Nitrogen and Water Additions Affect N2O Dynamics in Temperate Steppe by Regulating Soil Matrix and Microbial Abundance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Soil Sampling and Physicochemical Analysis
2.3. DNA Extraction and Microbial Analysis
2.4. Statistical Analyses
3. Results
3.1. Effects of Environmental Factors on N2O Flux
3.2. Impact of Nitrogen and Water Addition on N2O Flux
3.3. Effects of Nitrogen and Water Addition on Soil Physicochemical Properties
3.4. Effects of Nitrogen and Water Addition on Soil Microbial Factors
3.5. Relationships Between N2O and Influencing Factors
4. Discussion
4.1. Seasonal Dynamics of N2O Emissions in Temperate Steppe
4.2. Response of N2O Fluxes During Different Periods of the Growing Season in Temperate Steppe to Nitrogen and Water Additions
4.3. Mechanisms of Influence of Nitrogen and Water Additions on N2O Fluxes Variability During Different Periods of the Growing Season
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prather, M.J.; Hsu, J.; DeLuca, N.M.; Jackman, C.H.; Oman, L.D.; Douglass, A.R.; Fleming, E.L.; Strahan, S.E.; Steenrod, S.D.; Søvde, O.A. Measuring and modeling the lifetime of nitrous oxide including its variability. J. Geophys. Res. Atmos. 2015, 120, 5693–5705. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.Q.; Xu, R.T.; Canadell, J.G.; Thompson, R.L.; Winiwarter, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Li, Z.H. Current investigations on global N2O emissions and reductions: Prospect and outlook. Environ. Pollut. 2023, 338, 122664. [Google Scholar] [CrossRef]
- Bouwman, A.; Beusen, A.; Griffioen, J.; Van Groenigen, J.; Hefting, M.; Oenema, O.; Van Puijenbroek, P.; Seitzinger, S.; Slomp, C.; Stehfest, E. Global trends and uncertainties in terrestrial denitrification and N2O emissions. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130112. [Google Scholar] [CrossRef]
- Harris, E.; Yu, L.; Wang, Y.P.; Mohn, J.; Henne, S.; Bai, E.; Barthel, M.; Bauters, M.; Boeckx, P.; Dorich, C.; et al. Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor. Nat. Commun. 2022, 13, 4310. [Google Scholar] [CrossRef] [PubMed]
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, E.L.; Johnson, D. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Zhang, F.; Qi, J.; Li, F.M.; Li, C.S.; Li, C.B. Quantifying nitrous oxide emissions from Chinese grasslands with a process-based model. Biogeosciences 2010, 7, 2039–2050. [Google Scholar] [CrossRef]
- IPCC. Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef]
- Li, Y.; Wang, G.; Shurpali, N.J.; Shen, Y.Y. Nitrogen addition affects nitrous oxide emissions of rainfed lucerne grassland. Int. J. Environ. Res. Public Health 2022, 19, 7789. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.G.; Ke, X.; Li, J.M.; Wang, Y.Y.; Cao, G.M.; Guo, X.W.; Chen, K.L. Nitrogen deposition increases global grassland N2O emission rates steeply: A meta-analysis. Catena 2021, 199, 105105. [Google Scholar] [CrossRef]
- Gu, X.Y.; Wang, Y.H.; Laanbroek, H.J.; Xu, X.F.; Song, B.; Huo, Y.W.; Chen, S.P.; Li, L.H.; Zhang, L.H. Saturated N2O emission rates occur above the nitrogen deposition level predicted for the semi-arid grasslands of Inner Mongolia, China. Geoderma 2019, 341, 18–25. [Google Scholar] [CrossRef]
- Xu, W.L.; Zhao, M.M.; Ren, R.R.; Song, W.Z.; Gao, W.F.; Henry, H.A.; Sun, W. Grazing amplifies the stimulating effects of N addition on N2O emissions in a temperate meadow steppe. Agric. Ecosyst. Environ. 2022, 339, 108143. [Google Scholar] [CrossRef]
- Li, Z.L.; Zeng, Z.Q.; Tian, D.S.; Wang, J.S.; Fu, Z.; Zhang, F.Y.; Zhang, R.Y.; Chen, W.N.; Luo, Y.Q.; Niu, S. Global patterns and controlling factors of soil nitrification rate. Glob. Change Biol. 2020, 26, 4147–4157. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.F.; Gao, X.P.; Cao, D.C.; Li, L.; Li, X.Y.; Zeng, F.J. Nitrous oxide emissions from an alpine grassland as affected by nitrogen addition. Atmosphere 2021, 12, 976. [Google Scholar] [CrossRef]
- Li, Z.L.; Zeng, Z.Q.; Song, Z.P.; Tian, D.S.; Huang, X.Z.; Nie, S.; Wang, J.; Jiang, L.F.; Luo, Y.Q.; Cui, J. Variance and main drivers of field nitrous oxide emissions: A global synthesis. J. Clean. Prod. 2022, 353, 131686. [Google Scholar] [CrossRef]
- Chen, S.; Hao, T.X.; Goulding, K.; Misselbrook, T.; Liu, X.J. Impact of 13-years of nitrogen addition on nitrous oxide and methane fluxes and ecosystem respiration in a temperate grassland. Environ. Pollut. 2019, 252, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Senbayram, M.; Chen, R.; Budai, A.; Bakken, L.; Dittert, K. N2O emission and the N2O/(N2O + N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agric. Ecosyst. Environ. 2012, 147, 4–12. [Google Scholar] [CrossRef]
- Obia, A.; Cornelissen, G.; Mulder, J.; Dorsch, P. Effect of soil pH increase by biochar on NO, N2O and N2 production during denitrification in acid soils. PloS ONE 2015, 10, e0138781. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Guo, J.H.; Vogt, R.D.; Mulder, J.; Wang, J.G.; Zhang, X.S. Soil pH as the chief modifier for regional nitrous oxide emissions: New evidence and implications for global estimates and mitigation. Glob. Change Biol. 2018, 24, E617–E626. [Google Scholar] [CrossRef] [PubMed]
- Schleuss, P.M.; Widdig, M.; Biederman, L.A.; Borer, E.T.; Crawley, M.J.; Kirkman, K.P.; Seabloom, E.W.; Wragg, P.D.; Spohn, M. Microbial substrate stoichiometry governs nutrient effects on nitrogen cycling in grassland soils. Soil Biol. Biochem. 2021, 155, 108168. [Google Scholar] [CrossRef]
- Bergaust, L.; Mao, Y.; Bakken, L.R.; Frostegard, A. Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrogen oxide reductase in Paracoccus denitrificans. Appl. Environ. Microbiol. 2010, 76, 6387–6396. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Y.; Jia, X.Y.; Ma, H.Z.; Chen, X.; Liu, J.; Shangguan, Z.P.; Yan, W.M. Effects of warming and precipitation changes on soil GHG fluxes: A meta- analysis. Sci. Total Environ. 2022, 827, 154351. [Google Scholar] [CrossRef]
- Li, L.F.; Hao, Y.B.; Zheng, Z.Z.; Wang, W.J.; Biederman, J.A.; Wang, Y.F.; Wen, F.Q.; Qian, R.Y.; Xu, C.; Zhang, B.; et al. Heavy rainfall in peak growing season had larger effects on soil nitrogen flux and pool than in the late season in a semiarid grassland. Agric. Ecosyst. Environ. 2021, 326, 107785. [Google Scholar] [CrossRef]
- Verhoeven, E.; Decock, C.; Barthel, M.; Bertora, C.; Sacco, D.; Romani, M.; Sleutel, S.; Six, J. Nitrification and coupled nitrification-denitrification at shallow depths are responsible for early season N2O emissions under alternate wetting and drying management in an Italian rice paddy system. Soil Biol. Biochem. 2018, 120, 58–69. [Google Scholar] [CrossRef]
- Wang, X.; Bai, X.Y.; Ma, L.; He, C.G.; Jiang, H.B.; Sheng, L.X.; Luo, W.B. Snow depths’ impact on soil microbial activities and carbon dioxide fluxes from a temperate wetland in Northeast China. Sci. Rep. 2020, 10, 8709. [Google Scholar] [CrossRef]
- Kou, Y.P.; Li, C.N.; Li, J.B.; Tu, B.; Wang, Y.S.; Li, X.Z. Climate and soil parameters are more important than denitrifier abundances in controlling potential denitrification rates in Chinese grassland soils. Sci. Total Environ. 2019, 669, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.J.; Wang, J.F.; Ao, Y.N.; Han, J.Y.; Guo, Z.H.; Liu, X.Y.; Zhang, J.W.; Mu, C.S.; Le Roux, X. Responses of soil N2O emissions and their abiotic and biotic drivers to altered rainfall regimes and co-occurring wet N deposition in a semi-arid grassland. Glob. Change Biol. 2021, 27, 4894–4908. [Google Scholar] [CrossRef]
- Guo, Y.; Dong, Y.S.; Peng, Q.; Li, Z.L.; He, Y.L.; Yan, Z.Q.; Qin, S.Q. Effects of nitrogen and water addition on N2O emissions in temperate grasslands, northern China. Appl. Soil Ecol. 2022, 177, 104548. [Google Scholar] [CrossRef]
- Shcherbak, I.; Millar, N.; Robertson, G.P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O ) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. USA 2014, 111, 9199–9204. [Google Scholar] [CrossRef]
- Li, Y.; Moinet, G.Y.; Clough, T.J.; Whitehead, D. Organic matter contributions to nitrous oxide emissions following nitrate addition are not proportional to substrate-induced soil carbon priming. Sci. Total Environ. 2022, 851, 158274. [Google Scholar] [CrossRef] [PubMed]
- Ying, J.Y.; Li, X.X.; Wang, N.N.; Lan, Z.C.; He, J.Z.; Bai, Y.F. Contrasting effects of nitrogen forms and soil pH on ammonia oxidizing microorganisms and their responses to long-term nitrogen fertilization in a typical steppe ecosystem. Soil Biol. Biochem. 2017, 107, 10–18. [Google Scholar] [CrossRef]
- He, W.Y.; Zhang, M.M.; Jin, G.Z.; Sui, X.; Zhang, T.; Song, F.Q. Effects of nitrogen deposition on nitrogen-mineralizing enzyme activity and soil microbial community structure in a korean pine plantation. Microb. Ecol. 2020, 81, 410–424. [Google Scholar] [CrossRef]
- Li, Y.Y.; Chapman, S.J.; Nicol, G.W.; Yao, H.Y. Nitrification and nitrifiers in acidic soils. Soil Biol. Biochem. 2018, 116, 290–301. [Google Scholar] [CrossRef]
- Sun, R.; Myrold, D.D.; Wang, D.Z.; Guo, X.S.; Chu, H.Y. AOA and AOB communities respond differently to changes of soil pH under long-term fertilization. Soil Ecol. Lett. 2019, 1, 126–135. [Google Scholar] [CrossRef]
- Wang, Y.; Ji, H.F.; Wang, R.; Guo, S.L. Responses of nitrification and denitrification to nitrogen and phosphorus fertilization: Does the intrinsic soil fertility matter? Plant Soil 2019, 440, 443–456. [Google Scholar] [CrossRef]
- Liu, X.C.; Dong, Y.S.; Qi, Y.C.; Peng, Q.; He, Y.T.; Sun, L.J.; Jia, J.Q.; Guo, S.F.; Cao, C.C.; Yan, Z.Q. Response of N2O emission to water and nitrogen addition in temperate typical steppe soil in Inner Mongolia, China. Soil Tillage Res. 2015, 151, 9–17. [Google Scholar] [CrossRef]
- Liu, W.; Lü, X.T.; Yang, Y.; Hou, L.Y.; Shao, C.L.; Yuan, W.P.; Pan, Q.M.; Li, L.H. Hot moments of N2O emission under water and nitrogen management in three types of steppe. J. Geophys. Res. Biogeosciences 2022, 127, e2022JG006877. [Google Scholar] [CrossRef]
- Zhang, L.H.; Hou, L.Y.; Guo, D.F.; Li, L.H.; Xu, X.F. Interactive impacts of nitrogen input and water amendment on growing season fluxes of CO2, CH4, and N2O in a semiarid grassland, Northern China. Sci. Total Environ. 2017, 578, 523–534. [Google Scholar] [CrossRef]
- Du, Y.G.; Guo, X.W.; Cao, G.M.; Li, Y.K. Increased nitrous oxide emissions resulting from nitrogen addition and increased precipitation in an alpine meadow ecosystem. Pol. J. Environ. Stud. 2016, 25, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.Y.; Zhang, L.M.; Shen, J.P.; Li, L.H.; Yuan, C.L.; He, J.Z. Nitrogen loading levels affect abundance and composition of soil ammonia oxidizing prokaryotes in semiarid temperate grassland. J. Soils Sediments 2011, 11, 1243–1252. [Google Scholar] [CrossRef]
- Sun, J.; Liu, M.; Li, S.G.; Hu, Z.M.; Sun, X.M.; Wen, X.F.; Zhang, L.M. Survival strategy of Stipa krylovii and Agropyron cristatum in typical steppe of Inner Mongolia. Acta Ecol. Sin. 2011, 31, 2148–2158. [Google Scholar]
- Bai, Y.X.; Li, X.B.; Wen, W.Y.; Mi, X.; Li, R.H.; Huang, Q.; Zhang, M. CO2, CH4 and N2O flux changes in degraded grassland soil of Inner Mongolia, China. J. Arid. Land 2018, 10, 347–361. [Google Scholar] [CrossRef]
- Zhang, K.R.; Zhu, Q.A.; Liu, J.X.; Wang, M.; Zhou, X.L.; Li, M.X.; Wang, K.F.; Ding, J.H.; Peng, C.H. Spatial and temporal variations of N2O emissions from global forest and grassland ecosystems. Agric. For. Meteorol. 2019, 266, 129–139. [Google Scholar] [CrossRef]
- Tang, Y.Q.; Yu, G.R.; Zhang, X.Y.; Wang, Q.F.; Tian, D.S.; Tian, J.; Niu, S.L.; Ge, J.P. Environmental variables better explain changes in potential nitrification and denitrification activities than microbial properties in fertilized forest soils. Sci. Total Environ. 2019, 647, 653–662. [Google Scholar] [CrossRef]
- Zhang, J.Q.; He, P.; Liu, Y.H.; Du, W.; Jing, H.C.; Nie, C. Soil properties and microbial abundance explain variations in N2O fluxes from temperate steppe soil treated with nitrogen and water in Inner Mongolia, China. Appl. Soil Ecol. 2021, 165, 103984. [Google Scholar] [CrossRef]
- Gao, W.F.; Gao, D.W.; Song, L.Q.; Sheng, H.C.; Cai, T.J.; Liang, H. Contribution of the nongrowing season to annual N2O emissions from the permafrost wetland in Northeast China. Environ. Sci. Pollut. Res. 2022, 29, 61470–61487. [Google Scholar] [CrossRef] [PubMed]
- Li, K.H.; Gong, Y.M.; Song, W.; Lv, J.L.; Chang, Y.H.; Hu, Y.K.; Tian, C.Y.; Christie, P.; Liu, X.J. No significant nitrous oxide emissions during spring thaw under grazing and nitrogen addition in an alpine grassland. Glob. Change Biol. 2012, 18, 2546–2554. [Google Scholar] [CrossRef]
- Gao, W.F.; Yao, Y.L.; Gao, D.W.; Wang, H.; Song, L.Q.; Sheng, H.C.; Cai, T.J.; Liang, H. Responses of N2O emissions to spring thaw period in a typical continuous permafrost region of the Daxing’an Mountains, northeast China. Atmos. Environ. 2019, 214, 116822. [Google Scholar] [CrossRef]
- Dong, Q.; Liu, Y.H.; He, P.; Du, W. Belowground biomass changed the regulatory factors of soil N2O funder N and water additions in a temperate steppe of Inner Mongolia. J. Soil Sci. Plant Nutr. 2023, 24, 606–617. [Google Scholar] [CrossRef]
- Dobbie, K.; Smith, K. The effects of temperature, water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol. Eur. J. Soil Sci. 2001, 52, 667–673. [Google Scholar] [CrossRef]
- Wang, Y.S.; Xue, M.; Zheng, X.H.; Ji, B.M.; Du, R.; Wang, Y.F. Effects of environmental factors on N2O emission from and CH4 uptake by the typical grasslands in the Inner Mongolia. Chemosphere 2005, 58, 205–215. [Google Scholar] [CrossRef]
- Li, L.F.; Zheng, Z.Z.; Wang, W.J.; Biederman, J.A.; Xu, X.L.; Ran, Q.W.; Qian, R.Y.; Xu, C.; Zhang, B.; Wang, F.; et al. Terrestrial N2O emissions and related functional genes under climate change: A global meta-analysis. Glob. Change Biol. 2020, 26, 931–943. [Google Scholar] [CrossRef]
- Wang, N.N.; Li, L.; Dannenmann, M.; Luo, Y.K.; Xu, X.H.; Zhang, B.W.; Chen, S.P.; Dong, K.H.; Huang, J.H.; Xu, X.F.; et al. Seasonality of gross ammonification and nitrification altered by precipitation in a semi-arid grassland of Northern China. Soil Biol. Biochem. 2021, 154, 108146. [Google Scholar] [CrossRef]
- Bhandari, J.; Pan, X.B.; Bijaya, G. Spatial and seasonal variation in rain use efficiency in semiarid grasslands of Inner Mongolia. Adv. Meteorol. 2015, 2015, 917415. [Google Scholar] [CrossRef]
- Wang, G.; Yang, X.L.; Li, Y. Characteristics of N2O emission from Medicago sativa stands and its response to nitrogen fertilizers in the Longdong dryland plateau. Chin. J. Appl. Environ. Biol. 2018, 24, 450–456. [Google Scholar] [CrossRef]
- Majumdar, D. Biogeochemistry of N2O uptake and consumption in submerged soils and rice fields and implications in climate change. Crit. Rev. Environ. Sci. Technol. 2013, 43, 2653–2684. [Google Scholar] [CrossRef]
- Li, F.D.; Du, K.; Zhang, Q.Y.; Gu, C.K.; Leng, P.F.; Qiao, Y.F.; Zhu, N.; Hao, S.; Huang, Y.B.; Shi, S.J. High-frequency dynamic observation of N2O emission flux from cropland in the North China Plain. Chin. J. Eco-Agric. 2018, 26, 195–202. [Google Scholar] [CrossRef]
- Yang, J.; Blondeel, H.; Boeckx, P.; Verheyen, K.; De Frenne, P. Responses of the soil microbial community structure to multiple interacting global change drivers in temperate forests. Lant Soil 2023, 496, 641–656. [Google Scholar] [CrossRef]
- Luo, X.S.; Qian, H.; Wang, L.; Han, S.; Wen, S.L.; Wang, B.; Huang, Q.Y.; Chen, W.L. Fertilizer types shaped the microbial guilds driving the dissimilatory nitrate reduction to ammonia process in a Ferralic Cambisol. Soil Biol. Biochem. 2020, 141, 107677. [Google Scholar] [CrossRef]
- Liu, X.R.; Zhang, Q.W.; Li, S.G.; Zhang, L.M.; Ren, J.Q. Simulated NH4+-N deposition inhibits CH4 uptake and promotes N2O emission in the meadow steppe of Inner Mongolia, China. Pedosphere 2017, 27, 306–317. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, Y.M.; Li, C.B.; Wang, B.; Gao, Y.H.; Zhou, G.Y. Nitrogen addition, rather than altered precipitation, stimulates nitrous oxide emissions in an alpine steppe. Ecol. Evol. 2021, 11, 15153–15163. [Google Scholar] [CrossRef] [PubMed]
- Cen, X.Y.; Mueller, C.; Kang, X.Y.; Zhou, X.H.; Zhang, J.B.; Yu, G.R.; He, N.P. Nitrogen deposition contributed to a global increase in nitrous oxide emissions from forest soils. Commun. Earth Environ. 2024, 5, 532. [Google Scholar] [CrossRef]
- Deng, L.; Huang, C.B.; Kim, D.G.; Shangguan, Z.P.; Wang, K.B.; Song, X.Z.; Peng, C.H. Soil GHG fluxes are altered by N deposition: New data indicate lower N stimulation of the N2O flux and greater stimulation of the calculated C pools. Glob. Change Biol. 2020, 26, 2613–2629. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.J.; Yang, Z.L.; Shen, J.P.; Sun, Y.F.; Wang, J.T.; Han, H.Y.; Wan, S.Q.; Zhang, L.M.; He, J.Z. Impacts of long-term nitrogen addition, watering and mowing on ammonia oxidizers, denitrifiers and plant communities in a temperate steppe. Appl. Soil Ecol. 2018, 130, 241–250. [Google Scholar] [CrossRef]
- Geng, F.Z.; Li, K.H.; Liu, X.J.; Gong, Y.M.; Yue, P.; Li, Y.G.; Han, W.X. Long-term effects of N deposition on N2O emission in an alpine grassland of Central Asia. Catena 2019, 182, 104100. [Google Scholar] [CrossRef]
- Chen, J.H.; Zhang, Y.J.; Yang, Y.; Tao, T.T.; Sun, X.; Guo, P. Effects of increasing organic nitrogen inputs on CO2, CH4, and N2O fluxes in a temperate grassland. Environ. Pollut. 2021, 268, 115822. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.N.; Lü, X.T.; Liu, Y.; Guo, J.X.; Zhang, N.Y.; Yang, J.Q.; Wang, R.Z. The effects of warming and nitrogen addition on soil nitrogen cycling in a temperate grassland, northeastern China. PLoS ONE 2011, 6, e27645. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.W.; Zheng, X.H.; Chen, Q.; Wolf, B.; Butterbach-Bahl, K.; Brüggemann, N.; Lin, S. Effects of increasing precipitation and nitrogen deposition on CH4 and N2O fluxes and ecosystem respiration in a degraded steppe in Inner Mongolia, China. Geoderma 2013, 192, 335–340. [Google Scholar] [CrossRef]
- Yan, G.Y.; Mu, C.C.; Xing, Y.J.; Wang, Q.G. Responses and mechanisms of soil greenhouse gas fluxes to changes in precipitation intensity and duration: A meta-analysis for a global perspective. Can. J. Soil Sci. 2018, 98, 591–603. [Google Scholar] [CrossRef]
- Zhang, W.T.; Hu, Z.Y.; Audet, J.; Davidson, T.A.; Kang, E.; Kang, X.M.; Li, Y.; Zhang, X.D.; Wang, J.Z. Effects of water table level and nitrogen deposition on methane and nitrous oxide emissions in an alpine peatland. Biogeosciences 2022, 19, 5187–5197. [Google Scholar] [CrossRef]
- Kim, D.-G.; Mishurov, M.; Kiely, G. Effect of increased N use and dry periods on N2O emission from a fertilized grassland. Nutr. Cycl. Agroecosyst. 2010, 88, 397–410. [Google Scholar] [CrossRef]
- Lin, Y.P.; Ansari, A.; Wunderlich, R.F.; Lur, H.-S.; Thanh Ngoc-Dan, C.; Mukhtar, H. Assessing the influence of environmental niche segregation in ammonia oxidizers on N2O fluxes from soil and sediments. Chemosphere 2022, 289, 133049. [Google Scholar] [CrossRef] [PubMed]
- Hink, L.; Gubry-Rangin, C.; Nicol, G.W.; Prosser, J.I. The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions. ISME J. 2018, 12, 1084–1093. [Google Scholar] [CrossRef]
- Hu, L.; Dong, Z.X.; Wang, Z.; Xiao, L.W.; Zhu, B. The contributions of ammonia oxidizing bacteria and archaea to nitrification-dependent N2O emission in alkaline and neutral purple soils. Sci. Rep. 2022, 12, 19928. [Google Scholar] [CrossRef] [PubMed]
- Castro-Barros, C.M.; Rodríguez-Caballero, A.; Volcke, E.; Pijuan, M. Effect of nitrite on the N2O and NO production on the nitrification of low-strength ammonium wastewater. Chem. Eng. J. 2016, 287, 269–276. [Google Scholar] [CrossRef]
- Jiang, C.M.; Yu, G.R.; Fang, H.J.; Cao, G.M.; Li, Y.N. Short-term effect of increasing nitrogen deposition on CO2, CH4 and N2O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China. Atmos. Environ. 2010, 44, 2920–2926. [Google Scholar] [CrossRef]
- Sun, Y.F.; Shen, J.P.; Zhang, C.J.; Zhang, L.M.; Bai, W.M.; Fang, Y.; He, J.Z. Responses of soil microbial community to nitrogen fertilizer and precipitation regimes in a semi-arid steppe. J. Soils Sediments 2017, 18, 762–774. [Google Scholar] [CrossRef]
- Long, X.E.; Shen, J.P.; Wang, J.T.; Zhang, L.M.; Di, H.J.; He, J.Z. Contrasting response of two grassland soils to N addition and moisture levels: N2O emission and functional gene abundance. J. Soils Sediments 2016, 17, 384–392. [Google Scholar] [CrossRef]
- Verhamme, D.T.; Prosser, J.I.; Nicol, G.W. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J. 2011, 5, 1067–1071. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.D.; Shi, L.; Yang, X.; Yang, H.M.; Dong, K.H.; Wang, C.H. Influence mechanisms of N addition on the concentration of soil dissolved organic matter in China. Land Degrad. Dev. 2023, 34, 4690–4698. [Google Scholar] [CrossRef]
- Zhang, J.B.; Wang, J.; Zhong, W.H.; Cai, Z.C. Organic nitrogen stimulates the heterotrophic nitrification rate in an acidic forest soil. Soil Biol. Biochem. 2015, 80, 293–295. [Google Scholar] [CrossRef]
- Huang, R.; Wang, Y.Y.; Liu, J.; Li, J.C.; Xu, G.X.; Luo, M.; Xu, C.; Ci, E.; Gao, M. Variation in N2O emission and N2O related microbial functional genes in straw-and biochar-amended and non-amended soils. Appl. Soil Ecol. 2019, 137, 57–68. [Google Scholar] [CrossRef]
- Wrage, N.; Velthof, G.L.; van Beusichem, M.L.; Oenema, O. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 2001, 33, 1723–1732. [Google Scholar] [CrossRef]
- Fan, K.K.; Yan, Y.C.; Xu, D.W.; Li, S.Z.; Zhao, Y.; Wang, X.; Xin, X.P. Methane and nitrous oxide fluxes with different land uses in the temperate meadow steppe of Inner Mongolia, China. Agronomy 2022, 12, 2810. [Google Scholar] [CrossRef]
- Zhang, C.; Song, Z.L.; Zhuang, D.H.; Wang, J.; Xie, S.S.; Liu, G.B. Urea fertilization decreases soil bacterial diversity, but improves microbial biomass, respiration, and N-cycling potential in a semiarid grassland. Biol. Fertil. Soils 2019, 55, 229–242. [Google Scholar] [CrossRef]
- Yang, Y.; Li, T.; Wang, Y.Q.; Cheng, H.; Chang, S.X.; Liang, C.; An, S.S. Negative effects of multiple global change factors on soil microbial diversity. Soil Biol. Biochem. 2021, 156, 108229. [Google Scholar] [CrossRef]
- Han, Y.F.; Feng, J.G.; Han, M.G.; Zhu, B. Responses of arbuscular mycorrhizal fungi to nitrogen addition: A meta-analysis. Glob. Change Biol. 2020, 26, 7229–7241. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Liu, X.J.; Song, L.; Lin, X.G.; Zhang, H.Y.; Shen, C.C.; Chu, H.Y. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol. Biochem. 2016, 92, 41–49. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, X.; Long, X.E. Fungal denitrification contributes significantly to N2O production in a highly acidic tea soil. J. Soils Sediments 2017, 17, 1599–1606. [Google Scholar] [CrossRef]
- Aldossari, N.; Ishii, S. Fungal denitrification revisited–Recent advancements and future opportunities. Soil Biol. Biochem. 2021, 157, 108250. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, G.S.; Chen, G.T.; Li, S.; Peng, T.C.; Qiu, X.R.; Luo, J.; Yang, S.S.; Hu, T.X.; Hu, H.L. Soil biochemical responses to nitrogen addition in a secondary evergreen broad-leaved forest ecosystem. Sci. Rep. 2017, 7, 2783. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Li, X.B.; Wang, R.Z.; Cai, J.P.; Xu, Z.W.; Zhang, Y.G.; Li, H.; Jiang, Y. Effects of nitrogen and water addition on soil bacterial diversity and community structure in temperate grasslands in northern China. J. Appl. Ecol. 2015, 26, 739–746. [Google Scholar] [CrossRef]
- Morley, N.; Baggs, E.M. Carbon and oxygen controls on N2O and N2 production during nitrate reduction. Soil Biol. Biochem. 2010, 42, 1864–1871. [Google Scholar] [CrossRef]
- Juhanson, J.; Hallin, S.; Soderstrom, M.; Stenberg, M.; Jones, C.M. Spatial and phyloecological analyses of nosZ genes underscore niche differentiation amongst terrestrial N2O reducing communities. Soil Biol. Biochem. 2017, 115, 82–91. [Google Scholar] [CrossRef]
- Khalil, K.; Mary, B.; Renault, P. Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration. Soil Biol. Biochem. 2004, 36, 687–699. [Google Scholar] [CrossRef]
- Wu, D.M.; Dong, W.X.; Oenema, O.; Wang, Y.Y.; Trebs, I.; Hu, C.S. N2O consumption by low-nitrogen soil and its regulation by water and oxygen. Soil Biol. Biochem. 2013, 60, 165–172. [Google Scholar] [CrossRef]
- Liu, H.S.; Zheng, X.Z.; Li, Y.F.; Yu, J.H.; Ding, H.; Sveen, T.R.; Zhang, Y.S. Soil moisture determines nitrous oxide emission and uptake. Sci. Total Environ. 2022, 822, 153566. [Google Scholar] [CrossRef]
- Qin, H.L.; Xing, X.Y.; Tang, Y.F.; Zhu, B.L.; Wei, X.M.; Chen, X.B.; Liu, Y. Soil moisture and activity of nitrite- and nitrous oxide-reducing microbes enhanced nitrous oxide emissions in fallow paddy soils. Biol. Fertil. Soils 2020, 56, 53–67. [Google Scholar] [CrossRef]
- Carey, C.J.; Dove, N.C.; Beman, J.M.; Hart, S.C.; Aronson, E.L. Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea. Soil Biol. Biochem. 2016, 99, 158–166. [Google Scholar] [CrossRef]
- Ren, J.L.; Wang, C.L.; Wang, Q.X.; Song, W.Z.; Sun, W. Nitrogen addition regulates the effects of variation in precipitation patterns on plant biomass formation and allocation in a Leymus chinensis grassland of northeast China. Front. Plant Sci. 2024, 14, 1323766. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Qi, Y.C.; Yin, F.H.; Guo, Y.; Dong, Y.S.; Liu, X.R.; Yuan, X.J.; Lv, N. The seasonal response of N2O emissions to increasing precipitation and nitrogen deposition and its driving factors in temperate semi-arid grassland. Agronomy 2024, 14, 1153. [Google Scholar] [CrossRef]
Treatment | pH | SWC (%) | DOC (mg kg−1) | DON (mg kg−1) | -N (mg kg−1) | -N (mg kg−1) | MBC (mg kg−1) | MBN (mg kg−1) | ST (°C) | SM (%) |
---|---|---|---|---|---|---|---|---|---|---|
CK | 7.200 ± 0.027 b | 0.102 ± 0.006 a | 73.118 ± 5.233 bc | 16.867 ± 0.884 b | 5.131 ± 0.419 a | 3.371 ± 0.197 ab | 467.424 ± 35.889 a | 68.620 ± 3.968 ab | 16.841 ± 0.799 a | 8.886 ± 1.172 ab |
N4 | 6.824 ± 0.047 c | 0.094 ± 0.005 a | 64.699 ± 3.754 c | 20.336 ± 1.310 ab | 6.466 ± 0.574 a | 3.697 ± 0.223 a | 407.841 ± 42.284 a | 53.240 ± 5.707 b | 17.178 ± 0.843 a | 7.554 ± 0.774 b |
W1 | 7.316 ± 0.045 a | 0.111 ± 0.008 a | 91.051 ± 7.724 a | 18.985 ± 1.339 ab | 5.970 ± 0.487 a | 2.998 ± 0.268 b | 461.755 ± 42.078 a | 72.699 ± 6.883 a | 16.746 ± 0.750 a | 11.545 ± 1.510 a |
W1N4 | 6.933 ± 0.033 c | 0.106 ± 0.007 a | 87.363 ± 6.183 ab | 21.183 ± 1.378 a | 6.787 ± 0.865 a | 2.825 ± 0.238 b | 460.438 ± 34.911 a | 62.337 ± 4.582 ab | 16.619 ± 0.772 a | 11.432 ± 1.589 a |
p value | ||||||||||
N | <0.001 | n.s. | n.s. | 0.026 | 0.082 | n.s. | n.s. | 0.020 | n.s. | n.s. |
W | 0.005 | n.s. | 0.001 | n.s. | n.s. | 0.009 | n.s. | n.s. | n.s. | 0.014 |
N * W | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Time | Model (n = 16) | R2 | p |
---|---|---|---|
Early growing season (May–June) | N2O = 0.708DON − 0.427SM | 0.346 | 0.001 |
Peak growing season (July–August) | N2O = −0.699pH − 0.322-N | 0.466 | <0.001 |
Late growing season (September) | N2O = −0.615pH + 0.587ST − 0.427-N | 0.519 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, S.; Liu, Y.; He, P.; Zhao, Y.; Wang, C. Nitrogen and Water Additions Affect N2O Dynamics in Temperate Steppe by Regulating Soil Matrix and Microbial Abundance. Agriculture 2025, 15, 283. https://doi.org/10.3390/agriculture15030283
Ren S, Liu Y, He P, Zhao Y, Wang C. Nitrogen and Water Additions Affect N2O Dynamics in Temperate Steppe by Regulating Soil Matrix and Microbial Abundance. Agriculture. 2025; 15(3):283. https://doi.org/10.3390/agriculture15030283
Chicago/Turabian StyleRen, Siyu, Yinghui Liu, Pei He, Yihe Zhao, and Chang Wang. 2025. "Nitrogen and Water Additions Affect N2O Dynamics in Temperate Steppe by Regulating Soil Matrix and Microbial Abundance" Agriculture 15, no. 3: 283. https://doi.org/10.3390/agriculture15030283
APA StyleRen, S., Liu, Y., He, P., Zhao, Y., & Wang, C. (2025). Nitrogen and Water Additions Affect N2O Dynamics in Temperate Steppe by Regulating Soil Matrix and Microbial Abundance. Agriculture, 15(3), 283. https://doi.org/10.3390/agriculture15030283