Unmanned-Aerial-Vehicle-Based Multispectral Monitoring of Nitrogen Content in Canopy Leaves of Processed Tomatoes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Research Area
2.2. Experimental Design
2.3. Data Acquisition and Pre-Processing
2.3.1. UAV Multispectral Data
2.3.2. Measurement of Leaf Nitrogen Content
2.4. Data Analysis and Applications
2.4.1. Selection and Construction of Vegetation Indices
2.4.2. Model Construction and Validation
2.4.3. Model Accuracy Evaluation Metrics
3. Results and Analysis
3.1. Observed Dynamic Changes in LNC of Processed Tomatoes at Different Growth Stages
3.2. Correlation Analysis Between Measured LNC Values and Multispectral Vegetation Indices
3.3. Comparison of LNC Modeling Effectiveness of Processed Tomatoes in Different Fertility Periods
3.3.1. Construction of Estimation Models Using a Single Variable
3.3.2. Construction of Estimation Models Using Multiple Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Qian, X.; Wang, S.Y.; Wang, X.J.; Xue, J.L.; Bao, F.J. Effects of drip irrigation with CO, aqueous solution onagronomic traits and yield of processing tomato. J. Zhejiang Agric. Sci. 2024, 65, 1037–1041. [Google Scholar] [CrossRef]
- Ronga, D.; Pentangelo, A.; Parisi, M. Optimizing N Fertilization to Improve Yield, Technological and Nutritional Quality of Tomato Grown in High Fertility Soil Conditions. Plants 2020, 9, 575. [Google Scholar] [CrossRef] [PubMed]
- Soto, F.; Gallardo, M.; Thompson, R.B.; Peña-Fleitas, M.T.; Padilla, F.M. Consideration of total available N supply reduces N fertilizer requirement and potential for nitrate leaching loss in tomato production. Agric. Ecosyst. Environ. 2015, 200, 62–70. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, Y.; Liang, Y.; Dai, Z.; Zhao, Y.; Shi, Y.; Gao, J.; Hou, L.; Zhang, Y.; Ahammed, G.J. Improving the Yield and Quality of Tomato by Using Organic Fertilizer and Silicon Compared to Reducing Chemical Nitrogen Fertilization. Agronomy 2024, 14, 966. [Google Scholar] [CrossRef]
- Yang, F.; Tian, J.; Meersmans, J.; Fang, H.; Yang, H.; Lou, Y.; Li, Z.; Liu, K.; Zhou, Y.; Blagodatskaya, E.; et al. Functional soil organic matter fractions in response to long-term fertilization in upland and paddy systems in South China. CATENA 2017, 162, 270–277. [Google Scholar] [CrossRef]
- Zhang, K.; Wei, H.; Chai, Q.; Li, L.; Wang, Y.; Sun, J. Biological soil conditioner with reduced rates of chemical fertilization improves soil functionality and enhances rice production in vegetable-rice rotation. Appl. Soil Ecol. 2023, 195, 105242. [Google Scholar] [CrossRef]
- Bustamante, S.C.; Hartz, T.K. Nitrogen Management in Organic Processing Tomato Production: Nitrogen Sufficiency Prediction Through Early-season Soil and Plant Monitoring. HortScience 2019, 50, 1055–1063. [Google Scholar] [CrossRef]
- Lee, H.; Wang, J.; Leblon, B. Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn. Remote Sens. 2020, 12, 2071. [Google Scholar] [CrossRef]
- Lu, N.; Wang, W.; Zhang, Q.; Li, D.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Baret, F.; Liu, S.; et al. Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery. Front. Plant Sci. 2019, 10, 1601. [Google Scholar] [CrossRef]
- Wang, S.W.; Niu, Y.X.; Ma, X.Y.; Chen, S.L.; Amani, N.; Feng, J. Prediction Model for Nitrogen Content of Rice Leaves during Heading Stage in Cold Region Based on Hyperspectrum. J. Agric. Mech. Res. 2019, 41, 158–164. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, H.; Wang, P. Quantitative modelling for leaf nitrogen content of winter wheat using UAV-based hyperspectral data. Int. J. Remote Sens. 2016, 38, 2117–2134. [Google Scholar] [CrossRef]
- Li, Y.N. A tomato’s Path to Industrialization. People’s Daily, 23 September 2024; 010. [Google Scholar]
- Shan, C.F.; Lan, Y.B.; Wang, J.; Liu, Q.; Zhao, D.; Lu, W.X. Method for Measuring Nitrogen Content in Crops and Precise Nitrogen Application. J. Agric. Mech. Res. 2021, 43, 146–150. [Google Scholar] [CrossRef]
- Ranjan, R.; Chopra, U.K.; Sahoo, R.N.; Singh, A.K.; Pradhan, S. Assessment of plant nitrogen stress in wheat (Triticum aestivum L.) through hyperspectral indices. Int. J. Remote Sens. 2012, 33, 6342–6360. [Google Scholar] [CrossRef]
- Rodriguez, D.; Fitzgerald, G.J.; Belford, R.; Christensen, L.K. Detection of nitrogen deficiency in wheat from spectral reflectance indices and basic crop eco-physiological concepts. Aust. J. Agric. Res. 2006, 57, 781–789. [Google Scholar] [CrossRef]
- Verrelst, J.; Schaepman, M.E.; Koetz, B.; Kneubühler, M. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sens. Environ. 2008, 112, 2341–2353. [Google Scholar] [CrossRef]
- Han, L.; Yang, G.; Dai, H.; Xu, B.; Yang, H.; Feng, H.; Li, Z.; Yang, X. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods 2019, 15, 10. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Fieuzal, R.; Marais Sicre, C.; Baup, F. Estimation of corn yield using multi-temporal optical and radar satellite data and artificial neural networks. Int. J. Appl. Earth Obs. Geoinf. 2016, 57, 14–23. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Penuelas, J.; Filella, I.; Lloret, P.; Munoz, F.; Vilajeliu, M. Reflectance assessment of mite effects on apple trees. Int. J. Remote Sens. 1995, 16, 2727–2733. [Google Scholar] [CrossRef]
- Yang, X.; Li, G.; Luo, W.; Chen, L.; Li, S.; Cao, M.; Zhang, X. Quantifying the Relationship between Leaf Nitrogen Content and Growth Dynamics and Yield of Muskmelon Grown in Plastic Greenhouse. HortScience 2015, 50, 1677–1687. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Pourdarbani, R.; Sabzi, S.; Rohban, M.H.; García-Mateos, G.; Arribas, J.I. Nondestructive nitrogen content estimation in tomato plant leaves by Vis-NIR hyperspectral imaging and regression data models. Appl. Opt. 2021, 60, 9560–9569. [Google Scholar] [CrossRef]
- Ulissi, V.; Antonucci, F.; Benincasa, P.; Farneselli, M.; Tosti, G.; Guiducci, M.; Tei, F.; Costa, C.; Pallottino, F.; Pari, L.; et al. Nitrogen Concentration Estimation in Tomato Leaves by VIS-NIR Non-Destructive Spectroscopy. Sensors 2011, 11, 6411. [Google Scholar] [CrossRef]
- Tang, M.Y.; Zhang, Y.; Hu, G.Z.; Li, Q.J. Diagnostic Study of Nitrogen Fertilizer Use and Nitrogen Nutritional Status in Processing Tomatoes. Soil Fertil. Sci. China 2015, 4, 82–87. [Google Scholar]
- Carrizo García, C.; Guarnieri, M.; Pacini, E. Soluble carbohydrates content in tomato pollen and its variations along and between blooming periods. Sci. Hortic. 2010, 125, 524–527. [Google Scholar] [CrossRef]
- Zou, W.J.; Hua, S.; Xu, Z.F.; Xu, M.J.; Li, S.W.; Bao, W.N. Study on Estimation Method of Canopy Coverage for Facility Tomato Based on RGB Images. North. Hortic. 2024, 3, 41–50. [Google Scholar]
- Li, H.; Li, D.; Xu, K.; Cao, W.; Jiang, X.; Ni, J. Monitoring of Nitrogen Indices in Wheat Leaves Based on the Integration of Spectral and Canopy Structure Information. Agronomy 2022, 12, 833. [Google Scholar] [CrossRef]
- Oliveira, T.C.d.; Ferreira, E.; Dantas, A.A.A. Temporal variation of normalized difference vegetation index (NDVI) and calculation of the crop coefficient (Kc) from NDVI in areas cultivated with irrigated soybean. Ciência Rural 2016, 46, 1683–1688. [Google Scholar] [CrossRef]
- Yanto, B.; Kartawidjaja, M.A.; Sukwadi, R.; Bachtiar, M. Implementation of hue saturation intensity (hsi) color space transformation algorithm with red, green, blue (rgb) color brightness in assessing tomato fruit maturity. RJOCS Riau J. Comput. Sci. 2023, 9, 167–178. [Google Scholar] [CrossRef]
- Marino, S.; Alvino, A. Proximal sensing and vegetation indices for site-specific evaluation on an irrigated crop tomato. Eur. J. Remote Sens. 2014, 47, 271–283. [Google Scholar] [CrossRef]
- Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R.J. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef]
- Boussadia, O.; Steppe, K.; Van Labeke, M.C.; Lemeur, R.; Braham, M. Effects of Nitrogen Deficiency on Leaf Chlorophyll Fluorescence Parameters in Two Olive Tree Cultivars ‘Meski’ and ‘Koroneiki’. J. Plant Nutr. 2015, 38, 2230–2246. [Google Scholar] [CrossRef]
- Zeng, J.; Sheng, H.; Liu, Y.; Wang, Y.; Wang, Y.; Kang, H.; Fan, X.; Sha, L.; Yuan, S.; Zhou, Y. High Nitrogen Supply Induces Physiological Responsiveness to Long Photoperiod in Barley. Front. Plant Sci. 2017, 8, 569. [Google Scholar] [CrossRef]
- Halliday, K.J.; Martínez-García, J.F.; Josse, E.-M. Integration of light and auxin signaling. Cold Spring Harb. Perspect. Biol. 2009, 1, a001586. [Google Scholar] [CrossRef]
- Iglesias, M.J.; Sellaro, R.; Zurbriggen, M.D.; Casal, J.J. Multiple links between shade avoidance and auxin networks. J. Exp. Bot. 2017, 69, 213–228. [Google Scholar] [CrossRef]
- Waske, B.; Heinzel, V.; Braun, M.; Menz, G. Random forests for classifying multi-temporal sar data. In Proceedings of the Proc.‘Envisat Symposium, Montreux, Switzerland, 23–27 April 2007; pp. 23–27. [Google Scholar]
- Zhou, Q.; Ismaeel, A. Integration of maximum crop response with machine learning regression model to timely estimate crop yield. Geo-Spat. Inf. Sci. 2021, 24, 474–483. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, J.; Yang, T.; Wu, L.-g. Study on the visual distribution of tomato leaf chlorophyll content based on hyperspectral imaging technology. Hubei Agric. Sci. 2022, 61, 171. [Google Scholar]
- Zhao, R.-j.; Li, M.-z.; Yang, C.; Yang, W.; Sun, H. The canopy and leaf spectral characteristics and nutrition diagnosis of tomato in greenhouse. Guang Pu Xue Yu Guang Pu Fen Xi = Guang Pu 2010, 30, 3103–3106. [Google Scholar] [PubMed]
- Hu, J.; Xin, P.; Zhang, S.; Zhang, H.; He, D. Model for tomato photosynthetic rate based on neural network with genetic algorithm. Int. J. Agric. Biol. Eng. 2019, 12, 179–185. [Google Scholar] [CrossRef]
- Xing, H.H.; Lin, H.Y. An intelligent method optimizing BP neural network model. Adv. Mater. Res. 2013, 605, 2470–2474. [Google Scholar] [CrossRef]
Vegetation Indices | Acronym | Expressions | References |
---|---|---|---|
Normalized Difference Chlorophyll Index | NDCI | (RE − R)/(RE + R) | [14] |
Normalized Difference Red Edge Index | NDRE | (NIR − RE)/(NIR + RE) | [15] |
Normalized Pigment Chlorophyll Index | NPCI | (R − B)/(R + B) | [16] |
Ratio Vegetation Index | RVI | NIR/R | [17] |
Triangular Vegetation Index | TVI | 0.5(120(NIR − G) − 200(R − G)) | [18] |
Normalized Difference Vegetation Index | NDVI | (NIR − R)/(NIR + R) | [19] |
Transformed Chlorophyll Absorption in Reflectance Index | TCARI | 3[(RE − R) − 0.2(RE − G) × (RE/R)] | [20] |
Visible Atmospherically Resistant Index | VARI | (G − R)/(G + R - B) | [21] |
Red Edge Ratio Difference Vegetation Index | RERDVI | (NIR − RE)/ | [22] |
Soil-Adjusted Vegetation Index | SAVI | 1.5(NIR − R)/(NIR + R + 0.5) | [23] |
Modified Triangular Vegetation Index | MTCI | (NIR − RE)/(RE − R) | [24] |
Structure Insensitive Pigment Index | SIPI | (NIR − B)/(NIR + R) | [25] |
Input Variable | Beta | Tolerance | VIF |
---|---|---|---|
RVI | 0.232 | 0.618 | 1.617 |
NDRE | 0.060 | 0.451 | 2.217 |
NDVI | 0.050 | 0.455 | 2.198 |
RERDVI | 0.081 | 0.534 | 1.874 |
NDCI | 0.191 | 0.510 | 1.959 |
NPCI | −0.219 | 0.606 | 1.649 |
TCARI | 0.187 | 0.703 | 1.422 |
MTCI | 0.136 | 0.731 | 1.368 |
SIPI | −0.067 | 0.620 | 1.613 |
VARI | 0.075 | 0.646 | 1.548 |
Growth Period | Model | Modeling | Validation | ||||
---|---|---|---|---|---|---|---|
R² | RMSE | MAE | R² | RMSE | MAE | ||
Slow seedling stage | RF | 0.702 | 1.183 | 0.837 | 0.635 | 1.444 | 1.011 |
BP | 0.706 | 1.210 | 0.987 | 0.621 | 1.500 | 1.119 | |
MLR | 0.629 | 1.290 | 1.026 | 0.588 | 1.459 | 1.166 | |
Anthesis | RF | 0.747 | 1.222 | 0.980 | 0.639 | 1.695 | 1.370 |
BP | 0.675 | 1.417 | 1.085 | 0.618 | 1.150 | 1.498 | |
MLR | 0.701 | 1.662 | 1.359 | 0.595 | 1.519 | 1.434 | |
Blooming stage | RF | 0.706 | 0.986 | 0.691 | 0.874 | 0.663 | 0.503 |
BP | 0.710 | 1.140 | 1.022 | 0.732 | 1.136 | 0.946 | |
MLR | 0.703 | 1.270 | 1.019 | 0.695 | 1.314 | 0.920 | |
Fruiting period | RF | 0.656 | 1.487 | 1.161 | 0.730 | 1.699 | 1.389 |
BP | 0.628 | 1.599 | 1.237 | 0.614 | 1.349 | 1.417 | |
MLR | 0.651 | 1.618 | 1.171 | 0.608 | 1.757 | 1.656 | |
Maturation stage | RF | 0.746 | 1.494 | 1.184 | 0.750 | 1.891 | 1.521 |
BP | 0.702 | 1.393 | 1.174 | 0.709 | 1.904 | 1.563 | |
MLR | 0.694 | 1.681 | 1.291 | 0.682 | 1.920 | 1.799 |
Growth Period | Model | Modeling | Validation | ||||
---|---|---|---|---|---|---|---|
R² | RMSE | MAE | R² | RMSE | MAE | ||
Slow seedling stage | RF | 0.824 | 0.652 | 0.426 | 0.825 | 0.996 | 0.823 |
BP | 0.732 | 0.956 | 0.799 | 0.823 | 0.998 | 0.812 | |
MLR | 0.712 | 0.933 | 0.749 | 0.804 | 1.073 | 1.042 | |
Anthesis | RF | 0.825 | 0.728 | 0.553 | 0.842 | 0.983 | 0.820 |
BP | 0.717 | 1.036 | 0.868 | 0.803 | 1.107 | 0.936 | |
MLR | 0.781 | 1.044 | 0.87 | 0.727 | 1.061 | 0.987 | |
Blooming stage | RF | 0.862 | 0.654 | 0.441 | 0.804 | 0.757 | 0.581 |
BP | 0.725 | 0.916 | 0.751 | 0.713 | 1.091 | 0.862 | |
MLR | 0.875 | 0.561 | 0.575 | 0.865 | 0.732 | 0.653 | |
Fruiting period | RF | 0.883 | 0.991 | 0.705 | 0.792 | 1.192 | 0.994 |
BP | 0.886 | 0.850 | 0.698 | 0.810 | 1.111 | 0.924 | |
MLR | 0.746 | 1.138 | 1.005 | 0.710 | 1.151 | 1.185 | |
Maturation stage | RF | 0.854 | 1.264 | 0.880 | 0.794 | 1.214 | 1.239 |
BP | 0.875 | 1.058 | 0.57 | 0.827 | 1.017 | 0.99 | |
MLR | 0.733 | 1.254 | 1.11 | 0.671 | 1.057 | 1.219 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, L.; Wu, H.; Wang, D.; Ma, X.; Shao, Y.; Jiang, M.; Chen, X. Unmanned-Aerial-Vehicle-Based Multispectral Monitoring of Nitrogen Content in Canopy Leaves of Processed Tomatoes. Agriculture 2025, 15, 309. https://doi.org/10.3390/agriculture15030309
Zhang H, Zhang L, Wu H, Wang D, Ma X, Shao Y, Jiang M, Chen X. Unmanned-Aerial-Vehicle-Based Multispectral Monitoring of Nitrogen Content in Canopy Leaves of Processed Tomatoes. Agriculture. 2025; 15(3):309. https://doi.org/10.3390/agriculture15030309
Chicago/Turabian StyleZhang, Hao, Li Zhang, Hongqi Wu, Dejun Wang, Xin Ma, Yuqing Shao, Mingjun Jiang, and Xinyu Chen. 2025. "Unmanned-Aerial-Vehicle-Based Multispectral Monitoring of Nitrogen Content in Canopy Leaves of Processed Tomatoes" Agriculture 15, no. 3: 309. https://doi.org/10.3390/agriculture15030309
APA StyleZhang, H., Zhang, L., Wu, H., Wang, D., Ma, X., Shao, Y., Jiang, M., & Chen, X. (2025). Unmanned-Aerial-Vehicle-Based Multispectral Monitoring of Nitrogen Content in Canopy Leaves of Processed Tomatoes. Agriculture, 15(3), 309. https://doi.org/10.3390/agriculture15030309