Determining an Optimal Combination of Meteorological Factors to Reduce the Intensity of Atmospheric Pollution During Prescribed Straw Burning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Period
2.2. Data Sources
2.3. Univariate Analysis and Response Surface Methodology
2.4. Backwards Trajectory
3. Results
3.1. Variations in the PM and Aerosol Extinction Coefficients
3.2. Analysis of Fire Points and Meteorological Conditions
3.3. Interactions Between Biomass Burning and Meteorological Conditions on PM2.5
3.4. Meteorological Control Options for Mitigating Haze Pollution from Straw Burning
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, R.; Jiang, W.; Gao, W.; Sun, S. Emission inventory of crop residue open burning and its high-resolution spatial distribution in 2014 for Shandong province, China. Atmos. Pollut. Res. 2017, 8, 545–554. [Google Scholar] [CrossRef]
- McCarty, J.L. Remote sensing-based estimates of annual and seasonal emissions from crop residue burning in the contiguous United States. J. Air Waste Manag. Assoc. 2011, 61, 22–34. [Google Scholar] [CrossRef]
- Wang, G.; Luo, Z.; Wang, E.; Zhang, W. Reducing greenhouse gas emissions while maintaining yield in the croplands of Huang-Huai-Hai Plain. Agric. For. Meteorol. 2018, 260–261, 80–94. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Quayle, B.; Geron, C.; Belote, A.; McKenzie, D.; Zhang, X.Y.; O’Neill, S.; Wynne, K.K. Estimating emissions from fires in North America for air quality modeling. Atmos. Environ. 2006, 40, 3419–3432. [Google Scholar] [CrossRef]
- Zhang, G.; Li, J.; Li, X.D.; Xu, Y.; Guo, L.L.; Tang, J.H.; Lee, C.S.L.; Liu, X.; Chen, Y.J. Impact of anthropogenic emissions and open biomass burning on regional carbonaceous aerosols in South China. Environ. Pollut. 2010, 158, 3392–3400. [Google Scholar] [CrossRef]
- Qin, Y.; Xie, S.D. Historical estimation of carbonaceous aerosol emissions from biomass open burning in China for the period 1990–2005. Environ. Pollut. 2011, 159, 3316–3323. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, X.; Zhang, S.; Chen, W.; Tong, D.Q.; Xiu, A. Effects of agricultural biomass burning on regional haze in China: A review. Atmosphere 2017, 8, 88. [Google Scholar] [CrossRef]
- Giuditta, E.; Coenders-Gerrits, A.M.J.; Bogaard, T.A.; Wenninger, J.; Greco, R.; Rutigliano, F.A. Measuring changes in forest floor evaporation after prescribed burning in Southern Italy pine plantations. Agric. For. Meteorol. 2018, 256–257, 516–525. [Google Scholar] [CrossRef]
- Clarke, H.; Tran, B.; Boer, M.M.; Price, O.; Kenny, B.; Bradstock, R. Climate change effects on the frequency, seasonality and interannual variability of suitable prescribed burning weather conditions in south-eastern Australia. Agric. For. Meteorol. 2019, 271, 148–157. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, W.; Tang, L.; Heenan, M.; Wang, D.; Xu, Z. Impacts of prescribed burning on urban forest soil: Minor changes in net greenhouse gas emissions despite evident alterations of microbial community structures. Appl. Soil Ecol. 2021, 158, 103780. [Google Scholar] [CrossRef]
- Theodoritsi, G.N.; Posner, L.N.; Robinson, A.L.; Yarwood, G.; Koo, B.; Morris, R.; Mavko, M.; Moore, T.; Pandis, S.N. Biomass burning organic aerosol from prescribed burning and other activities in the United States. Atmos. Environ. 2020, 241, 117753. [Google Scholar] [CrossRef]
- Fu, J.; Song, S.T.; Guo, L.; Chen, W.W.; Wang, P.; Duanmu, L.J.; Shang, Y.J.; Shi, B.W.; He, L.Y. Interprovincial Joint Prevention and Control of Open Straw Burning in Northeast China: Implications for Atmospheric Environment Management. Remote Sens. 2022, 14, 2528. [Google Scholar] [CrossRef]
- Qin, C.; Bi, Y.Y.; Gao, C.Y.; Wang, Y.J.; Zhou, K.; Wang, Y. Management and effect of straw burning prohibition in China. J. China Agric. Univ. 2019, 24, 181–189. [Google Scholar]
- Wen, X.; Chen, W.; Chen, B.; Yang, C.; Tu, G.; Cheng, T. Does the prohibition on open burning of straw mitigate air pollution? An empirical study in Jilin Province of China in the post-harvest season. J. Environ. Manag. 2020, 264, 110451. [Google Scholar] [CrossRef]
- Zhou, Z.; Shi, H.; Fu, Q.; Li, T.; Gan, T.Y.; Liu, S.; Liu, K. Is the cold region in Northeast China still getting warmer under climate change impact? Atmos. Res. 2020, 237, 104864. [Google Scholar] [CrossRef]
- Li, L.; Wang, K.; Chen, W.; Zhao, Q.; Liu, L.; Liu, W.; Liu, Y.; Jiang, J.; Liu, J.; Zhang, M. Atmospheric pollution of agriculture-oriented cities in Northeast China: A case in Suihua. J. Environ. Sci. 2020, 97, 85–95. [Google Scholar] [CrossRef]
- Chen, W.W.; Duanmu, L.J.; Qin, Y.; Yang, H.; Fu, J.; Lu, C.; Feng, W.; Guo, L. Lockdown-induced Urban Aerosol Change over Changchun, China During COVID-19 Outbreak with Polarization LiDAR. Chin. Geogr. Sci. 2022, 32, 824–833. [Google Scholar] [CrossRef]
- He, G.; Liu, T.; Zhou, M. Straw burning, PM2.5, and death: Evidence from China. J. Dev. Econ. 2020, 145, 102468. [Google Scholar] [CrossRef]
- Chantara, S.; Thepnuan, D.; Wiriya, W.; Prawan, S.; Tsai, Y.I. Emissions of pollutant gases, fine particulate matters and their significant tracers from biomass burning in an open-system combustion chamber. Chemosphere 2019, 224, 407–416. [Google Scholar] [CrossRef]
- Engling, G.; Carrico, C.M.; Kreldenweis, S.M.; Collett, J.L., Jr.; Day, D.E.; Malm, W.C.; Lincoln, E.; Hao, W.M.; Iinuma, Y.; Herrmann, H. Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection. Atmos. Environ. 2006, 40, 299–311. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, X.; Cao, C.; Che, H.; Liu, H.; Gupta, P.; Zhang, H.; Xu, M.; Li, X. Monitoring haze episodes over the Yellow Sea by combining multisensor measurements. Int. J. Rem. Sens. 2010, 31, 4743–4755. [Google Scholar] [CrossRef]
- Tao, M.; Chen, L.; Wang, Z.; Tao, J.; Su, L. Satellite observation of abnormal yellow haze clouds over East China during summer agricultural burning season. Atmos. Environ. 2013, 79, 632–640. [Google Scholar] [CrossRef]
- Adler, G.; Flores, J.M.; Riziq, A.A.; Borrmann, S.; Rudich, Y. Chemical, physical, and optical evolution of biomass burning aerosols: A case study. Atmos. Chem. Phys. 2011, 11, 1491–1503. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, L.; Xu, W.; Liu, C.; Cheng, H.; Liu, Y.; Zhang, G.; Xu, X.; Yu, D.; Wang, P.; et al. Influence of meteorological factors on open biomass burning at a background site in Northeast China. J. Environ. Sci. 2024, 138, 1–9. [Google Scholar] [CrossRef]
- Trivedi, A.; Verma, A.R.; Kaur, S.; Jha, B.; Vijay, V.; Chandra, R.; Vijay, V.K.; Subbarao, P.M.V.; Tiwari, R.; Hariprasad, P.; et al. Sustainable bio-energy production models for eradicating open field burning of paddy straw in Punjab, India. Energy 2017, 127, 310–317. [Google Scholar] [CrossRef]
- Xu, R.; Tie, X.; Li, G.; Zhao, S.; Cao, J.; Feng, T.; Long, X. Effect of biomass burning on black carbon (BC) in South Asia and Tibetan Plateau: The analysis of WRF-Chem modeling. Sci. Total Environ. 2018, 645, 901–912. [Google Scholar] [CrossRef]
- Holder, A.L.; Gullett, B.K.; Urbanski, S.P.; Elleman, R.; O’Neill, S.; Tabor, D.; Mitchell, W.; Baker, K.R. Emissions from prescribed burning of agricultural fields in the Pacific Northwest. Atmos. Environ. 2017, 166, 22–33. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Gregorich, E.G.; McLaughlin, N.B.; Zhang, X.; Guo, Y.; Liang, A.; Fan, R.; Sun, B. No-tillage with continuous maize cropping enhances soil aggregation and organic carbon storage in Northeast China. Geoderma 2018, 330, 204–211. [Google Scholar] [CrossRef]
- Chen, W.W.; Li, J.; Bao, Q.; Gao, Z.; Cheng, T.; Yu, Y. Evaluation of Straw Open Burning Prohibition Effect on Provincial Air Quality during October and November 2018 in Jilin Province. Atmosphere 2019, 10, 375. [Google Scholar] [CrossRef]
- Fire Information for Resource Management System (FIRMS). Available online: https://firms.modaps.eosdis.nasa.gov/active_fire/ (accessed on 16 December 2024).
- Wang, W.; Yi, F.; Liu, F.; Zhang, Y.; Yu, C.; Yin, Z. Characteristics and Seasonal Variations of Cirrus Clouds from Polarization Lidar Observations at a 30°N Plain Site. Remote Sens. 2020, 12, 3998. [Google Scholar] [CrossRef]
- Fernald, F.G. Analysis of atmospheric lidar observations: Some comments. Appl. Opt. 1984, 23, 652–653. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Che, H.; Qi, B.; Wang, Y.; Dong, Y.; Xia, X.; Wang, H.; Gui, K.; Zheng, Y.; Zhao, H.; et al. Characterization of vertical distribution and radiative forcing of ambient aerosol over the Yangtze River Delta during 2013–2015. Sci. Total Environ. 2019, 650, 1846–1857. [Google Scholar] [CrossRef]
- Tesche, M.; Ansmann, A.; Mueller, D.; Althausen, D.; Engelmann, R.; Freudenthaler, V.; Gross, S. Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008. J. Geophys. Res. Atmos. 2009, 114, D13202. [Google Scholar] [CrossRef]
- Duanmu, L.J.; Chen, W.W.; Guo, L.; Fu, J.; You, B.; Yang, H.; Zhang, T. Concentrated fireworks display-induced changes in aerosol vertical characteristics and atmospheric pollutant emissions. Atmos. Environ. 2024, 322, 120370. [Google Scholar] [CrossRef]
- Hooper, W.P.; Eloranta, E.W. Lidar measurements of wind in the planetary bound ary layer: The method, accuracy and results from joint measurements with radio sonde and Kytoon. J. Clim. Appl. Meteorol. 1986, 25, 990–1001. [Google Scholar] [CrossRef]
- Burkart, K.; Canario, P.; Breitner, S.; Schneider, A.; Scherber, K.; Andrade, H.; Alcoforado, M.J.; Endlicher, W. Interactive short-term effects of equivalent temperature and air pollution on human mortality in Berlin and Lisbon. Environ. Pollut. 2013, 183, 54–63. [Google Scholar] [CrossRef]
- Desai, K.M.; Survase, S.A.; Saudagar, P.S.; Lele, S.S.; Singhal, R.S. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: Case study of fermentative production of scleroglucan. Biochem. Eng. J. 2008, 41, 266–273. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Wong, M.S.; Lee, K.H. Estimation of potential source regions of PM2.5 in Beijing using backward trajectories. Atmos. Pollut. Res. 2015, 6, 173–177. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G.D. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Li, X.; Li, B.; Yang, Y.; Hu, L.; Chen, D.; Hu, X.; Feng, R.; Fang, X. Characteristics and source apportionment of some halocarbons in Hangzhou, eastern China during 2021. Sci. Total Environ. 2023, 865, 160894. [Google Scholar] [CrossRef]
- Li, S.; Wang, T.; Xie, M.; Han, Y.; Zhuang, B. Observed aerosol optical depth and angstrom exponent in urban area of Nanjing, China. Atmos. Environ. 2015, 123, 350–356. [Google Scholar] [CrossRef]
- Ming, L.; Jin, L.; Li, J.; Fu, P.; Yang, W.; Liu, D.; Zhang, G.; Wang, Z.; Li, X. PM2.5 in the Yangtze River Delta, China: Chemical compositions, seasonal variations, and regional pollution events. Environ. Pollut. 2017, 223, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Yu, J.; Qin, Y. Spatial Distribution of Air Pollution and Its Relationship with Meteorological Factors: A Case Study of 31 Provincial Capitals in China. Pol. J. Environ. Stud. 2023, 3, 2513–2521. [Google Scholar] [CrossRef]
- Meng, C.; Cheng, T.; Bao, F.; Gu, X.; Wang, J.; Zuo, X.; Shi, S. The Impact of Meteorological Factors on Fine Particulate Pollution in Northeast China. Aerosol Air Qual. Res. 2020, 20, 1618–1628. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Gong, D.; Quan, W.; Zhao, X.; Ma, Z.; Kim, S.J. Evolution of surface O3 and PM2.5 concentrations and their relationships with meteorological conditions over the last decade in Beijing. Atmos. Environ. 2015, 108, 67–75. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, X.; Xu, C.; Wang, Q. The Effect of Meteorological Features on Pollution Characteristics of PM2.5 in the South Area of Beijing, China. Atmosphere 2023, 14, 1753. [Google Scholar] [CrossRef]
- Yin, Q.; Wang, J.; Hu, M.; Wong, H. Estimation of daily PM2.5 concentration and its relationship with meteorological conditions in Beijing. J. Environ. Sci. 2016, 48, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xiao, X.; Wang, F.; Brasseur, G.; Chen, S.; Wang, J.; Gao, M. Observed sensitivities of PM2.5 and O3 extremes to meteorological conditions in China and implications for the future. Environ. Int. 2022, 168, 107428. [Google Scholar] [CrossRef]
- Zhou, Q.; Cheng, L.; Zhang, Y.; Wang, Z.; Yang, S. Relationships between Springtime PM2.5, PM10, and O3 Pollution and the Boundary Layer Structure in Beijing, China. Sustainability 2022, 14, 9041. [Google Scholar] [CrossRef]
- He, Y.; Li, L.; Wang, H.; Xu, X.; Li, Y.; Fan, S. A cold front induced co-occurrence of O3 and PM2.5 pollution in a Pearl River Delta city: Temporal variation, vertical structure, and mechanism. Environ. Pollut. 2022, 306, 119464. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, H.; Wu, Y. Characteristics of Particulate Matter during Haze and Fog (Pollution) Episodes over Northeast China, Autumn 2013. Aerosol Air Qual. Res. 2015, 15, 853–864. [Google Scholar] [CrossRef]
- Nodehi, R.N.; Sheikhi, S. Nanomaterial-based AOPs for the removal of organic pollutants in aqueous matrices: A systematic review of response surface methodology (RSM) models. Environ. Technol. Innov. 2024, 35, 103718. [Google Scholar] [CrossRef]
- Pereira, L.M.S.; Milan, T.M.; Tapia-Blácido, D.R. Using Response Surface Methodology (RSM) to optimize 2G bioethanol production: A review. Biomass Bioenergy 2021, 151, 106166. [Google Scholar] [CrossRef]
- Zhou, G.; Yang, F.; Geng, F.; Xu, J.; Yang, X.; Tie, X. Measuring and Modeling Aerosol: Relationship with Haze Events in Shanghai, China. Aerosol Air. Qual. Res. 2014, 14, 783–792. [Google Scholar] [CrossRef]
- Xu, Z.; Peng, Z.; Zhang, N.; Liu, H.; Lei, L.; Kou, X. Impact of meteorological conditions and reductions in anthropogenic emissions on PM2.5 concentrations in China from 2016 to 2020. Atmos. Environ. 2024, 318, 120265. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, G.; Sun, B.; Dong, Y.; Cao, L.; Zhao, B.; Li, M.; Fan, Z.; Zhou, Y.; Wang, Q. Varying Drivers of 2013–2017 Trends in PM2.5 Pollution over Different Regions in China. Atmosphere 2024, 15, 789. [Google Scholar] [CrossRef]
- Chen, W.W.; Zhang, S.C.; Tong, Q.S.; Zhang, X.L.; Zhao, H.M.; Ma, S.Q.; Xiu, A.J.; He, Y.X. Regional Characteristics and Causes of Haze Events in Northeast China. Chin. Geogr. Sci. 2018, 28, 836–850. [Google Scholar] [CrossRef]
- Kang, B.; Liu, C.; Miao, C.; Zhang, T.; Li, Z.; Hou, C.; Li, H.; Li, C.; Zheng, Y.; Che, H. A Comprehensive Study of a Winter Haze Episode over the Area around Bohai Bay in Northeast China: Insights from Meteorological Elements Observations of Boundary Layer. Sustainability 2022, 14, 5424. [Google Scholar] [CrossRef]
- JPG Jilin Province Government. Work Program for Straw Open Burning Prohibition in Autumn and Winter of 2018. 2018. Available online: http://xxgk.jl.gov.cn/szf/gkml/201812/t20181205_5350313.html (accessed on 16 December 2024).
- Yang, G.; Zhao, H.; Tong, D.Q.; Xiu, A.; Zhang, X.; Gao, C. Impacts of post-harvest open biomass burning and burning ban policy on severe haze in the Northeastern China. Sci. Total Environ. 2020, 716, 136517. [Google Scholar] [CrossRef]
- Wen, X.; Chen, W.; Zhang, P.; Chen, J.; Song, G. An Integrated Quantitative Method Based on ArcGIS Evaluating the Contribution of Rural Straw Open Burning to Urban Fine Particulate Pollution. Remote Sens. 2022, 14, 4671. [Google Scholar] [CrossRef]
- He, L.; Duanmu, L.; Chen, X.; You, B.; Liu, G.; Wen, X.; Guo, L.; Bao, Q.; Fu, J.; Chen, W. Regulation of open straw burning and residential coal burning around urbanized areas could achieve urban air quality standards in the cold region of northeastern China. Sustain. Horiz. 2024, 9, 100077. [Google Scholar] [CrossRef]
- Lu, C.W.; Fu, J.; Liu, X.F.; Cui, Z.H.; Chen, W.W.; Guo, L.; Li, X.L.; Ren, Y.; Shao, F.; Chen, L.N.; et al. Impacts of air pollution and meteorological conditions on dry eye disease among residents in a northeastern Chinese metropolis: A six-year crossover study in a cold region. Light Sci. Appl. 2023, 12, 186. [Google Scholar] [CrossRef]
- Fang, C.; Wang, L.; Li, Z.; Wang, J. Spatial Characteristics and Regional Transmission Analysis of PM2.5 Pollution in Northeast China, 2016–2020. Int. J. Environ. Res. Public Health 2021, 18, 12483. [Google Scholar] [CrossRef]
- Yang, W.; Wang, G.; Bi, C. Analysis of Long-Range Transport Effects on PM2.5 during a Short Severe Haze in Beijing, China. Aerosol Air. Qual. Res. 2017, 17, 1610–1622. [Google Scholar] [CrossRef]
- Ukhov, A.; Mostamandi, S.; da Silva, A.; Flemming, J.; Alshehri, Y.; Shevchenko, I.; Stenchikov, G. Assessment of natural and anthropogenic aerosol air pollution in the Middle East using MERRA-2, CAMS data assimilation products, and high-resolution WRF-Chem model simulations. Atmos. Chem. Phys. 2020, 20, 9281–9310. [Google Scholar] [CrossRef]
- Yahya, K.B. Regional Air Quality and Climate Modeling Using WRF/Chem with Improved Model Representations of Organic Aerosol Formation and Aerosol Activation. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA,, 2016; p. 10970040. [Google Scholar]
- Du, Q.; Zhao, C.; Zhang, M.; Dong, X.; Chen, Y.; Liu, Z.; Hu, Z.; Zhang, Q.; Li, Y.; Yuan, R.; et al. Modeling diurnal variation of surface PM2.5 concentrations over East China with WRF-Chem: Impacts from boundary-layer mixing and anthropogenic emission. Atmos. Chem. Phys. 2020, 20, 2839–2863. [Google Scholar] [CrossRef]
- Hong, J.; Mao, F.; Min, Q.; Pan, Z.; Wang, W.; Zhang, T.; Gong, W. Improved PM2.5 predictions of WRF-Chem via the integration of Himawari-8 satellite data and ground observations. Environ. Pollut. 2020, 263, 114451. [Google Scholar] [CrossRef]
F Value (Model) | p Value (Model) | C.V. % | R-Squared | Adj R-Squared | Pred R-Squared |
---|---|---|---|---|---|
71.18 | <0.0001 | 2.33 | 0.98 | 0.97 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Duanmu, L.; Guo, L.; Qin, Y.; Shi, B.; Liang, L.; Chen, W. Determining an Optimal Combination of Meteorological Factors to Reduce the Intensity of Atmospheric Pollution During Prescribed Straw Burning. Agriculture 2025, 15, 279. https://doi.org/10.3390/agriculture15030279
He L, Duanmu L, Guo L, Qin Y, Shi B, Liang L, Chen W. Determining an Optimal Combination of Meteorological Factors to Reduce the Intensity of Atmospheric Pollution During Prescribed Straw Burning. Agriculture. 2025; 15(3):279. https://doi.org/10.3390/agriculture15030279
Chicago/Turabian StyleHe, Luyan, Lingjian Duanmu, Li Guo, Yang Qin, Bowen Shi, Lin Liang, and Weiwei Chen. 2025. "Determining an Optimal Combination of Meteorological Factors to Reduce the Intensity of Atmospheric Pollution During Prescribed Straw Burning" Agriculture 15, no. 3: 279. https://doi.org/10.3390/agriculture15030279
APA StyleHe, L., Duanmu, L., Guo, L., Qin, Y., Shi, B., Liang, L., & Chen, W. (2025). Determining an Optimal Combination of Meteorological Factors to Reduce the Intensity of Atmospheric Pollution During Prescribed Straw Burning. Agriculture, 15(3), 279. https://doi.org/10.3390/agriculture15030279