A Model Combining Sensitive Vegetation Indices and Fractional-Order Differential Characteristic Bands for SPAD Value Estimation in Cd-Contaminated Rice Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Workflow
2.3. Data Acquisition
2.3.1. Measurement of Leaf Spectral Reflectance
2.3.2. Measurement of Leaf SPAD Values
2.4. Data Processing
2.4.1. Spectral Preprocessing and Dataset Partitioning
2.4.2. Vegetation Index Calculation
2.4.3. FOD Transforming
2.5. Feature Selecting
2.6. Modelling and Validation
2.6.1. Random Forest Modelling
2.6.2. Model Accuracy Evaluation
3. Results
3.1. SPAD Value Changed Under Different Cd Contamination Scenarios
3.2. Characteristic Bands Indicated SPAD Values and Their Changes
3.3. Estimation Accuracy of SPAD Values with the VIss + FODcb Model
3.4. Variable Importance of the VIss + FODcb Model
4. Discussion
4.1. Spectral Reflectance Changes in Rice Leaves Under Different Scenarios
4.2. Spectral Response Characteristic Bands of Leaf SPAD Values
4.3. Performance Improvement by the Combined Model
4.4. Limitations and Research Programs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, G.; Du, R.Y.; Wang, X. Genetic Regulation Mechanism of Cadmium Accumulation and Its Utilization in Rice Breeding. Int. J. Mol. Sci. 2023, 24, 1247. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Hussain, S.; He, L.X.; Ashraf, M.F.; Ihtisham, M.; Warraich, E.A.; Tang, X.R. Molybdenum-Induced Regulation of Antioxidant Defense-Mitigated Cadmium Stress in Aromatic Rice and Improved Crop Growth, Yield, and Quality Traits. Antioxidants 2021, 10, 838. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.G.; Zou, W.L.; Meng, L.J.; Fan, X.R.; Xu, G.H.; Ye, G.Y. Advances in the Uptake and Transport Mechanisms and QTLs Mapping of Cadmium in Rice. Int. J. Mol. Sci. 2019, 20, 3417. [Google Scholar] [CrossRef] [PubMed]
- Sonobe, R.; Sugimoto, Y.; Kondo, R.; Seki, H.; Sugiyama, E.; Kiriiwa, Y.; Suzuki, K. Hyperspectral Wavelength Selection for Estimating Chlorophyll Content of Muskmelon Leaves. Eur. J. Remote Sens. 2021, 54, 512–523. [Google Scholar] [CrossRef]
- Huang, X.; Guan, H.D.; Bo, L.Y.; Xu, Z.Q.; Mao, X.M. Hyperspectral Proximal Sensing of Leaf Chlorophyll Content of Spring Maize Based on A Hybrid of Physically Based Modelling and Ensemble Stacking. Comput. Electron. Agric. 2023, 208, 107745. [Google Scholar] [CrossRef]
- Sun, J.H.; Yang, L.; Yang, X.T.; Wei, J.; Li, L.T.; Guo, E.H.; Kong, Y.H. Using Spectral Reflectance to Estimate the Leaf Chlorophyll Content of Maize Inoculated With Arbuscular Mycorrhizal Fungi Under Water Stress. Front. Plant Sci. 2021, 12, 646173. [Google Scholar] [CrossRef]
- Guan, L.; Liu, X.N.; Cheng, C.Q. Research on Hyperspectral Information Parameters of Chlorophyll Content of Rice Leaf in Cd-Polluted Soil Environment. Spectrosc. Spectr. Anal. 2009, 29, 2713–2716. [Google Scholar] [CrossRef]
- Wu, C.Y.; Liu, M.L.; Liu, X.N.; Wang, T.J.; Wang, L.Y. Developing a new spectral index for detecting cadmium-induced stress in rice on a regional scale. Int. J. Environ. Res. Public Health 2019, 16, 4811. [Google Scholar] [CrossRef]
- Azia, F.; Stewart, K.A. Relationships Between Extractable Chlorophyll and SPAD Values in Muskmelon Leaves. J. Plant Nutr. 2001, 24, 961–966. [Google Scholar] [CrossRef]
- Wakiyama, Y. The Relationship between SPAD Values and Leaf Blade Chlorophyll Content throughout the Rice Development Cycle. JARQ Jpn. Agric. Res. Q. 2016, 50, 329–334. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, R.K. Development of SPAD Value-Based Linear Models for Non-destructive Estimation of Photosynthetic Pigments in Wheat (Triticum aestivum L.). Indian J. Genet. Plant Breed. 2019, 79, 96–99. [Google Scholar] [CrossRef]
- Yang, Y.C.; Nan, R.; Mi, T.X.; Song, Y.X.; Shi, F.H.; Liu, X.R.; Wang, Y.Q.; Sun, F.L.; Xi, Y.J.; Zhang, C. Rapid and Nondestructive Evaluation of Wheat Chlorophyll under Drought Stress Using Hyperspectral Imaging. Int. J. Mol. Sci. 2023, 24, 5825. [Google Scholar] [CrossRef] [PubMed]
- El-Hendawy, S.; Dewir, Y.H.; Elsayed, S.; Schmidhalter, U.; Al-Gaadi, K.; Tola, E.; Refay, Y.; Tahir, M.U.; Hassan, W.M. Combining Hyperspectral Reflectance Indices and Multivariate Analysis to Estimate Different Units of Chlorophyll Content of Spring Wheat under Salinity Conditions. Plants 2022, 11, 456. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.F.; Lei, Y.; He, D.J. Early visual detection of wheat stripe rust using visible/near-infrared hyperspectral imaging. Sensors 2019, 19, 952. [Google Scholar] [CrossRef]
- Wang, H.F.; Huo, Z.G.; Zhou, G.S.; Liao, Q.H.; Feng, H.K.; Wu, L. Estimating Leaf SPAD Values of Freeze-damaged Winter Wheat using Continuous Wavelet Analysis. Plant Physiol. Biochem. 2016, 98, 39–45. [Google Scholar] [CrossRef]
- Yuan, X.T.; Zhang, X.; Zhang, N.N.; Ma, R.; He, D.D.; Bao, H.; Sun, W.J. Hyperspectral Estimation of SPAD Value of Cotton Leaves under Verticillium Wilt Stress Based on GWO—ELM. Agriculture 2023, 13, 1779. [Google Scholar] [CrossRef]
- Cao, Y.F.; Xu, H.L.; Song, J.; Yang, Y.; Hu, X.H.; Wiyao, K.T.; Zhai, Z.Y. Applying Spectral Fractal Dimension Index to Predict the SPAD Value of Rice Leaves under Bacterial Blight Disease Stress. Plant Methods. 2022, 18, 67. [Google Scholar] [CrossRef]
- Priya, S.; Ghosh, R. Monitoring Effects of Heavy Metal Stress on Biochemical and Spectral Parameters of Cotton using Hyperspectral Reflectance. Environ. Monit. Assess. 2023, 195, 112. [Google Scholar] [CrossRef] [PubMed]
- Chi, G.Y.; Huang, B.; Chen, X.; Shi, Y.; Zheng, T.H. Effects of Cadmium on Visible and Near-infrared Reflectance Spectra of Rice (Oryza sativa L.). Fresenius Environ. Bull. 2011, 20, 391–397. [Google Scholar]
- Zhang, J.H.; Zeng, L.S.; Sun, Y.H.; Song, C.Y.; Wang, H.; Chen, J.M.; Biradar, C. A pilot study on the effect of Cu, Zn, and Cd on the spectral curves and chlorophyll of wheat canopy at tiller stage. Toxicol. Environ. Chem. 2015, 97, 454–463. [Google Scholar] [CrossRef]
- Li, Y.X.; Chen, X.Y.; Luo, D.; Li, B.Y.; Wang, S.R.; Zhang, L.W. Effects of Cuprum Stress on Position of Red Edge of Maize Leaf Reflection Hyperspectra and Relations to Chlorophyll Content. Spectrosc. Spectr. Anal. 2018, 38, 546–551. [Google Scholar]
- Zhou, L.; Zhou, L.J.Y.; Wu, H.B.; Kong, L.J.; Li, J.S.; Qiao, J.L.; Chen, L.M. Analysis of Cadmium Contamination in Lettuce (Lactuca sativa L.) Using Visible-Near Infrared Reflectance Spectroscopy. Sensors 2023, 23, 9562. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.L.; Zou, B.; Feng, H.H.; Zhou, M.; Yang, Z.H.; Xiong, Y. A Near Standard Soil Samples Spectra Enhanced Modeling Strategy for Cd Concentration Prediction. Remote Sens. 2021, 13, 2657. [Google Scholar] [CrossRef]
- Zou, B.; Jiang, X.L.; Feng, H.H.; Tu, Y.L.; Tao, C. Multisource spectral-integrated estimation of cadmium concentrations in soil using a direct standardization and Spiking algorithm. Sci. Total Environ. 2020, 701, 134890. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Zou, B.; Chai, L.Y.; Lin, Z.; Feng, H.H.; Tang, Y.Q.; Tian, R.C.; Tu, Y.L.; Zhang, B.; Zou, H.J. Monitoring of soil heavy metals based on hyperspectral remote sensing: A review. Earth-Sci. Rev. 2024, 254, 104814. [Google Scholar] [CrossRef]
- Zhang, S.; Fei, T.; Chen, Y.; Hong, Y. Estimating Cadmium-lead Concentrations in Rice Blades through Fractional Order Derivatives of Foliar Spectra. Biosyst. Eng. 2022, 219, 177–188. [Google Scholar] [CrossRef]
- Wang, X.P.; Zhang, F.; Kung, H.T.; Johnson, V.C. New Methods for Improving the Remote Sensing Estimation of Soil Organic Matter Content (SOMC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR) in Northwest China. Remote Sens. Environ. 2018, 218, 104–118. [Google Scholar] [CrossRef]
- Geng, J.; Lv, J.; Pei, J.; Liao, C.; Tan, Q.; Wang, T.; Fang, H.; Wang, L. Prediction of Soil Organic Carbon in Black Soil Based on A Synergistic Scheme from Hyperspectral Data: Combining fractional-order derivatives and three-dimensional spectral indices. Comput. Electron. Agric. 2024, 220, 108905. [Google Scholar] [CrossRef]
- Hong, Y.; Guo, L.; Chen, S.; Linderman, M.; Mouazen, A.M.; Yu, L.; Chen, Y.; Liu, Y.; Liu, Y.; Cheng, H.; et al. Exploring the Potential of Airborne Hyperspectral Image for Estimating Topsoil Organic Carbon: Effects of Fractional-order Derivative and Optimal Band Combination Algorithm. Geoderma 2020, 365, 114228. [Google Scholar] [CrossRef]
- Jin, H.; Peng, J.; Bi, R.; Tian, H.; Zhu, H.; Ding, H. Comparing Laboratory and Satellite Hyperspectral Predictions of Soil Organic Carbon in Farmland. Agronomy 2024, 14, 175. [Google Scholar] [CrossRef]
- Meng, X.; Bao, Y.; Ye, Q.; Liu, H.; Zhang, X.; Tang, H.; Zhang, X. Soil Organic Matter Prediction Model with Satellite Hyperspectral Image Based on Optimized Denoising Method. Remote Sens. 2021, 13, 2273. [Google Scholar] [CrossRef]
- Chen, L.; Lai, J.; Tan, K.; Wang, X.; Chen, Y.; Ding, J. Development of A Soil Heavy Metal Estimation Method Based on A Spectral Index: Combining Fractional-order Derivative Pretreatment and the Absorption Mechanism. Sci. Total Environ. 2022, 813, 151882. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Zhou, K.; Ding, R.; Cheng, Y.; Jiang, G. Estimation of Soil Copper Content Based on Fractional-order Derivative Spectroscopy and Spectral Characteristic Band Selection. Spectroc. Acta Part A Mol. Biomol. Spectrosc. 2022, 275, 121190. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, X.L.; Zhang, F.; Chan, N.W.; Kung, H.T.; Liu, S.H.; Deng, L.F. Estimation of Soil Salt Content using Machine Learning Techniques Based on Remote-sensing Fractional Derivatives, A Case Study in the Ebinur Lake Wetland National Nature Reserve, Northwest China. Ecol. Indic. 2020, 119, 106869. [Google Scholar] [CrossRef]
- Fu, C.; Tian, A.; Zhu, D.; Zhao, J.; Xiong, H. Estimation of Salinity Content in Different Saline-Alkali Zones Based on Machine Learning Model Using FOD Pretreatment Method. Remote Sens. 2021, 13, 5140. [Google Scholar] [CrossRef]
- Zhang, D.; Tiyip, T.; Ding, J.; Zhang, F.; Nurmemet, I.; Kelimu, A.; Wang, J. Quantitative Estimating Salt Content of Saline Soil Using Laboratory Hyperspectral Data Treated by Fractional Derivative. J. Spectrosc. 2016, 2016, 1081674. [Google Scholar] [CrossRef]
- Ning, J.; Zou, B.; Tu, Y.L.; Zhang, X.; Wang, Y.L.; Tian, R.C. Evaluation of Soil As Concentration Estimation Method Based on Spectral Indices. Spectrosc. Spectr. Anal. 2024, 44, 1472–1481. [Google Scholar]
- Soil environmental quality Risk control standard for soil contamination of agricultural land. GB15618-2018; Ministry of Ecology and Environment: Beijing, China, 2018.
- Zhang, B.; Ye, W.J.; Ren, D.Y.; Tian, P.; Peng, Y.L.; Gao, Y.; Ruan, B.P.; Wang, L.; Zhang, G.H.; Guo, L.B.; et al. Genetic Analysis of Flag Leaf Size and Candidate Genes Determination of A Major QTL for Flag Leaf Width in Rice. Rice 2015, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.Y.; Rao, J.; Song, Y.; Chan, S.A.; Tohge, T.; Cui, B.; Lin, H.; Fernie, A.R.; Zhang, D.B.; Shi, J.X. Dissection of Flag Leaf Metabolic Shifts and their Relationship with those Occurring Simultaneously in Developing Seed by Application of Non-targeted Metabolomics. PLoS ONE 2020, 15, e0227577. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, S.S.; Peng, Z.P.; Huang, J.C.; Wang, C.Y.; Jiang, H.; Zheng, Q.; Li, D. Phenology Effects on Physically Based Estimation of Paddy Rice Canopy Traits from UAV Hyperspectral Imagery. Remote Sens. 2021, 13, 1792. [Google Scholar] [CrossRef]
- Feng, H.; Chen, G.X.; Xiong, L.Z.; Liu, Q.; Yang, W.N. Accurate Digitization of the Chlorophyll Distribution of Individual Rice Leaves using Hyperspectral Imaging and An Integrated Image Analysis Pipeline. Front. Plant Sci. 2017, 8, 1238. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.B.; Wang, J.; Zhang, Z.Y.; Li, C.C.; Yang, H.; Feng, H.K.; Guo, W. Estimating Crop Leaf Area Index and Chlorophyll Content using A Deep Learning-based Hyperspectral Analysis Method. Comput. Electron. Agric. 2024, 227, 109653. [Google Scholar] [CrossRef]
- Wen, S.Y.; Shi, N.; Lu, J.W.; Gao, Q.W.; Hu, W.R.; Cao, Z.D.; Lu, J.X.; Yang, H.B.; Gao, Z.Q. Continuous Wavelet Transform and Back Propagation Neural Network for Condition Monitoring Chlorophyll Fluorescence Parameters Fv/Fm of Rice Leaves. Agriculture 2022, 12, 1197. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Z.; Ren, Z.S.; Wang, S.H.; Yue, M.H.; Zhang, S.S.; Yin, X.; Gong, K.J.; Ma, C.Y. Rapid Determination of Protein, Starch and Moisture Content in Wheat Flour by Near-Infrared Hyperspectral Imaging. J. Food Compos. Anal. 2023, 117, 105134. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Fisk, I.D. Near-Infrared Spectroscopy and Hyperspectral Imaging for Non-Destructive Quality Assessment of Cereal Grains. Appl. Spectrosc. Rev. 2018, 53, 667–687. [Google Scholar] [CrossRef]
- Aulia, R.; Kim, Y.; Amanah, H.Z.; Andi, A.M.A.; Kim, H.; Kim, H.; Lee, W.H.; Kim, K.H.; Baek, J.H.; Cho, B.K. Non-Destructive Prediction of Protein Contents of Soybean Seeds using Near-Infrared Hyperspectral Imaging. Infrared Phys. Technol. 2022, 127, 104365. [Google Scholar] [CrossRef]
- He, Z.H.; Ma, Z.H.; Li, M.C.; Zhou, Y. Selection of A Calibration Sample Subset by A Semi-supervised Method. J. Near Infrared Spectrosc. 2018, 26, 87–94. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.X.; Xing, Z.N.; Shen, G. Influence of Improved Kennard/Stone Algorithm on the Calibration Transfer in Near-Infrared Spectroscopy. Spectrosc. Spectr. Anal. 2011, 31, 362–365. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, W.; Zhang, J.; Kong, W.; Casa, R.; Huang, Y. A Novel Combined Spectral Index for Estimating the Ratio of Carotenoid to Chlorophyll Content to Monitor Crop Physiological and Phenological Status. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 128–142. [Google Scholar] [CrossRef]
- Aparicio, N.; Villegas, D.; Royo, C.; Casadesus, J.; Araus, J.L. Effect of Sensor View Angle on the Assessment of Agronomic Traits by Ground Level Hyper-spectral Reflectance Measurements in Durum Wheat under Contrasting Mediterranean Conditions. Int. J. Remote Sens. 2004, 25, 1131–1152. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J. A Relationships between Leaf Pigment Content and Spectral Reflectance Across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Liu, N.; Townsend, P.A.; Naber, M.R.; Bethke, P.C.; Hills, W.B.; Wang, Y. Hyperspectral Imagery to Monitor Crop Nutrient Status Within and Across Growing Seasons. Remote Sens. Environ. 2021, 255, 112303. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.; Fredeen, A.; Merino, J.; Field, C. Reflectance Indices Associated with Physiological Changes in Nitrogen and Water-limited Sunflower Leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Barnes, J.D.; Balaguer, L.; Manrique, E.; Elvira, S.; Davison, A. A Reappraisal of the Use of DMSO for the Extraction and Determination of Chlorophylls A and B in Lichens and Higher Plants. Environ. Exp. Bot. 1992, 32, 85–100. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semi-empirical Indices to Assess Carotenoids/Chlorophyll A Ratio from Leaf Spectral Reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Daughtry, C.S.; Walthall, C.; Kim, M.; De Colstoun, E.B.; McMurtrey Iii, J. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated Narrow-band Vegetation Indices for Prediction of Crop Chlorophyll Content for Application to Precision Agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Li, X.Q.; Liu, X.N.; Liu, M.L.; Wang, C.C.; Xia, X.P. A hyperspectral index sensitive to subtle changes in the canopy chlorophyll content under arsenic stress. Int. J. Appl. Earth Obs. Geoinf. 2015, 36, 41–53. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Barnes, E.; Clarke, T.; Richards, S.; Colaizzi, P.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T. Coincident Detection of Crop Water Stress, Nitrogen Status and Canopy Density using Ground Based Multispectral Data. In Proceedings of the 5th International Conference on Precision Agriculture, Bloomington, MN, USA, 16 July 2000. [Google Scholar]
- Zhang, A.W.; Yin, S.N.; Wang, J.; He, N.P.; Chai, S.T.; Pang, H.Y. Grassland Chlorophyll Content Estimation from Drone Hyperspectral Images Combined with Fractional-Order Derivative. Remote Sens. 2023, 15, 5623. [Google Scholar] [CrossRef]
- Chong, I.G.; Jun, C.H. Performance of Some Variable Selection Methods When Multicollinearity is Present. Chemom. Intell. Lab. Syst. 2005, 78, 103–112. [Google Scholar] [CrossRef]
- Wang, Y.T.; Zhan, Y.G.; Yan, G.J.; Xie, D.H. Generalized Fine-Resolution FPAR Estimation using Google Earth Engine: Random Forest or Multiple Linear Regression. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 16, 918–929. [Google Scholar] [CrossRef]
- Wang, X.R.; Zhang, C.; Qiang, Z.P.; Xu, W.H.; Fan, J.M. A New Forest Growing Stock Volume Estimation Model Based on AdaBoost and Random Forest Model. Forests 2024, 15, 260. [Google Scholar] [CrossRef]
- Li, X.Y.; Jin, H.X.; Eklundh, L.; Bouras, E.H.; Olsson, P.O.; Cai, Z.Z.; Ardö, J.; Duan, Z. Estimation of District-level Spring Barley Yield in Southern Sweden using Multi-source Satellite Data and Random Forest Approach. Int. J. Appl. Earth Obs. Geoinf. 2024, 134, 104183. [Google Scholar] [CrossRef]
- Wang, S.; Tuya, H.; Zhang, S.W.; Zhao, X.Y.; Liu, Z.Q.; Li, R.S.; Lin, X. Random Forest Method for Analysis of Remote Sensing Inversion of Aboveground Biomass and Grazing Intensity of Grasslands in Inner Mongolia, China. Int. J. Remote Sens. 2023, 44, 2867–2884. [Google Scholar] [CrossRef]
- Yang, H.B.; Li, F.; Wang, W.; Yu, K. Estimating Above-Ground Biomass of Potato Using Random Forest and Optimized Hyperspectral Indices. Remote Sens. 2021, 13, 2339. [Google Scholar] [CrossRef]
- Shah, S.H.; Angel, Y.; Houborg, R.; Ali, S.; McCabe, M.F. A Random Forest Machine Learning Approach for the Retrieval of Leaf Chlorophyll Content in Wheat. Remote Sens. 2019, 11, 920. [Google Scholar] [CrossRef]
- López-Calderón, M.J.; Estrada-Avalos, J.; Rodríguez-Moreno, V.M.; Mauricio-Ruvalcaba, J.E.; Martínez-Sifuentes, A.R.; Delgado-Ramírez, G.; Miguel-Valle, E. Estimation of Total Nitrogen Content in Forage Maize (Zea mays L.) Using Spectral Indices: Analysis by Random Forest. Agriculture 2020, 10, 451. [Google Scholar] [CrossRef]
- Wang, C.Y.; Gao, B.B.; Yang, K.; Wang, Y.X.; Sukhbaatar, C.; Yin, Y.; Feng, Q.L.; Yao, X.C.; Zhang, Z.H.; Yang, J.Y. Inversion of Soil Organic Carbon Content Based on the Two-point Machine Learning Method. Sci. Total Environ. 2024, 943, 173608. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Fang, S.B.; Fan, J.L.; Wang, Y.; Zhan, L.Q.; He, Y.K. Rice Yield Estimation Using Machine Learning and Feature Selection in Hilly and Mountainous Chongqing, China. Agriculture 2024, 14, 1615. [Google Scholar] [CrossRef]
- Lin, N.; Ma, X.H.; Jiang, R.Z.; Wu, M.H.; Zhang, W.C. Estimation of Maize Residue Cover Using Remote Sensing Based on Adaptive Threshold Segmentation and CatBoost Algorithm. Agriculture 2024, 14, 711. [Google Scholar] [CrossRef]
- Yang, J.X.; Li, X.G.; Ma, X.F. Improving the Accuracy of Soil Organic Carbon Estimation: CWT-Random Frog-XGBoost as a Prerequisite Technique for In Situ Hyperspectral Analysis. Remote Sens. 2023, 15, 5294. [Google Scholar] [CrossRef]
- Liu, H.H.; Lei, X.Q.; Liang, H.; Wang, X. Multi-model rice canopy chlorophyll content inversion based on UAV hyperspectral images. Sustainability 2023, 15, 7038. [Google Scholar] [CrossRef]
- Liu, M.L.; Liu, X.N.; Li, M.; Fang, M.H.; Chi, W.X. Neural-network Model for Estimating Leaf Chlorophyll Concentration in Rice Under Stress from Heavy Metals Using Four Spectral Indices. Biosyst. Eng. 2010, 106, 223–233. [Google Scholar] [CrossRef]
- Wang, X.; Xu, G.; Feng, Y.; Peng, J.; Gao, Y.; Li, J.; Han, Z.; Luo, Q.; Ren, H.; You, X.J.A.; et al. Estimation Model of Rice Aboveground Dry Biomass Based on the Machine Learning and Hyperspectral Characteristic Parameters of the Canopy. Agronomy 2023, 13, 1940. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Bao, Y.; Luo, J.; Jin, X.; Xu, X.; Song, X.; Yang, G. Exploring the Best Hyperspectral Features for LAI Estimation using Partial Least Squares Regression. Remote Sens. 2014, 6, 6221–6241. [Google Scholar] [CrossRef]
- Verma, B.; Prasad, R.; Srivastava, P.K.; Yadav, S.A.; Singh, P.; Singh, R. Investigation of Optimal Vegetation Indices for Retrieval of Leaf Chlorophyll and Leaf Area Index using Enhanced Learning Algorithms. Comput. Electron. Agric. 2022, 192, 106581. [Google Scholar] [CrossRef]
- Wei, G.F.; Li, Y.; Zhang, Z.T.; Chen, Y.W.; Chen, J.Y.; Yao, Z.H.; Lao, C.C.; Chen, H.F. Estimation of Soil Salt Content by Combining UAV-borne Multispectral Sensor and Machine Learning Algorithms. PeerJ 2020, 8, e9087. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.Y.; Song, J.H.; Wang, H.J.; Lv, X.; Zhu, Y.Q.; Zhang, W.X.; Bu, W.Q.; Zeng, L.Y. Improving Soil Organic Matter Estimation Accuracy by Combining Optimal Spectral Preprocessing and Feature Selection Methods Based on PXRF and VIS-NIR Data Fusion. Geoderma 2023, 430, 116301. [Google Scholar] [CrossRef]
- Sun, W.C.; Liu, S.; Zhang, X.; Li, Y. Estimation of Soil Organic Matter Content using Selected Spectral Subset of Hyperspectral Data. Geoderma 2022, 409, 115653. [Google Scholar] [CrossRef]
- Bai, Z.J.; Xie, M.D.; Hu, B.F.; Luo, D.F.; Wan, C.; Peng, J.; Shi, Z. Estimation of Soil Organic Carbon Using Vis-NIR Spectral Data and Spectral Feature Bands Selection in Southern Xinjiang, China. Sensors 2022, 22, 6124. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.L.; Zhao, J.L.; Xu, X.G.; Liang, D.; Yang, G.J.; Feng, H.K.; Yang, H.; Wang, Y.L.; Chen, G.; Wei, P.F. Hyperspectral-Based Estimation of Leaf Nitrogen Content in Corn Using Optimal Selection of Multiple Spectral Variables. Sensors 2019, 19, 2898. [Google Scholar] [CrossRef]
- Wu, G.S.; Fang, Y.L.; Jiang, Q.Y.; Cui, M.; Li, N.; Ou, Y.M.; Diao, Z.H.; Zhang, B.H. Early Identification of Strawberry Leaves Disease Utilizing Hyperspectral Imaging Combing with Spectral Features, Multiple Vegetation Indices and Textural Features. Comput. Electron. Agric. 2023, 204, 107553. [Google Scholar] [CrossRef]
- Feng, S.; Cao, Y.L.; Xu, T.Y.; Yu, F.H.; Chen, C.L.; Zhao, D.X.; Yan, J. Inversion Based on High Spectrum and NSGA2-ELM Algorithm for the Nitrogen Content of Japonica Rice Leaves. Spectrosc. Spectr. Anal. 2020, 40, 2584–2591. [Google Scholar]
- Xu, T.; Wang, F.; Xie, L.; Yao, X.; Zheng, J.; Li, J.; Chen, S. Integrating the Textural and Spectral Information of UAV Hyperspectral Images for the Improved Estimation of Rice Aboveground Biomass. Remote Sens. 2022, 14, 2534. [Google Scholar] [CrossRef]
Sample Set | Size | Max. | Min. | Mean | SD | CV (%) |
---|---|---|---|---|---|---|
Calibration set | 96 | 48.600 | 8.700 | 34.547 | 9.724 | 28.1 |
Validation set | 48 | 47.200 | 17.000 | 39.079 | 6.253 | 16.0 |
Total | 144 | 48.600 | 8.700 | 36.058 | 8.928 | 24.8 |
Generic Name (Abbreviation) | Formula | Reference |
---|---|---|
Normalized Difference Vegetation Index (NDVI) | (R800 − R680)/(R800 + R680) | [50] |
Difference Vegetation Index (DVI) | R800 − R680 | [50,51] |
Simple Ratio Index (SRI) | R800/R680 | [52] |
Enhanced Vegetation Index (EVI) | 2.5 × (R800 − R680)/(R800 + 6 × R680 − 7.5 × R450 + 1) | [53] |
Photochemical Reflectance Index (PRI) | (R550 − R530)/(R550 + R530) | [54] |
Normalized Phaeophytinization Index (NPQI) | (R415 − R435)/(R415 + R435) | [55] |
Structure Insensitive Pigment Index (SIPI) | (R800 − R445)/(R800 + R680) | [56] |
Modified Chlorophyll Absorption in Reflectance Index (MCARI) | [(R700 − R670) − 0.2 × (R700 − R550)] × (R700/R670) | [57] |
Transformed Chlorophyll Absorption in Reflectance Index (TCARI) | 3 × [(R700 − R670) − 0.2 × (R700 − R550)] × (R700/R670) | [58] |
NVI (R640,R732,R752) | (R752 − R732)/(R732 − R640) | [59] |
Carotenoid/Chlorophyll Ratio Index (CCRI) | [(R720 − R521) × R705]/[(R750 − R705) × R521] | [50] |
Red-edge Chlorophyll Index (CIre) | [R760 − R800]/[R690 − R720] − 1 | [60] |
Normalized Red-Edge Differences (NDRE) | (R783 − R705)/(R783 + R705) | [61] |
Normalized Pigment Chlorophyll Index (NPCI) | (R680 − R430)/(R680 + R430) | [51] |
Modified Red-Edge Normalized Difference Vegetation Index (mND705) | (R750 − R705)/(R750 + R705 − 2 × R445) | [52] |
Heavy Metal Cd Stress-Sensitive Spectral Index (HCSI) | ((R780 − R712)/R678)(R678/R550) | [8] |
Model Types | Optimal Input Parameters | ||||||
---|---|---|---|---|---|---|---|
n_estimators | max_depth | max_leaf_nodes | max_features | min_samples_split | min_samples_leaf | ||
sensitive vegetation indices | VISS | 413 | 16 | 25 | 0.5 | 13 | 22 |
fractional-order differential characteristic bands | FOD0cb | 1006 | 10 | 7 | Log2 | 18 | 19 |
FOD0.2cb | 467 | 4 | 24 | 5 | 20 | 19 | |
FOD0.4cb | 412 | 20 | 17 | 5 | 22 | 19 | |
FOD0.6cb | 923 | 4 | 5 | 0.5 | 19 | 19 | |
FOD0.8cb | 183 | 31 | 4 | 5 | 22 | 19 | |
FOD1.0cb | 178 | 23 | 19 | Log2 | 21 | 15 | |
FOD1.2cb | 541 | 23 | 30 | 0.5 | 11 | 7 | |
FOD1.4cb | 933 | 23 | 27 | None | 17 | 4 | |
FOD1.6cb | 111 | 21 | 4 | 0.5 | 16 | 18 | |
FOD1.8cb | 123 | 8 | 29 | 5 | 25 | 18 | |
FOD2.0cb | 962 | 2 | 3 | 0.8 | 19 | 22 | |
combination of the sensitive vegetation indices and fractional-order differential characteristic bands | VISS + FOD0cb | 547 | 27 | 6 | None | 31 | 19 |
VISS + FOD0.2cb | 511 | 18 | 3 | 0.8 | 28 | 19 | |
VISS + FOD0.4cb | 1100 | 5 | 28 | 0.8 | 21 | 19 | |
VISS + FOD0.6cb | 819 | 12 | 8 | None | 13 | 18 | |
VISS + FOD0.8cb | 712 | 17 | 5 | 0.5 | 7 | 19 | |
VISS + FOD1.0cb | 762 | 30 | 31 | sqrt | 5 | 19 | |
VISS + FOD1.2cb | 106 | 14 | 32 | None | 8 | 1 | |
VISS + FOD1.4cb | 517 | 30 | 8 | None | 2 | 1 | |
VISS + FOD1.6cb | 538 | 30 | 7 | 0.8 | 18 | 18 | |
VISS + FOD1.8cb | 830 | 3 | 24 | 0.2 | 15 | 18 | |
VISS + FOD2.0cb | 208 | 28 | 15 | 5 | 9 | 20 |
Fractional Order | Number of Characteristic Bands | Characteristic Bands (nm) |
---|---|---|
FOD0cb | 314 | 405–718 |
FOD0.2cb | 306 | 400–705 |
FOD0.4cb | 303 | 400–702 |
FOD0.6cb | 299 | 400, 403–700 |
FOD0.8cb | 281 | 407–408, 415–418, 420–700 |
FOD1.0cb | 248 | 411, 443–444, 449, 451–452, 463, 482–564, 601–626, 634–675, 678–698, 705–773 |
FOD1.2cb | 261 | 444–445, 447, 451–492, 508–677, 680–688, 695–731 |
FOD1.4cb | 271 | 443–444, 446, 450–452, 454–676, 679–685, 692–726 |
FOD1.6cb | 275 | 433, 437, 441, 443–444, 446, 450–452, 454–477, 479–676, 679–684, 689–726 |
FOD1.8cb | 262 | 434, 438, 447, 452, 455–456, 458–459, 462–468, 470–478, 480–485, 487–677, 680–683, 688–724 |
FOD2.0cb | 158 | 481, 487, 5494–495, 501, 515–516, 518–519, 522–523, 548, 564–566, 569–570, 597–598, 600–606, 608–609, 616, 618–623, 625–626, 631–644, 647–648, 650, 652–659, 662–688, 691–715, 717–718, 724–757, 759–760, 763, 768, 781, 972, 980, 992 |
Combination Model | Independent Variables |
---|---|
VISS + FOD0cb | HCSI, SIPI, NDRE, SRI, NDVI, mND705, CCRI, 656 nm, 654 nm, 655 nm |
VISS + FOD0.2cb | HCSI, NDRE, SIPI, SRI, NDVI, mND705, CCRI, 457 nm, 446 nm, 488 nm |
VISS + FOD0.4cb | HCSI, SIPI, NDRE, SRI, NDVI, mND705, 423 nm, CCRI, 424 nm, 419 nm |
VISS + FOD0.6cb | HCSI, SIPI, NDRE, NDVI, 423 nm, SRI, mND705, CCRI, 646 nm, 650 nm |
VISS + FOD0.8cb | HCSI, NDRE, SIPI, SRI, NDVI, mND705, 461 nm, 679 nm, 680 nm, 486 nm |
VISS + FOD1.0cb | SIPI, HCSI, SRI, 756 nm, NDRE, NDVI, 539 nm, 759 nm, 737 nm, 752 nm |
VISS + FOD1.2cb | 521 nm, 686 nm, CCRI, SIPI, 520 nm, 703 nm, 685 nm, 515 nm, 687 nm, HCSI |
VISS + FOD1.4cb | CCRI, 686 nm, SIPI, 515 nm, 685 nm, 520 nm, 700 nm, 701 nm, HCSI, SRI |
VISS + FOD1.6cb | HCSI, SIPI, 503 nm, 696 nm, 616 nm, NDVI, NDRE, 697 nm, SRI, mND705 |
VISS + FOD1.8cb | HCSI, NDVI, SIPI, NDRE, 509 nm, SRI, 514 nm, 503 nm, 696 nm, 694 nm |
VISS + FOD2.0cb | HCSI, 741 nm, 703 nm, CCRI, SRI, 683 nm, NDVI, 708 nm, SIPI, mND705 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, R.; Zou, B.; Li, S.; Dai, L.; Zhang, B.; Wang, Y.; Tu, H.; Zhang, J.; Zou, L. A Model Combining Sensitive Vegetation Indices and Fractional-Order Differential Characteristic Bands for SPAD Value Estimation in Cd-Contaminated Rice Leaves. Agriculture 2025, 15, 311. https://doi.org/10.3390/agriculture15030311
Tian R, Zou B, Li S, Dai L, Zhang B, Wang Y, Tu H, Zhang J, Zou L. A Model Combining Sensitive Vegetation Indices and Fractional-Order Differential Characteristic Bands for SPAD Value Estimation in Cd-Contaminated Rice Leaves. Agriculture. 2025; 15(3):311. https://doi.org/10.3390/agriculture15030311
Chicago/Turabian StyleTian, Rongcai, Bin Zou, Shenxin Li, Li Dai, Bo Zhang, Yulong Wang, Hao Tu, Jie Zhang, and Lunwen Zou. 2025. "A Model Combining Sensitive Vegetation Indices and Fractional-Order Differential Characteristic Bands for SPAD Value Estimation in Cd-Contaminated Rice Leaves" Agriculture 15, no. 3: 311. https://doi.org/10.3390/agriculture15030311
APA StyleTian, R., Zou, B., Li, S., Dai, L., Zhang, B., Wang, Y., Tu, H., Zhang, J., & Zou, L. (2025). A Model Combining Sensitive Vegetation Indices and Fractional-Order Differential Characteristic Bands for SPAD Value Estimation in Cd-Contaminated Rice Leaves. Agriculture, 15(3), 311. https://doi.org/10.3390/agriculture15030311