersheds for Soil Conservation Management Using the SWAT Model. Biosyst. Eng. 2003, 85, 365–379. [Google Scholar] [CrossRef]
- Sutherland, R.A.; Ziegler, A.D. Effectiveness of Coir-Based Rolled Erosion Control Systems in Reducing Sediment Transport from Hillslopes. Appl. Geogr. 2007, 27, 150–164. [Google Scholar] [CrossRef]
- Wilson, G.V.; Cullum, R.F.; Römkens, M.J.M. Ephemeral Gully Erosion by Preferential Flow through a Discontinuous Soil-Pipe. Catena 2008, 73, 98–106. [Google Scholar] [CrossRef]
- Renard, K.; Foster, G.; Weesies, G.; McCool, D.; Yoder, D. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Agricultural Handbook 1997, No. 703; IAHS Publications: Wallingford, UK, 1997. [Google Scholar]
- Nyakatawa, E.Z.; Jakkula, V.; Reddy, K.C.; Lemunyon, J.L.; Norris, B.E. Soil Erosion Estimation in Conservation Tillage Systems with Poultry Litter Application Using RUSLE 2.0 Model. Soil Tillage Res. 2007, 94, 410–419. [Google Scholar] [CrossRef]
- Lee, K.H.; Ehsani, R.; Castle, W.S. A Laser Scanning System for Estimating Wind Velocity Reduction through Tree Windbreaks. Comput. Electron. Agric. 2010, 73, 1–6. [Google Scholar] [CrossRef]
- Reháček, D.; Khel, T.; Kučera, J.; Vopravil, J.; Petera, M. Effect of Windbreaks on Wind Speed Reduction and Soil Protection against Wind Erosion. Soil Water Res. 2017, 12, 128–135. [Google Scholar] [CrossRef]
- Cukor, J.; Vacek, Z.; Vacek, S.; Linda, R.; Podrázský, V. Biomass Productivity, Forest Stability, Carbon Balance, and Soil Transformation of Agricultural Land Afforestation: A Case Study of Suitability of Native Tree Species in the Submontane Zone in Czechia. Catena 2022, 210, 105893. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, P.; Chen, X.; Helmers, M.J.; Zhou, X. Runoff and Sediment Yield under Simulated Rainfall on Hillslopes in the Loess Plateau of China. Soil Res. 2013, 51, 50–58. [Google Scholar] [CrossRef]
- Fagherazzi, S.; Kirwan, M.L.; Mudd, S.M.; Guntenspergen, G.R.; Temmerman, S.; D’Alpaos, A.; Van De Koppel, J.; Rybczyk, J.M.; Reyes, E.; Craft, C.; et al. Numerical Models of Salt Marsh Evolution: Ecological, Geomorphic, and Climatic Factors. Rev. Geophys. 2012, 50, 1–28. [Google Scholar] [CrossRef]
- Kakeh, N.; Coco, G.; Marani, M. On the Morphodynamic Stability of Intertidal Environments and the Role of Vegetation. Adv. Water Resour. 2016, 93, 303–314. [Google Scholar] [CrossRef]
- Li, H.; Yang, S.L. Trapping Effect of Tidal Marsh Vegetation on Suspended Sediment, Yangtze Delta. J. Coast. Res. 2009, 25, 915–924. [Google Scholar] [CrossRef]
- Temmerman, S.; Bouma, T.J.; Govers, G.; Wang, Z.B.; De Vries, M.B.; Herman, P.M.J. Impact of Vegetation on Flow Routing and Sedimentation Patterns: Three-Dimensional Modeling for a Tidal Marsh. J. Geophys. Res. Earth Surf. 2005, 110, F04019. [Google Scholar] [CrossRef]
- Boorman, L.A.; Garbutt, A.; Barratt, D. The Role of Vegetation in Determining Patterns of the Accretion of Salt Marsh Sediment. Geol. Soc. Spec. Publ. 1998, 139, 389–399. [Google Scholar] [CrossRef]
- Silva, H.; Dias, J.M.; Caçador, I. Is the Salt Marsh Vegetation a Determining Factor in the Sedimentation Processes? Hydrobiologia 2009, 621, 33–47. [Google Scholar] [CrossRef]
- Fagherazzi, S.; Mariotti, G.; Leonardi, N.; Canestrelli, A.; Nardin, W.; Kearney, W.S. Salt Marsh Dynamics in a Period of Accelerated Sea Level Rise. J. Geophys. Res. Earth Surf. 2020, 125, e2019JF005200. [Google Scholar] [CrossRef]
- Leonard, L.A.; Croft, A.L. The Effect of Standing Biomass on Flow Velocity and Turbulence in Spartina Alterniflora Canopies. Estuar. Coast. Shelf Sci. 2006, 69, 325–336. [Google Scholar] [CrossRef]
- Shi, Z.; Hamilton, L.J.; Wolanski, E. Near-Bed Currents and Suspended Sediment Transport in Saltmarsh Canopies. J. Coast. Res. 2000, 16, 909–914. [Google Scholar]
- Borsje, B.W.; van Wesenbeeck, B.K.; Dekker, F.; Paalvast, P.; Bouma, T.J.; van Katwijk, M.M.; de Vries, M.B. How Ecological Engineering Can Serve in Coastal Protection. Ecol. Eng. 2011, 37, 113–122. [Google Scholar] [CrossRef]
- Möller, I.; Kudella, M.; Rupprecht, F.; Spencer, T.; Paul, M.; Van Wesenbeeck, B.K.; Wolters, G.; Jensen, K.; Bouma, T.J.; Miranda-Lange, M.; et al. Wave Attenuation over Coastal Salt Marshes under Storm Surge Conditions. Nat. Geosci. 2014, 7, 727–731. [Google Scholar] [CrossRef]
- Daly, E.R.; Miller, R.B.; Fox, G.A. Modeling Streambank Erosion and Failure along Protected and Unprotected Composite Streambanks. Adv. Water Resour. 2015, 81, 114–127. [Google Scholar] [CrossRef]
- Docker, B.B.; Hubble, T.C.T. Quantifying Root-Reinforcement of River Bank Soils by Four Australian Tree Species. Geomorphology 2008, 100, 401–418. [Google Scholar] [CrossRef]
- Järvelä, J. Flow Resistance of Flexible and Stiff Vegetation: A Flume Study with Natural Plants. J. Hydrol. 2002, 269, 44–54. [Google Scholar] [CrossRef]
- López, F.; García, M. Open-Channel Flow through Simulated Vegetation: Suspended Sediment Transport Modeling. Water Resour. Res. 1998, 34, 2341–2352. [Google Scholar] [CrossRef]
- Pollen-Bankhead, N.; Simon, A. Hydrologic and Hydraulic Effects of Riparian Root Networks on Streambank Stability: Is Mechanical Root-Reinforcement the Whole Story? Geomorphology 2010, 116, 353–362. [Google Scholar] [CrossRef]
- Ryspekov, T.; Jandák, J.; Balkozha, M.; Winkler, J. Vegetation of Abandoned Fields on Soil Types of Kastanozems in Northern Kazakhstan (Kostanay Region). J. Ecol. Eng. 2021, 22, 176–184. [Google Scholar] [CrossRef]
- Chung, C.H.; Zhuo, R.Z.; Xu, G.W. Creation of Spartina Plantations for Reclaiming Dongtai, China, Tidal Flats and Offshore Sands. Ecol. Eng. 2004, 23, 135–150. [Google Scholar] [CrossRef]
- Zhi, Y.; Li, H.; An, S.; Zhao, L.; Zhou, C.; Deng, Z. Inter-Specific Competition: Spartina Alterniflora Is Replacing Spartina Anglica in Coastal China. Estuar. Coast. Shelf Sci. 2007, 74, 437–448. [Google Scholar] [CrossRef]
- Biber, P. Evaluating a Chlorophyll Content Meter on Three Coastal Wetland Plant Species. J. Agric. Food Environ. Sci. 2007, 1, 1–11. [Google Scholar]
- Meng, W.; Feagin, R.A.; Innocenti, R.A.; Hu, B.; He, M.; Li, H. Invasion and Ecological Effects of Exotic Smooth Cordgrass Spartina Alterniflora in China. Ecol. Eng. 2020, 143, 105670. [Google Scholar] [CrossRef]
- Li, X.; Ren, L.; Liu, Y.; Craft, C.; Mander, Ü.; Yang, S. The Impact of the Change in Vegetation Structure on the Ecological Functions of Salt Marshes: The Example of the Yangtze Estuary. Reg. Environ. Chang. 2014, 14, 623–632. [Google Scholar] [CrossRef]
- Marada, P.; Mareček, J.; Krčálová, E.; Krajíček, T.; Lacina, L.; Horák, I. The Circular Economics of Revitalization Process of Concentrated Water Runoff Paths and Retention Reservoirs. In Proceedings of the 10th International Conference on Management-Zero Waste Management and Circular Economy, Brno, Czech Republic, 10 June 2021. [Google Scholar]
- Köppen, W.; Geiger, R. Handbuch der Klimatologie: Das Geographische System der Klimate; Borntraeger: Berlin, Germany, 1936; Volume 35. [Google Scholar]
- Quitt, E. Klimatické Oblasti Československa; Academia: Prague, Czech Republic, 1971; Volume 16. [Google Scholar]
- Dumbrovský, M.; Drbal, K.; Sobotková, V.; Uhrová, J. An Approach to Identifying and Evaluating the Potential Formation of Ephemeral Gullies in the Conditions of the Czech Republic. Soil Water Res. 2020, 15, 38–46. [Google Scholar] [CrossRef]
- Kaplan, Z.; Danihelka, J. Klíč Ke Květeně České Republiky [Key to the Flora of the Czech Republic], 2nd ed.; Academia: Prague, Czech Republic, 2019. [Google Scholar]
- Chytrý, M.; Danihelka, J.; Kaplan, Z.; Wild, J.; Holubová, D.; Novotný, P.; Reznícková, M.; Rohn, M.; Drevojan, P.; Grulich, V.; et al. Pladias Database of the Czech Flora and Vegetation. Preslia 2021, 93, 1–87. [Google Scholar] [CrossRef]
- Pyšek, P.; Sádlo, J.; Chrtek, J.; Chytrý, M.; Kaplan, Z.; Pergl, J.; Pokorná, A.; Axmanová, I.; Čuda, J.; Doležal, J.; et al. Catalogue of Alien Plants of the Czech Republic (3rd Edition). Preslia 2022, 94, 447–577. [Google Scholar] [CrossRef]
- Borrelli, P.; Panagos, P.; Alewell, C.; Ballabio, C.; de Oliveira Fagundes, H.; Haregeweyn, N.; Lugato, E.; Maerker, M.; Poesen, J.; Vanmaercke, M.; et al. Policy Implications of Multiple Concurrent Soil Erosion Processes in European Farmland. Nat. Sustain. 2023, 6, 103–112. [Google Scholar] [CrossRef]
- Montanarella, L. Agricultural Policy: Govern Our Soils. Nature 2015, 528, 32–33. [Google Scholar] [CrossRef] [PubMed]
- Panagos, P.; Matthews, F.; Patault, E.; De Michele, C.; Quaranta, E.; Bezak, N.; Kaffas, K.; Patro, E.R.; Auel, C.; Schleiss, A.J.; et al. Understanding the Cost of Soil Erosion: An Assessment of the Sediment Removal Costs from the Reservoirs of the European Union. J. Clean. Prod. 2024, 434, 140183. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Lugato, E.; Jones, A.; Borrelli, P. Condition of Agricultural Soil: Factsheet on Soil Erosion Overview of Models, Data and Information on Soil Erosion in Agricultural Soils; Publications Office of the European Commission: Luxembourg, 2017. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Poesen, J.; Lugato, E.; Scarpa, S.; Montanarella, L.; Borrelli, P. A Soil Erosion Indicator for Supporting Agricultural, Environmental and Climate Policies in the European Union. Remote Sens. 2020, 12, 1365. [Google Scholar] [CrossRef]
- Patault, E.; Ledun, J.; Landemaine, V.; Soulignac, A.; Richet, J.B.; Fournier, M.; Ouvry, J.F.; Cerdan, O.; Laignel, B. Analysis of Off-Site Economic Costs Induced by Runoff and Soil Erosion: Example of Two Areas in the Northwestern European Loess Belt for the Last Two Decades (Normandy, France). Land Use Policy 2021, 108, 105541. [Google Scholar] [CrossRef]
- Ødegaard, F.; Tømmerås, B.Å. Compost Heaps—Refuges and Stepping-Stones for Alien Arthropod Species in Northern Europe. Divers. Distrib. 2000, 6, 45–59. [Google Scholar] [CrossRef]
- Hunková, E.; Winkler, J.; Demjanová, E. The Weed Seed Bank Assessment in Two Soil Depths under Various Mineral Fertilising. Acta Univ. Agric. Silvic. Mendel. Brun. 2011, 59, 105–112. [Google Scholar] [CrossRef]
- Boardman, J.; Vandaele, K. Soil Erosion and Runoff: The Need to Rethink Mitigation Strategies for Sustainable Agricultural Landscapes in Western Europe. Soil Use Manag. 2023, 39, 673–685. [Google Scholar] [CrossRef]
Relationship to Characteristics of Erosional Sediments | Invasive Status of Taxa | Abbreviation—Taxa |
---|---|---|
Positive response—higher coverage and frequency of occurrence | invasive | AmaRetr—Amaranthus retroflexus, CirArve—Cirsium arvense, SymNovi—Symphyotrichum novi-belgii |
naturalized | CreTect—Crepis tectorum, DatStra—Datura stramonium, LacSerr—Lactuca serriola, LycArve—Lycopsis arvensis, PanMili—Panicum miliaceum | |
casual | BraNapu—Brassica napus | |
native | PoaAnnu—Poa annua, RumObtu—Rumex obtusifolius, SteMedi—Stellaria media, TarSect—Taraxacum sect. Taraxacum, VioArve—Viola arvensis | |
Neutral—other environmental factors had a greater influence on the coverage and frequency of occurrence | invasive | EriAnnu—Erigeron annuus, PorOler—Portulaca oleracea |
naturalized | ArcTome—Arctium tomentosum, CapBurs—Capsella bursa-pastoris, DesSoph—Descurainia sophia, LamAmpl—Lamium amplexicaule, LolMult—Lolium multiflorum, ThlArve—Thlaspi arvense, TriInod—Tripleurospermum inodorum, VerPers—Veronica persica, VerPoli—Veronica polita | |
native | ArcMinu—Arctium minus, CreBien—Crepis biennis, CheAlbu—Chenopodium album, PerAmph—Persicaria amphibia, PerLapa—Persicaria lapathifolia, PolAvic—Polygonum aviculare, RumCris—Rumex crispus, SenJaco—Senecio jacobaea, TraOrie—Tragopogon orientalis, UrtDioi—Urtica dioica | |
Negative—lower coverage and frequency of occurrence | invasive | ArrElat—Arrhenatherum elatius, ConCana—Conyza canadensis |
naturalized | CicInty—Cichorium intybus, ConArve—Convolvulus arvensis, EchCrus—Echinochloa crus-galli, ResLute—Reseda lutea, SetPumi—Setaria pumila, SilLati—Silene latifolia | |
native | AchMill—Achillea millefolium, ArtVulg—Artemisia vulgaris, CarAcan—Carduus acanthoides, DacGlom—Dactylis glomerata, DauCaro—Daucus carota, FesRubr—Festuca rubra, GalAlbu—Galium album, LolPere—Lolium perenne, PlaMajo—Plantago major, SteGram—Stellaria graminea, TriPrat—Trifolium pratens |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krajíček, T.; Marada, P.; Horák, I.; Cukor, J.; Skoták, V.; Winkler, J.; Dumbrovský, M.; Jurčík, R.; Los, J. Mitigating the Negative Impact of Certain Erosion Events: Development and Verification of Innovative Agricultural Machinery. Agriculture 2025, 15, 250. https://doi.org/10.3390/agriculture15030250
Krajíček T, Marada P, Horák I, Cukor J, Skoták V, Winkler J, Dumbrovský M, Jurčík R, Los J. Mitigating the Negative Impact of Certain Erosion Events: Development and Verification of Innovative Agricultural Machinery. Agriculture. 2025; 15(3):250. https://doi.org/10.3390/agriculture15030250
Chicago/Turabian StyleKrajíček, Tomáš, Petr Marada, Ivo Horák, Jan Cukor, Vlastimil Skoták, Jan Winkler, Miroslav Dumbrovský, Radek Jurčík, and Josef Los. 2025. "Mitigating the Negative Impact of Certain Erosion Events: Development and Verification of Innovative Agricultural Machinery" Agriculture 15, no. 3: 250. https://doi.org/10.3390/agriculture15030250
APA StyleKrajíček, T., Marada, P., Horák, I., Cukor, J., Skoták, V., Winkler, J., Dumbrovský, M., Jurčík, R., & Los, J. (2025). Mitigating the Negative Impact of Certain Erosion Events: Development and Verification of Innovative Agricultural Machinery. Agriculture, 15(3), 250. https://doi.org/10.3390/agriculture15030250